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Abstract. Providing adaptive support in Exploratory Learning Environments is 
necessary but challenging due to the unstructured nature of interactions. This is 
especially the case for complex simulations such as the DC Circuit Construction 
Kit used in this work. To deal with this complexity, we evaluate alternative rep-
resentations that capture different levels of detail in student interactions. Our re-
sults show that these representations can be effectively used in the user model-
ing framework proposed in [2], including behavior discovery and user classifi-
cation, for student assessment and providing real-time support. We discuss 
trade-offs between high and low levels of detail in the tested interaction repre-
sentations in terms of their ability to evaluate learning and inform feedback. 
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1 Introduction 

Interactive simulations are educational tools that can foster student-driven, explora-
tory learning by allowing students to proactively experiment with concrete examples 
of concepts and processes they have learned in theory. There is increasing research in 
Intelligent Tutoring System (ITS) to endow these interactive simulations and other 
types of Exploratory Learning Environments (ELE from now on) with the ability to 
provide student-adaptive support for those students who may not learn effectively 
from these rather unstructured, open-ended activities [2–5]. Providing this support 
entails building a user-model that can estimate the learner’s proficiency in learning 
via exploration and need for help during interaction. However, building such a model 
is especially challenging because it is relatively unclear how to operationalize explo-
ration skills and difficult to define a priori which behaviors are conductive to learning.  

Some previous work has dealt with the challenge by limiting the exploratory nature 
of the interaction [4, 6]. In contrast, Kardan and Conati [2] proposed a student model-
ing framework that learns from action logs which student behaviors should trigger 
help during interaction with an ELE. Clustering is used to identify students who be-
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have and learn similarly from the interaction. Association rule mining is applied to 
derive distinguishing interaction behaviors from the clusters, and these behaviors are 
leveraged to drive the provision of adaptive support in real time during interaction. 
This student modeling framework was successfully applied to provide adaptive sup-
port in the CSP applet, an ELE for a constraint satisfaction algorithm [7]. The part of 
the CSP applet used in [7] involves a limited number of actions and thus it was suffi-
cient to represent student behaviors in terms of raw actions. This simple representa-
tion did not scale up when we tried to apply the framework to a more complex simu-
lation that provides over a hundred types of actions for exploring concepts related to 
electricity, the PhET DC Circuit Construction Kit (CCK). Thus, in [5] we proposed a 
richer, multi-layer representation of action-events that includes information on indi-
vidual actions (e.g., join), as well as the manipulated components (e.g., light bulbs), 
the relevant family of actions (e.g., revise), and the observed outcome (e.g., changes 
to light intensity). We showed that clustering interaction behaviors based on this rep-
resentation succeeds in identifying students with different learning outcomes in CCK.  

In this paper, we provide a comprehensive evaluation of this multi-layer represen-
tation as the basis to apply the student modeling framework proposed in [2] to CCK. 
The evaluation is in terms of ability to identify learners with high- or low- learning 
gains, suitability for user modeling (i.e. to classify new students in terms of their 
learning performance as they work with CCK), and for defining the content of adap-
tive support during interaction. Furthermore, we use these evaluation dimensions to 
compare alternative representations derived from the multi-layer structure in [5], 
which capture different aspects of interaction behaviors at different levels of granular-
ity. Our results show both classification accuracies comparable to those reported in 
[7], as well as that the approach succeeds in discovering association rules that can be 
leveraged to design interactive support, thus providing evidence on the generality of 
this student modeling framework across representations. We further discuss tradeoffs 
between evaluation dimensions that need to be considered when choosing the most 
suitable representation for assessing and supporting students during interaction with 
ELE as complex as CCK.  

In the rest of the paper we first discuss related work. Then, we describe the CCK 
simulation and the study used for collecting data. Next, we present the different repre-
sentations we evaluated, and summarize the user modeling approach we used. After 
presenting the evaluation results, we conclude with a general discussion of findings, 
contributions, limitations, and future work.  

2 Related work  

Most of the work done so far on providing adaptive feedback in interactive simula-
tions has dealt with the challenge of how to identify when and how a student needs 
support by limiting the exploratory nature of the interaction. For instance, the simula-
tions developed by Hussain et al. [8] provide feedback on how to behave in pre-defined 
cultural/language-related scenarios with clear definition of correct answers/behaviors. 
The Chemistry VLab [9] provides help on well-defined steps required to run a scientific 
experiment. Science ASSISTments [4] provides feedback on the specific problem of 
controlling for variables in experimental design. Work on designing adaptive support 



for more open-ended exploratory interactions has relied either on expert knowledge 
(e.g., [10] and [3]) or on data-mining (e.g. [7] and [11]) to identify suitable feedback 
strategies. The work in [11], which provides scaffolding to students using an environ-
ment that supports learning by teaching an artificial student, relies on knowing a priori 
which students learned or not from the system to mine the relevant feedback strategies. 
In contrast, the approach successfully evaluated in [7], and adopted in this paper, groups 
learners via clustering on their interaction behaviors alone (with little processing), with-
out using additional information.  

3 The CCK simulation and User Study 

The CCK simulation is part of PhET [12], a freely-available and widely-used suite 
of simulations in different science and math topics. CCK includes 124 different types 
of actions to build and test DC circuits by connecting different components including 
wires, light bulbs, resistors, batteries, and measurement instruments (Figure 1). The 
available actions include adding, moving, joining, splitting, and removing compo-
nents, as well as changing the attributes of components (such as resistance). Addition-
al actions relate to the interface (such as changing views) or the simulation itself (such 
as resetting the simulation). CCK provides animated responses with regard to the state 
of the circuits on the testbed. For instance, when a light bulb is connected to the cir-
cuit, the light intensity and speed of electrons change with variation of the current. 

CCK is a tool and instructors define 
activities outside the environment. Be-
ing an inquiry environment, not all stu-
dents make optimal use of the simula-
tion. Our long-term goal is to assess the 
effectiveness of students’ behaviors in 
CCK and provide explicit support to 
foster learning.  

Data used in this paper was collected 
from 96 first-year physics students who participated in a laboratory user study de-
scribed in [5, 13] and who had less-than-perfect pre-test scores. In the study, partici-
pants completed two 25-minute activities. The first activity, on the topic of light 
bulbs, had different conditions of external scaffolding (using tables and prompts). In 
contrast, the second activity, on the topic of resistors, was identical for all learners, 
and included only minimal guidance. Thus, here we focus on data only from the se-
cond activity. Students were told to “investigate how resistors affect the behaviors of 
circuits” and were given advice to combine resistors with different resistances. The 
students were expected to use CCK to help them explore this learning goal. As this 
was their second activity with the simulation, all students were proficient with the 
testbed. Students were assessed on their conceptual knowledge before and after the 
activities, with the pre-test being a subset of the post-test. To avoid priming students, 
the pre-test only included questions not related to specific circuits (e.g., comparing the 
current in two different resistors with different resistances), whereas the post-test also 
included questions on specific circuit diagrams.  

Figure 1. The CCK simulation. 



4 Representing the User Actions 

Clustering students based on their actions requires a representation that captures 
important aspects of these actions. However, the large variety of actions available in 
CCK, together with their contextual nature, makes clustering challenging. Notably, 
action outcomes depend on the state of the simulation. For example, connecting a 
wire leads to different outcomes based on the state of the circuit (e.g., existence of a 
battery) and testing instruments (e.g., how they are connected). The CCK logs infor-
mation on the type of action, the component used, and the response of the physical 
model. In addition, actions with one component often affect other components (e.g., 
changes to batteries affect existing light bulbs).  

As described in [5], we created a structured representation that can capture these 
“action-events” – i.e., user actions and their relevant contextual information - at dif-
ferent levels of granularity. The structure contains four layers: “actions” describe the 
action that students took, e.g., join (25 types). “Components”, describe the manipulat-
ed component, e.g., wire (22 different types). “Family” denotes the general type of 
action, and there are 8 families in the structure. Common families include: Build (de-
scribes actions such as adding, removing, and joining components, before the circuit 
is live), Test (describes actions with the measurement instruments), Organize (de-
scribe actions that re-arrange circuit components without making any structural 
changes), and Revise (describe all build actions that take place on a working circuit). 
Finally, “outcomes” capture what happens in the circuit after an action is performed. 
There are 6 types of outcomes, including: None, Deliberate-measure (the value dis-
played on a measurement device is updated as a result of using it), Current-change (a 
change in the current reflected in the speed of movement of electrons), and Light-
intensity-change (the light intensity of a light bulb changes). One action-event may 
cause more than one outcome. By creating this structure we have added contextual 
information to the data. For example the action-event current_change.revise.join.wire 
describes joining (action) a wire (component) that led to a current-change (outcome) 
when revising a circuit (family). In addition, we captured “pauses” longer than 15 
seconds as an additional family of actions, with a single type of (in)action.  

While in [5] all 4 layers of the structure were used to represent actions-events, sub-
sets of the layers can represent events at different levels of granularity. In turn, each 
representation can be used to generate different feature sets based on the types of 
measures used to summarize the action-events for each user. These measures include: 
(i) frequency of the action-event, i.e., the proportion of each type of action-event over 
total action-events (denoted by _f); (ii) mean; and (iii) standard deviation of the time 
spent before each action-event.  

In [5], we described the performance of the action-event feature set using all 4 lay-
ers when used to cluster students who learn similarly with CCK. Here, we investigate 
the effect of levels of granularity in feature set representation on both generating 
meaningful clusters, as well as on building effective user models and informing feed-
back, as in [7]. Thus, we generated feature sets that use different subsets of layers in 
the action-event structure. For each representation, we also experimented with using 



only frequencies vs. adding time-related summative measures, for a total of 22 differ-
ent feature sets 

We also tested a feature set that goes beyond actions as units of operation by 
grouping consecutive actions of the same type into entities called a block. We have 6 
different blocks, including Test (all actions related to using measurement devices), 
Construct (any action that changes the circuit before testing), Modify (any action that 
changes the circuit after testing it), and Reset (removing the whole circuit). Each 
block has two kinds of features: summative features about the block (frequency, aver-
age duration and average number of actions within), and specific features about each 
outcome within the block (for instance, frequency of light-intensity-changes within a 
construct block).  

Of the 23 feature sets described above, only 3 generated meaningful clusters that 
group students in terms of their learning: 
1) OFAC_f: Set including all action-events elements (Outcome, Family, Action, 

Component) with frequency information (210 features) 
2) FAC_f: Same as the first set, but without Outcome. (202 features)  
3) OAC_f: Same as the first feature set, but without the Family layer (90 features). 

It should be noted that OAC_f is a feature set that requires less feature engineering, 
as all the three layers included (outcomes, actions and components) were available in 
the log files with only minor modifications (e.g., calculation of pauses). The Family 
layer included in the other two feature sets, on the other hand, was defined via exten-
sive discussion among the authors in terms of how best to conceptualize the various 
actions available in CCK.  

Interestingly, all three feature sets include only information on action frequency, 
indicating that summative statistics capturing how much time student spend before 
actions are not contributing to identify different learning outcomes. This can be ex-
plained by the fact that we capture significant pauses before actions via a specific 
action and family (Pauses). Alternatively, there may be important timing information 
over sequences of actions (e.g., planning a certain circuit or running a series of tests), 
but not in individual actions [9]. 

5 Evaluating Representations for Assessment and Support 

We applied the user modeling framework for ELE, first proposed in [2], to evalu-
ate how well the three feature sets identified above support building user models. The 
framework consists of two main phases: Behavior Discovery and User Classification.  

In Behavior Discovery, each user’s interaction data is first pre-processed into fea-
ture vectors. Students are then clustered using these vectors in order to identify users 
with similar interaction behaviors. The resulting clusters are then analyzed to see 
whether they identify groups of students with different learning outcomes. If they are, 
the distinctive interaction behaviors in each cluster are identified via association rule 
mining. This process extracts the common behavior patterns in terms of class associa-
tion rules in the form of X à c, where X is a set of feature-value pairs and c is the 
predicted class label for the data points where X applies. During the association rule 
mining process, the values of features are discretized into bins [2].  



In User Classification, the labeled clusters and the corresponding association rules 
extracted in Behavior Discovery are used to train a classifier student model. As new 
users interact with the system, they would be classified in real-time into one of the 
identified clusters, based on a membership score that summarizes how well the user’s 
behaviors match the association rules for each cluster. Thus, in addition to classifying 
students in terms of learning, this phase returns the specific association rules describ-
ing the learner’s behaviors that caused the classification. These behaviors can then be 
used to trigger real-time interventions designed to encourage productive behaviors 
and discourage detrimental ones, as described in [7]. 

Based on this framework, the three measures we use to evaluate the feature sets de-
scribed in the previous section are: (i) Quality of the generated clusters, measured by 
effect size of difference in learning performance between students in the different 
clusters. (ii) Classification accuracy of user models trained on the obtained clusters. 
(iii) Usefulness of the generated association rules in identifying behavior patterns that 
can be used to design and trigger support to students.  

6 Results 

6.1 Quality of the clusters  

Table 1 shows the outcome of clustering on the three feature sets. Each row de-
scribes one cluster in the optimal number of clusters for that representation. Clusters 
are named based on their learning performance. The table also reports cluster size 
(after removing clustering outliers) and the average learning performance of a clus-
ter’s members (measured as corrected post-test scores). The last two columns report 
the p-value and effect size of the difference in learning performance between clusters, 
obtained via an ANCOVA on the post-test scores, controlling for pre-test. Thus, a 
larger effect-size suggests a representation that better separates students with different 
learning levels.  

Feature Sets Cluster #Members 
Average Corrected 

Post-test 
p-value 

Effect Size 
(partial eta squared) 

FAC_f  
High 67 .596 

.048 .041 
Low 29 .534 

OAC_f  
High 66 .609 

.007 .076 
Low 30 .509 

OFAC_f  
High 61 .613 

.013 .065 
Low 35 .516 

 Table 1. Summary statistics for the clustering results  

All feature sets generated two clusters, identifying groups of students with high vs. 
low learning. Effect sizes of the difference in learning performance varied for differ-
ent feature sets, ranging from small effect size (for FAC_f) to medium-small effect 
(for OAC_f and OFAC_f). Interestingly, OAC_f achieves the highest effect size, 



showing that the addition of more feature-engineered information (the Family) re-
duced the differences in learning between the two clusters.    

6.2 Classification accuracy 

For each of the three feature sets, a classifier user model is trained on the generated 
clusters, using 8-fold nested cross validation to set the model’s parameters and find its 
cross-validated accuracy2. Table 2 reports classification performance of each classifier 
in terms of overall accuracy, class accuracy for high and low learners, and kappa 
scores. The classifiers achieved moderate-to-good kappa values between 0.56 and 0.7. 
All accuracies are significantly above the baseline, indicating that our user-modeling 
framework can effectively classify students working with CCK with all three feature-
sets. The feature set based on the most detailed representation, OFAC_f, is superior to 
the other 2 sets on all accuracy measures, including being the most balanced classifi-
er. This indicates that the additional level of representation added by the Family level 
is beneficial for classifier accuracy when all information (action, outcome, compo-
nent) is leveraged. Also, both feature sets that include Outcome show higher accuracy 
compared with FAC_f, suggesting that the outcome of students’ actions, rather than 
the actions themselves, are most beneficial to identify low vs. high learners.  

Feature Sets Baseline Overall Accuracy % 
(Std. dev.) 

High Learner  
Class Accuracy 

Low Learner 
Class Accuracy Kappa 

FAC_f .698 83.3 (5.9) .851 .724 .564 
OAC_f .688 84.4 (9.4) .909 .700 .626 

OFAC_f .653 86.5 (8.8) .918 .771 .702 

Table 2. Classifier accuracy measures for different feature sets. Baseline is the accuracy of the 
most likely classifier. 

6.3 Usefulness for providing adaptive support  

Association rules identify behavioral patterns that are representative of what stu-
dents in a given cluster do with CCK (see [14] for a discussion of how patterns are 
derived from rules). These patterns are useful if they are associated with low (or high) 
learning performance that can inform adaptive interventions. Specifically, if a student 
is classified as a “Low Learner” (LL) at any given point of working with CCK, adap-
tive interventions can be provided to discourage the LL patterns he is showing and to 
encourage the HL patterns he is not showing. The number of identified patterns varies 
greatly among feature sets, ranging from 15 in OAC_f to 17 in FAC_f to 23 in 
OFAC_f, showing that the most complex representation captures finer grained varia-
tions in learner behaviors. Example patterns are shown in Table 3. 

While the patterns produced by all three feature sets varied, we identified 4 trends 
that occurred in at least two feature sets each. This shows that our general approach 
for behavior discovery is able to uncover core behaviors that are stable across repre-
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sentations. One of these trends is related to addition of light bulbs and changes in light 
intensity. High Leaners (HL) both add light bulbs infrequently and make infrequent 
changes in light intensity. Since this activity was focused on understanding how resis-
tors work in circuits, light bulbs were likely distractors at best, and possibly interfered 
with observing the behavior of other resistors. We see the adding light bulb behavior 
associated with HL in both the FAC_f feature set (Build.add.lightBulb_f = Low) as 
well as in the OFAC_f feature set further qualified with the outcome 
(None.Build.add.lightBulb_f = Low), as shown in Table 3. We also see HL making 
changes to light intensity with low frequency in both OFAC_f 
(light_intensity.Revise.split.junction_f = Low) and OAC_f (light_intensity.join.wire_f 
= Low). The other trends across feature sets show that high leaners do the following 
actions more frequently: i) use testing devices (to examine the circuit configuration), 
ii) change the resistance of resistors (possibly to experiment with a range of resistors, 
as suggested by the activity), and iii) pause (possibly to plan, reflect, and take notes). 
The first two are intuitively effective behaviors for understanding how resistors work 
in a circuit. The last one is an indication of learners taking time to best leverage the 
learning activity.  
Feature 
Sets 

Clus-
ter 

Pattern [Description] 

FAC_f 
HL 

Build.add.lightBulb_f = Low  
[When building, they added light bulbs with low frequency]  

LL 
Build.changeResistance.resistor_f = Low  
[When building, they changed the resistance of resistors with low frequency]  

OAC_f 
HL 

light_intensity.join.wire_f = Low 
[They joined wires resulting in light intensity change with lower frequency] 

LL 
deliberate_measure.traceMeasure.nonContactAmmeter_f = Low 
[They used the non contact ammeter by tracing with low frequency] 

OFAC_f 
HL 

None.Build.add.lightBulb_f = Low 
[When building, they added light bulbs resulting in no outcome with low frequency]  

LL 
deliberate_measure.Test.startMeasure.voltmeter_f = Low 
[When testing, they used the voltmeter with low frequency] 

Table 3. Sample patterns for each feature set (raw form and English description) 

Next we evaluate the usefulness of these patterns to inform support. One criterion 
for doing so is level of detail. Naturally, this depends on the granularity of the corre-
sponding feature set in the different representations. Thus, behaviors in OFAC_f give 
the most contextual information about timing and can be used to give students feed-
back with regard to the outcome of desired actions, what to do to achieve that out-
come in terms of a high level behavior, and how to achieve it using specific action and 
component. For example, a hint based on the pattern in Table 3 for LL in OFAC_f 
could suggest students to do more deliberate measurements (outcome), achieve this by 
testing more (what to do), and, if necessary, give an even more specific suggestion to 
use the voltmeter (how). In contrast, both of the other two feature sets cannot give one 
of those layers of hints. OAC_f can only tell students the outcome of what they need 
to do and the specifics of how to do it, but a more general level of information is miss-
ing. For example, based on the LL rule for OAC_f, students can be told to trace with 
the non-contact ammeter more often, but there is no general “test more” hint. FAC_f 



can only tell students what to do and the specifics of how to do it, but cannot tell them 
the outcome to achieve. For example, students can be told to change the resistance of 
their resistors more often, but without emphasizing the desired outcomes.  

The richer level of detail available due to the nature of the OFAC_f representation 
lends itself well to provide sequences of hints with narrowing specificity (a well-
established approach to hint provision in ITS). For instance, a first level of hint could  
tell the student the outcome that they should try to achieve, then, if needed a second 
level of  hint could suggest the family (what to do at the high level), followed by a 
hint on  how to do it. The OAC_f and FAC_f  feature sets do not support this hint pro-
gression, though missing levels could be inferred. For example, if the detailed hint 
suggests to trace more with the non-contact ammeter, a hint could still first suggest 
general testing.  

7 Discussion and Conclusion 

To summarize our results, we found the OAC_f feature set to be the best for identi-
fying high versus low learners. This feature set does not include the knowledge-
engineered Family layer. However, it was the feature set based on the most complex 
representation, OFAC_f, that scored highest in terms of classifier accuracy. It was also 
the set that identified the largest number of behavioral patterns, 23, and that can pro-
vide richer levels of feedback to the students. In summary, our comparison of repre-
sentations that differ in the level of granularity has identified a trade-off between suit-
ability to provide support and quality of the clusters: hints generated by the most 
complex representation in OFAC_f would target the right students due to a high clas-
sification accuracy, can give detailed support, and can provide the largest number of 
hints. On the other hand, the representation with the least amount of feature engineer-
ing, OAC_f,  generates rules that come from higher quality clusters, albeit offers few-
er hints, with fewer levels of support. These hints may also be given inappropriately 
due to lower model accuracy. An experimental evaluation is required to see how this 
tradeoff impacts the effectiveness of interventions in an adaptive version of CCK. 
Thus, generating different adaptive versions of CCK based on the classifiers and be-
havior patterns identified in this paper is one of the next steps of this research.  

More importantly, the results in this paper provides evidence on the generality of 
the user-modeling framework we used for our evaluation. This framework had al-
ready been successfully applied for modeling students and providing support in a 
rather simple simulation for an AI algorithm [7]. Here we show that it can transfer to 
more complex ELE such as CCK, at least in terms of successfully classifying student 
learning at the end of the interaction (all classifiers discussed in this paper achieved 
respectable kappa values, higher than 0.55) and identifying interaction behaviors intu-
itively associated with more/less effective learning. One of the next steps of this re-
search is investigating how to design real-time hints that can foster the productive 
patterns and discourage the others as we did in [7]. This includes investigating the 
overtime accuracy of the classifier user model. Another step of future work is to fur-
ther test the generality of this modeling framework by applying it to another simula-
tion of the PhET family. This will allow us to identify productive patterns across sim-



ulations and domains and bring us closer to addressing the challenge of a general 
modeling framework for interactive simulations.  

8 References 

1. Perera, D., Kay, J., Koprinska, I., Yacef, K., Zaiane, O.R.: Clustering and Sequential 
Pattern Mining of Online Collaborative Learning Data. IEEE Transactions on Knowledge 
and Data Engineering. 21, 759 –772 (2009). 

2.  Kardan, S., Conati, C.: A Framework for Capturing Distinguishing User Interaction Be-
haviours in Novel Interfaces. Proc. of the 4th Int. Conf. on Educational Data Mining. pp. 
159-168. , Eindhoven, the Netherlands (2011). 

3. Mavrikis, M., Gutierrez-Santos, S., Geraniou, E., Noss, R.: Design requirements, student 
perception indicators and validation metrics for intelligent exploratory learning environ-
ments. Personal and Ubiquitous Computing. 1–16. 

4. Gobert, J.D., Pedro, M.A.S., Baker, R.S.J. d, Toto, E., Montalvo, O.: Leveraging Educa-
tional Data Mining for Real-time Performance Assessment of Scientific Inquiry Skills 
within Microworlds. JEDM - Journal of Educational Data Mining. 4, 111–143 (2012). 

5. Kardan, S., Roll, I., Conati, C.: The Usefulness of Log Based Clustering in a Complex 
Simulation Environment. In Intelligent Tutoring Systems. pp. 168–177. Springer (2014). 

6. Westerfield, G., Mitrovic, A., Billinghurst, M.: Intelligent Augmented Reality Training 
for Assembly Tasks. In Artificial Intelligence in Education. pp. 542–551. Springer (2013). 

7. Kardan, S., Conati, C.: Providing Adaptive Support in an Interactive Simulation for 
Learning: an Experimental Evaluation. Proceedings of CHI 2015 (To appear). 

8. Hussain, T.S., Roberts, B., Menaker, E.S., Coleman, S.L., Pounds, K., Bowers, C., Can-
non-Bowers, J.A., Murphy, C., Koenig, A., Wainess, R., others: Designing and develop-
ing effective training games for the US Navy. The Interservice/Industry Training, Simula-
tion & Education Conference (I/ITSEC). NTSA (2009). 

9. Borek, A., McLaren, B., Karabinos, M., Yaron, D.: How Much Assistance Is Helpful to 
Students in Discovery Learning? In Learning in the Synergy of Multiple Disciplines 4th 
European Conference on Technology Enhanced Learning. pp. 391–404. Springer (2009). 

10. Roll, I., Aleven, V., Koedinger, K.R.: The Invention Lab: Using a Hybrid of Model Trac-
ing and Constraint-Based Modeling to Offer Intelligent Support in Inquiry Environments. 
In Intelligent Tutoring Systems. pp. 115–124. Springer (2010). 

11. Leelawong, K., Biswas, G.: Designing Learning by Teaching Agents: The Betty’s Brain 
System. International Journal of Artificial Intelligence in Education. 18, 181–208 (2008). 

12. Wieman, C.E., Adams, W.K., Perkins, K.K.: PhET: Simulations That Enhance Learning. 
Science. 322, 682–683 (2008). 

13. Roll, I., Yee, N., Cervantes, A.: Not a magic bullet: the effect of scaffolding on knowledge 
and attitudes in online simulations. In Proc. of Int. Conf. of the Learning Sciences. pp. 
879–886 (2014). 

14. Kardan, S., Conati, C.: Evaluation of a Data Mining Approach to Providing Adaptive 
Support in an Open-Ended Learning Environment: A Pilot Study. AIED 2013 Workshops 
Proceedings Volume 2. pp. 41–48 (2013). 


