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Abstract

In this paper we discuss the importance of incorporating
into adaptive hypermedia a student model that can assess
the effectiveness of a learner’s exploratory behavior. We
describe the details of the student model in the Adaptive
Coach for Exploration (ACE), an open learning
hypermedia for mathematical functions. Based on our
experience of having evaluated the model with human
subjects, we describe the factors such a model should
incorporate to effectively provide adaptive guidance to
learning through exploration for those students who
cannot explore adequately on their own. We discuss how,
in addition to domain dependent elements (e.g., coverage
of relevant domain concepts and prior knowledge), these
factors include domain independent meta-cognitive skills
such as self-explanation and self-monitoring.
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1. Introduction

In this work, we focus on issues related to student
modeling for a specific type of adaptive hypermedia —
open learning hypermedia. Open learning environments
place less emphasis on supporting learning through
structured, explicit instruction and more on providing the
learner with the opportunity to freely explore the available
instructional material, acquiring knowledge of relevant
concepts and skills in the process [1]'. In theory, this
type of active learning should enable students to acquire a
deeper, more structured understanding of concepts in the
domain [1]. Also, owing to the unguided nature of the
interaction, the hope is that, in addition to skills in the
target instructional domain, the learner can practice and
acquire meta-cognitive skills associated with effective
exploration [2]. The vast amount of exploratory material
provided by the Web makes the techniques employed by

' Another interpretation of “open” is that there is
unconstrained access to instructional material and
activities outside the environment, but this is not the
intended meaning in the paper.
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these types of educational environments particularly
relevant.

Empirical evaluations, however, have shown that a
student's ability to benefit from interacting with open
learning environments depends on a number of student-
specific features, including activity level, whether or not
the student already possesses the meta-cognitive skills
necessary to learn from exploration and general academic
achievement (e.g., [1], [2], [3]). Students who are inactive
or lack the necessary cognitive skills often fail to initiate
enough meaningful exploratory actions and  they can
have difficulty interpreting and generalizing the results of
the actions that they do initiate. Furthermore, the larger
the exploration space, the higher the danger that these
students could experience information overload and get
lost in the exploration process.

Given the above findings, we argue that any highly
exploratory adaptive hypermedia should be instrumented
with a student model that can assess the effectiveness of a
learner's exploratory behaviour and detect when the
learner needs supports for the exploration process. The
student model should be the basis for pedagogical
strategies designed to provide this support in a tailored
and timely manner, without taking away the sense of
freedom and control that is a key asset of open learning
environments. In this paper, we discuss issues related to
the specification of this model and related pedagogical
strategies. The discussion is based on our experience in
building ACE (Adaptive Coach for Exploration), an
intelligent  exploratory  learning environment for
mathematical functions [4][5]. We first introduce ACE
and its student model for exploratory behavior. We then
illustrate some lessons that we have learned from
empirical evaluations of ACE, as well as their
implications for student modeling in highly exploratory
hypermedia. We conclude with a discussion of related and
future work.

2. The ACE Open Learning Environment

2.1 ACE Interface

ACE is an adaptive open learning hypermedia for the
domain of mathematical functions. ACE's activities are
divided into units and exercises. Units are collections of
exercises whose material is presented with a common



theme and mode of interaction. Exercises within the units
differ in function type and equation.

Figure 1 and 2 show the main interaction window for
two of ACE's units: the Machine Unit and the Plot Unit.
ACE also has a third unit, the Arrow Unit, as well as help
pages and a feedback panel, not displayed for lack of
space.
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Figure 1: ACE Machine Unit
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Figure 2: ACE Plot Unit

The Machine Unit and the Arrow Unit allow the student
to explore the relationship between an input and the
output of a given function. In the Machine Unit, the
exploration consists of dragging any number of inputs
displayed at the top of the screen to the tail of the function
““machine” (the large arrow shown in Figure 1), which
then computes the corresponding output. The Arrow Unit
allows the student to match a number of inputs with the
correct outputs and is the only activity within ACE that
has a clear definition of correct and incorrect behaviour.
In the Plot Unit (Figure 2), the student can explore the
relationship between the graph of a function and its
equation, by manipulating either the graph or the
equation, and then observing the corresponding changes
in the other entity.

Although the above units and corresponding exercises
can be traversed by the student in a predefined sequence,
we want students to also be able to freely explore the
curriculum. Therefore, ACE includes a Lesson Browser
which shows all units and exercises, and allows the
student to go to any exercise by clicking on it. ACE also
provides the Exploration Summary (see Figure 3), a tool
that helps students organize their exploration process by
summarizing the exploration actions they have performed
so far within a given exercise, in terms of relevant
exploration categories (described in the next section).

In addition to these tools to facilitate student
exploration, ACE also include a coaching component that
provides tailored hints when students have difficulties
exploring effectively. The coach’s interventions are based
on a model of student exploration that monitors the
student’s interaction with ACE and assesses the
effectiveness of the resulting exploration. We first
describe this model and then discuss how the ACE’s
coaching component uses it.
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Figure 3: ACE Exploration Summary Tool

2.2 ACE Student Model

Modelling students' exploration presents unique
challenges, for two main reasons. First, in more structured
educational activities, such as problem solving and
question answering, there is usually a definition of correct
behaviour, which allows this behaviour to be represented
and recognized in a formal model. In contrast, in open
learning environments there is no clear understanding of
what constitutes successful exploration in general.
Second, it is hard to obtain reliable information on the
student's exploratory behaviour. The amount and quality
of information available to a user model to perform its
assessment is referred to as the bandwidth issue [6]. The
less explicit information on the user's relevant traits or
behaviours the model is able to obtain, the higher the
uncertainty in the modelling process. The bandwidth
problem is especially difficult for student modelling in
open learning environments. Both exploratory behaviour
and related meta-cognitive skills necessary for effective
learning are not easily observable unless the



environment's interface forces students to make them
explicit. However, forcing students to articulate their
exploration steps clashes with the unrestricted nature of
open learning environments. Thus, a model for
exploratory behaviour is bound to deal with low-
bandwidth information, which introduces a high level of
uncertainty into the modelling task.

Correct Behaviour

Exploration of Categories

Relevant Exploration Cases

e

Exploration of Exercises

Figure 4: High-Level Description of ACE Student
Model

ACE’s student model uses Bayesian networks to
manage this uncertainty. One of the main challenges in
using Bayesian Networks is to define the network's
structure to accurately represent the relevant probabilistic
dependencies. In our model, this problem is exacerbated
by the difficulty of defining correct exploratory
behaviour. Our approach was to use an iterative design
process. We first built a version of the Student Model
using our intuition of what constitutes effective
exploration in ACE and evaluated the model in a formal
study. We then used the study results to redesign the
model and conducted an evaluation of the changes. By
building and evaluating two versions of the model, we
were able to gain valuable insight into (i) what factors
contribute to effective exploration of the ACE
environment and (ii) how to formalize these factors in the
Student Model (details on this iterative process can be
found in [5]).

Figure 4 shows a high-level description of the different
types of nodes in the current version of the student
model. As the figure shows, the model includes several
types of exploration nodes, to assess exploratory
behaviour at different levels of granularity.

*  Relevant Exploration Cases: the exploration of
individual exploration cases in an exercise (e.g.,
dragging the number 3, a small positive input, to the
back of the function machine in the Machine Unit).

*  Exploration of Exercises: the exploration of
individual.

»  Exploration of Units: the exploration of groups of
related exercises (e.g., all of the exercises in the Plot
Unit).

»  Exploration of Categories: the exploration of groups
of relevant exploration cases that appear across
multiple exercises (e.g., all of the exploration cases
involving small positive inputs or large negative

inputs in the Machine and Arrow unit; all the cases
involving a linear function with a positive slope or a
negative intercept in the Plot unit).

*  Exploration of General Concepts: the exploration of
general domain concepts, such as the input/output
relation for different types of functions.

In ACE’s student model, the links among these types of
exploration nodes represent how they interact to define
effective exploration. Individual operations that a student
performs within an exercise (Relevant Exploration Cases)
define effective exploration of each individual exercise
(Exploration of Exercises), which in turns influences
effective Exploration of Units and exercises involving
similar cases. How well the student explores the available
exercises and units then influences how well she has
explored general domain concepts (Exploration of
General Concepts). Exploration of individual cases also
defines how well the student is exploring groups of
relevant cases that appear across exercises (Exploration of
Cases). Each exploration node can take on the value of
either True of False. A True value means that the learner
has sufficiently explored the item associated with the
node (i.e., the relevant exploration case, exercise, unit,
category, or general concept), where sufficient means that
the learner has performed enough interface actions to
indicate thorough exploration.

Initial studies with ACE showed that how much
exploration a student needs to understand a concept
depends on how much knowledge of that concept she
already has. Thus, ACE’s student model also includes
binary nodes representing the probability that the learner
understands the relevant pieces of knowledge.
(summarized by the node Knowledge in Figure 4) and
links indicating the aforementioned relation between
knowledge and exploration. Knowledge nodes are
updated only through actions for which there is a clear
definition of correctness (e.g. linking inputs and outputs
in the Arrow Unit) and directly contribute to the
assessment of how much further understanding the learner
can gain from exploratory activities.

2.3 ACE adaptive support to effective

exploration

Assessment of exploration at different levels of
granularity allows the coaching component to provide a
wide range of tailored feedback. In order to remain
consistent with the philosophy of exploratory learning
environments, it is crucial that ACE’s support for student
exploration be as unobtrusive as possible. Thus, this
feedback is designed to provide different levels of
guidance, according to the needs of the individual learner.

The first level of guidance consists of a generic
suggestion to continue exploring when a student tries to
leave an exercise before the student model assesses that it
has been adequately explored. Currently, ACE does not
interrupt a student’s exploration of an exercise. Once the
students signal that they wish to move to a new exercise,
ACE queries the Student Model for two pieces of
information: the probability that the student has
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Figure 6: Sample of ACE incremental hints

adequately explored the current exercise and the
probabilities for the relevant exploration categories. ACE
remains silent if either the current exercise exploration is
satisfactory (i.e. the related probability is above a
predefined threshold currently based on our subjective
estimate and equal for every exercise), or if the
probabilities of the associated exploration categories are
satisfactory. If neither of these criteria is met, then a
message is shown, suggesting that the student explore
more and ask for hints if she needs help. This first hint
omits any specifics on how to explore, to force the
students to be as self-directed as possible in the
exploration process and to take initiative in obtaining
hints. Since we want to maintain a high level of learner
control, the student may always choose to disregard
ACE’s suggestion and leave the exercise at any point. If a
student does decide to stay, ACE may suggest to open the
Exploration Summary to recapitulate her recent
exploratory actions. Figure 3 shows the tool open for an
exercise in the Machine unit; it has organized the various
inputs that the student has explored so far into relevant
categories represented in the Student Model (such as
Small-Positive-Range inputs, Zero inputs, etc).

As students explore, they can ask for a hint at any time.
ACE generates hints on which element of an exercise to
explore next by traversing the relevant exploration
categories that are stored in the Student Model and by
returning the first category that has a low probability of
having been explored. Hints are provided at an
incremental level of detail, to stimulate the students to do
as much work as possible on their own. Figure 5 shows an
example hint sequence generate for a student who is
working with a linear function in the plot unit, has
explored both positive and negative intercepts extensively
and then has requested a hint.

Initial studies on ACE have generated encouraging
evidence that the system, in its current form, can indeed
help students learn from exploratory learning
environments (see [4] and [5]). In particular, the studies
have shown a high and statistically significant correlation
between student learning and exploration related interface
events triggered by ACE’s tailored hints. The lack of
correlation between different event types provides further
evidence that learning was triggered by ACE’s hints
rather than alternative factors such as student general
academic ability and conscientiousness. However, these

studies have also uncovered a limitation that reduces
ACE’s potential. This limitation is that ACE’s student
model does not currently assess any meta-cognitive
skills relevant to effective exploration. Thus, ACE
sometimes misjudges’ student behaviour and when it
correctly interprets this behavior as suboptimal
exploration, it cannot tell what caused it, as we will
discuss in the next session.

4. Role of Meta-Cognitive Skills in Effective
Exploration

In one of the ACE’s studies [5], we analyzed the log
files of the learners' interactions with ACE to see, among
other things, how often ACE allowed a learner to leave
an exercise without warning, even though the student had
not learned the associated concepts (as indicated by the
study post-test). We refer to this event count as the
number of premature passes.

The data analysis showed that 9% of all student
transitions between exercises could be classified as
premature passes, indicating that ACE’s model sometimes
overestimates the learners' exploratory behaviour: when
learners perform a large number of exploratory interface
actions, the model assesses this to be good exploratory
behaviour, even though some of the learners do not learn
from these actions. We conjecture that a likely cause for
this problem is that ACE only considers as evidence the
interface actions that the student performs, without
considering whether the student is self-explaining the
outcome of these actions.

Self-explanation is defined as the meta-cognitive skill
of spontaneously explaining to oneself available
instructional material, in terms of the underlying domain
knowledge. It has been shown to greatly influence
learning [7]. To understand how self-explanation plays a
key role in effective exploration, consider a learner who,
in the ACE Plot Unit, moves a function graph around the
screen, and never looks at how the movements change the
function equation. Although this learner is performing
many exploratory actions in that exercise, he can hardly
learn from them because he is not reflecting on (self-
explaining) their outcomes. We observed this exact
behaviour in one of our subjects, who in fact showed in
the post test that he had not learned the concepts
underlying the actions he performed. Thus, we argue



that an adaptive open learning environment must include
ways to track student self-explanation. Factors that can be
used to assess self-explanation behaviour include the
amount of time spent on each exploration action [8][9],
whether or not the learner is observing the results of
exploration actions, whether the learner is actually
generating explanations of these results, and the learner's
known tendency to spontaneously self-explain. Consider,
for instance, the case of the learner who is continually
altering a graph in the Plot Unit. ACE’s student model
could be more confident that this is a sign of good
exploration if the learner looks at both the graph and the
equation as they change, and leaves the graph at the key
positions for long enough to self-explain the
correspondence with the current equation. Knowing a
priori that the learner has a tendency to self-explain
(many learners do not, as shown by the studies
summarized in [7]) could further increase the model's
confidence that the learner's behaviours are conducive to
learning. Having ways to actually track what
explanations the student is generating, if any, would
provide even more solid evidence. However, detailed
monitoring of the student focus of attention and
explanations can interfere with the student exploration
process. In [9], for instance, the authors describe an
interface that allows monitoring student attention by
forcing the student to explicitly uncover parts of the
relevant instructional material, and tracks students’
explanations by providing menu-based tools for
explanation composition. These mechanisms were judged
to be non-intrusive by the majority of the subjects in a
study to evaluate the proposed interface, but the system
described in [9] was not trying to promote learning
through exploration. Subjects’ tolerance of additional
interface actions may be lower in an open learning
environment. On the other hand, it is possible that
switching to a more constrained interaction may help
those students who do not have the meta-cognitive skills
to explore effectively on their own. In particular, we
conjecture that students who do not spontaneously self-
explain, or who cannot effectively self-monitor their
learning progresses may  benefit from the stronger
guidance provided by interface mechanisms that allow
them to explicitly reflect on their interaction with the
learning environment. To test this hypothesis, and to see
how more detailed information on student self-
explanation can improve ACE’s effectiveness, we are
working on giving ACE the capability to guide the
generation of relevant self-explanations. We have started
to design hints to stimulate relevant self-explanations in
the different ACE’s units. For instance, Figure 6 shows a
dialogue box designed to help the student generalize the
input-output behaviour of a given function, after the
student has tried a few inputs in the Machine or in the
Arrow unit.

The next step in providing ACE with the capability to
track and stimulate student self-explanations will be to
add to the student model the relevant self-explanation
nodes. The high level relations between self-explanation

information and exploratory behavior is shown if Figure
8. Adequate self-explanation of each exploration case can
be assessed by leveraging any existing information on the
time the student spent on this case, the self-explanation
actions the student has performed using the available
tools, and the student’s pre-existing tendency to self-
explain. This tendency could be tested before the student
starts interacting with ACE by observing how she studies
a piece of instructional text, and further evidence could be
derived directly from the student’s usage of the self-
explanation tools available in the interface.

E%Explain Function Conceplt il

Select a correct explanation for the relationship of input and output.

Cwtputs change linearly as inpu_ts change.
An output is & power of an input.

Cutputs remain constant as inputs chanoe.
Ctputs change irregularly as inputs change.

[comes | on

Figure 7: Self-explanation box for the Machine Unit.

The conditional probabilities for these relations in
Figure 8 must encode the different reliability of each
source of information, as well as how each source affects
the reliability of the other two. For instance, a long time
spent on a given exploration case for a student who is
known to have a low tendency to self-explain will
correspond to a lower probability of effective exploration
than if the student is known to have a high tendency to
self-explain.
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Figure 8: Addition of self-explanation variables to
model exploration of relevant cases

5 Discussion and More Future Work

Because of the difficulty in  monitoring student
behavior in an open learning environments, there have
been very few attempts so far to model student
exploration. The open learning environments described in
[1] and [10] monitor and support exploration subskills
related to correct hypothesis selection, but rely on the
assumption that students actively generate hypotheses
and test them. Thus, they are unable to support students
who are not active experimenters. The student model
described in the ALE environment [11] does assess
whether students touch all the relevant domain concepts
during their experimentation, but it generates its



assessment by explicitly testing the students. Thus, ALI
departs from the open-ended and learner-directed style of
interaction typical of pure open learning environments,
which ACE's Student Model aims to preserve. We are not
aware of any adaptive open learning environment that
tries to tie effective exploration to self-explanation.

Although our efforts are currently concentrated on
adding to ACE the capability to model and stimulate self-
explanation, other meta-cognitive skills and students’
traits could be added to the ACE’s student model to
improve its accuracy and to provide effective and
unobtrusive support to exploration.

For instance, the capability of self-monitoring one’s
learning progresses seems to play an important role in
effective exploration [1], since it allows the learner to
judge if more exploration is needed, and of what
concepts. The lack of this meta-cognitive skill could be
one of the causes of students moving prematurely to a
new exercise, or of overexploring. We did see several
cases of student over-exploration with ACE. This was
especially noticeable when students accepted ACE
mistaken suggestions (based an early version of the
student model) to stay in the current exercise when the
study pretest showed that the student had already
mastered all the necessary concepts. By being able to
identify lack of self-monitoring capability as the cause of
the above suboptimal behaviors, ACE could provide more
appropriate support to improve student exploration. It
could, for instance, make a more principled use of the
Exploration Summary tool to help students monitor their
progresses in the interaction.

Other factors that can influence the effectiveness of
student exploration include motivation, personality traits,
and learner's knowledge of effective exploration
strategies. Incorporating these factors, along with the
aforementioned factors affecting self-explanation and
self-monitoring, is expected to improve both the model's
assessment and its diagnostic capabilities, thus allowing
the implementation of coaching strategies that can more
precisely address the causes of poor exploration.

These coaching strategies must always take into
account the trade-off between the added pedagogical
effectiveness that an explicit hint may buy vs. the danger
of interfering with the student engagement in the
exploratory activities. Currently ACE does not take into
account the student’s attitude toward receiving
pedagogical hints during the exploration process.
Although ACE always allows a student to ignore its hints,
the very fact that a hint was provided might be
detrimental for some students with a specific personality
or learning style. Thus, we are planning to add to the
student model the capability to assess the impact of
ACE’s hints on student engagement, as well as decision
theoretic mechanisms to compute at any given time what
is ACE’s intervention (or lack thereof) with the highest
expected value, considering the preferences of the current
student and the current state of the interaction.
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