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Abstract. This paper explores the value of eye-tracking data to assess user 
learning with interactive simulations (IS). Our long-term goal is to use this data 
in user models that can generate adaptive support for students who do not learn 
well with these types of unstructured learning environments. We collected gaze 
data from users interacting with the CSP applet, an IS for constraint satisfaction 
problems. Two classifiers built upon this data achieved good accuracy in dis-
criminating between students who learn well from the CSP applet and students 
who do not, providing evidence that gaze data can be a valuable source of in-
formation for building user modes for IS. 
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1 Introduction 

In recent years, there has been increasing interest in using interactive simulations (IS) 
for education and training. The idea underlying these environments is to foster experi-
ential learning by giving students the opportunity to proactively experiment with con-
crete examples of concepts and processes they have learned in theory. One possible 
drawback of IS is that not all students learn well from this rather unstructured and 
open-ended form of interaction (e.g., [1]). These students may benefit from having 
additional guidance when they interact with an IS. The long-term goal of our research 
is to devise mechanisms to provide this guidance in real-time during interaction, per-
sonalized to the needs of each individual student. Detecting these needs, however, is 
challenging because there is still limited knowledge of which behaviours are indica-
tive of effective vs. non-effective interactions with an IS. In previous work [2], we 
showed that it is possible to build user models that can classify successful vs. unsuc-
cessful learners in a IS using logs of user interface actions. In this paper, we investi-
gate student gaze data as an additional source of information to give to a user model 
for assessing how well a user learns with an IS. Initial results on the value of eye-
tracking data in user-modeling for IS were presented in [3] and [4]. They looked at 
gaze information related to the occurrence of a simple gaze pattern defined a priori as 
being relevant for learning with an IS for mathematical functions. We extend this 



work by looking at a much broader range of general eye-tracking features, in the con-
text of a different IS. This is an important contribution to research in user modeling 
for IS, because pre-defining gaze patterns that indicate learning (as was done in [3, 4]) 
may not always be easy or possible, due to the often unstructured and open-ended 
nature of the interaction that IS support. Furthermore, such pre-defined patterns are 
task specific, and may not directly transfer to a different IS. In contrast, our approach 
is more general and can be applied to a variety of IS. It relies on giving to a classifier 
user model a broad range of standard eye-gaze features that are either task independ-
ent or based solely on identifying the main components of the target IS interface. 
Then, it is left to the classifier to identify patterns that are indicative of users’ learning 
with that IS. An additional difference of our work from [3, 4] is that, in [3,4], gaze 
data was integrated with information on action logs, whereas we look at gaze data 
only, to directly evaluate its value in assessing learning in IS. We discuss the perfor-
mance of two gaze-based classifiers for modeling users who interact with the CSP 
applet, an IS that demonstrates the workings of an algorithm for constraint satisfaction 
problems (CSP). We show that these classifiers achieve good accuracy in discriminat-
ing between students who learn well from the CSP applet and students who do not, 
thus providing further evidence of the value of gaze data for user modeling in IS.  
    In the rest of the paper, we first discuss related work. Next, we describe the CSP 
applet, and the study we ran to collect the necessary eye-tracking data. After discuss-
ing data pre-processing, we illustrate the performance of two different classifiers built 
on this data. We conclude with a discussion of the future work.  

2 Related work  

Using eye tracking to understand cognitive constructs such as intentions, plans or 
behaviour has received a lot of attention in psychology (e.g., [5, 6]). Researchers in 
human computer interaction and intelligent interfaces also started looking at gaze data 
as a source of information to model relevant cognitive processes of users during spe-
cific interaction tasks. For instance, gaze data has been investigated to capture users’ 
decision making processes during information search tasks (e.g., [7, 8]), for activity 
recognition during working with a user interface (e.g., [9]), to predict word relevance 
in a reading task [10], to predict how well users process a given information visualiza-
tion (e.g., [11, 12]), and to estimate mental workload in relation to evaluating users’ 
interruptibility (e.g., [13]). Muldner et al. [14] looked at pupil dilation to detect rele-
vant user affective states and meta-cognitive processes during the interaction with a 
learning environment that supports analogical problem solving. Knoepfle et al. [15] 
used eye-tracking data for comparing existing theories of how users learn to play 
strategies in normal-form games. The theories were compared in terms of how they 
could predict users’ moves and attention to relevant information during interaction 
with a computer card game, with all theories showing limited predictive power. 
    In our work, we are interested in investigating whether a user’s gaze patterns dur-
ing interaction with an IS can be used to assess if the student is learning. We were 
inspired by existing research showing that it is possible to identify distinctive patterns 
in the gaze data of successful vs. unsuccessful users during simple problem solving 
and question answering tasks (e.g., [16–19]). In this body of work, the attention pat-



terns analyzed related mainly to processing the problem description [16] or supporting 
visual material [17–19]. The main finding was that successful problem solvers pay 
more attention to information relevant to answer correctly, while unsuccessful prob-
lem solvers show more scattered attention patterns. Eivazi and Bednarik [20] went a 
step further showing that it is possible to build a classifier that relies solely on gaze 
data to predict users’ performance during an interactive 8-tile puzzle game. Conati 
and Merten [3] and Amershi and Conati [4] present results that are even more relevant 
for our work, since they also looked at gaze-data to model student reasoning and 
learning during interaction with an IS. As explained earlier, the student models in 
[3,4] combine simple gaze-pattern information with information on the user’s inter-
face actions, whereas in this paper we focus on gaze data only, in a broader and more 
generalizable manner, to better isolate its potential as a source of information for user 
modeling in IS. 

3 The AISpace CSP applet 

The Constraint Satisfaction Problem (CSP) Applet is one of a collection of interactive 
tools for learning Artificial Intelligence algorithms, called AIspace [21]. Algorithm 
dynamics are demonstrated via interactive visualizations on graphs by the use of color 
and highlighting, and graphical state changes are reinforced through textual messages. 
    CSP consists of a set of variables, variable domains and a set of constraints on legal 
variable-value assignments. Solving a CSP requires finding an assignment that satis-
fies all constraints. The CSP applet illustrates the Arc Consistency 3 (AC-3) algorithm 
for solving CSPs represented as networks of variable nodes and constraint arcs. AC-3 
iteratively makes individual arcs consistent by removing variable domain values in-
consistent with a given constraint, until all arcs have been considered and the network 
is consistent. Then, if there remains a variable with more than one domain value, a 
procedure called domain splitting can be applied to that variable to split the CSP into 
disjoint cases so that AC-3 can recursively solve each case. 

  

Fig. 1. CSP applet with example CSP problem 



The CSP applet provides several mechanisms for the interactive execution of the AC-
3 algorithm on a set of available CSP problems. These mechanisms are accessible 
through the toolbar shown at the top of Fig. 1 or through direct manipulation of graph 
elements. The user can, for instance: (i) use the Fine Step button to see how AC-3 
goes through its three basic steps (selecting an arc, testing it for consistency, remov-
ing domain values to make the arc consistent); (ii) automatically fine step through the 
completion of the problem (Auto Arc Consistency button); (iii) pause auto arc con-
sistency (Stop button); (iv) select a variable to split on, and specify a subset of its 
values for further application of AC-3 (see popup box in the left side of Fig. 1). Alter-
native sub-networks can be recovered by clicking on the Backtrack button on the 
toolbar. As a student steps through a problem, the message panel above the graph 
panel reports a description of each step. Another message panel situated below the 
graph panel reports the history of domain spitting decisions made by the user, i.e., 
which value-variable assignment has been selected at each domain splitting point.  
    The CSP applet currently does not provide any explicit support to help students 
learn at best from the mechanisms described above. Research however, shows that 
students may benefit from this support, since unaided exploration of interactive simu-
lations often fails to help students learn [1]. The purpose of the study described in the 
next section was to collect data to investigate whether a user’s attention patterns can 
be indicators of effective vs. non-effective learning with the CSP applet, to be eventu-
ally used in a user model that can drive personalized support when needed. 

4 User Study 

Fifty computer science students participated in the study. The data for 5 users was not 
usable due to technical issues, reducing the dataset to 45 users. All participants were 
required to have taken a set of courses ensuring that they would have the prerequisites 
to study Constraint Satisfaction Problems as discussed below. Participants were run 
one at the time, and each experimental session was structured as follows. First, partic-
ipants were asked to study a text book chapter on Constraint Satisfaction Problems 
and the AC3 algorithm. This part was allotted 45 minutes and all the participants re-
ported finishing the material in the given time. Then, participants wrote a pre-test 
designed to evaluate their understanding of the CSP concepts covered in the chapter 
they had studied. Next, participants were shown a video that explained the functional-
ities of the CSP applet. 
    The main part of the experiment was run on a Pentium 4, 3.2GHz, with 2GB of 
RAM with a Tobii T120 eye-tracker as the main display. Tobii T120 is a remote eye-
tracker embedded in a 17” display, providing unobtrusive eye-tracking (as opposed to 
what head-mounted devices do). In addition to the user’s gaze data, Tobii also records 
video data of the user’s face. After undergoing a calibration phase for the eye-tracker, 
the participants started working with the applet to solve two CSP problems: first an 
easier problem involving 3 variables, 3 constraints and at most 2 domain splitting 
actions to find its unique answer; next, a more difficult problem involving 5 variables, 
7 constraints and a minimum of 5 domain splitting actions to find its two solutions. 
Participants were instructed to find both of these solutions. All relevant instructions 
for this phase were provided on a written instruction sheet. No time limit was given 



for this phase, which lasted on average 16.7 (SD = 9.0) minutes. The study ended with 
a post-test analogous to the pre-test.  

5 Data Preparation and Preprocessing 

Eye-tracking data can be rather noisy when collected with eye-trackers that, like the 
Tobii T120, do not constrain the user’s head movements [22]. In this section, we 
briefly explain the process we used to deal with two sources of noise in our dataset. 
This validation process is crucial to ensure that the data reliably reflects the attention 
patterns that users generated while working with the CSP applet.  
    The first source of noise relates to the eye-tracker collecting invalid samples while 
the user is looking at the screen, due to issues with calibration, excessive user move-
ments or other user-related matters (e.g., eyeball’s shape). Thus, gaze data for each 
user needs to be evaluated to ascertain whether there are enough valid samples to 
retain this user for analysis.  The second source of noise relates to users looking away 
from the screen either for task-related reasons (e.g., looking at the instruction sheet) 
or due to getting distracted. During the looking-away events, the eye-tracker reports 
invalid samples similar to when there is a tracking error on the user gaze, even if there 
was no gaze to track. Thus, sequences of invalid samples due to looking-away events 
must be removed before starting the validation process of actual user’s gaze samples. 
Looking-away events were automatically detected when the user gaze moved out of 
the screen gradually, by calculating the trajectory of fixations heading outside the 
screen. Automatic detection, however, is not possible when the user’s gaze moves 
away from the screen suddenly. These events were manually identified by an investi-
gator using videos of the user recorded during the study.  

 

Fig. 2. A sample timeline showing segments and “look away” events 

Detection of looking-away events resulted in the partitioning of the remaining gaze 
samples into sequences occurring between two such events (segments from now on, 
see Fig. 2). The next step was to analyze the validity of these gaze segments. In par-
ticular, we needed to set a threshold to define, for each user in our dataset: (i) whether 
there are enough valid samples in the user’s complete interaction, represented by the 
aggregation of her eye-gaze segments; (ii) if so, whether there are sufficient valid 
samples in each segment. This second step is to avoid situations in which a large 
number of the invalid samples in an overall valid interaction are concentrated in few 
segments, making the gaze data in these segments unreliable.  
   We determined the threshold by plotting the percentage of segments that get dis-
carded for different threshold values. The threshold value of 85% was selected, be-
cause it is where the percentage of discarded segments starts to rise sharply (Fig. 3). 
Fig. 4 shows the percentage of samples left after discarding the invalid segments 
based on the 85% threshold. For all users except one, more than 90 percent of the 
samples were kept. The average duration of each user’s interaction with the CSP ap-



plet only changed from 16.7 (SD = 9.0) to 16.3 (SD = 8.8) minutes. Next, we will 
explain the eye gaze features calculated for each user. 

 

Fig. 3. Percentage of segments discarded for 
different threshold values 

 

Fig. 4. Histogram of users with different 
percentage of segments left after removing 
the invalid segments 

6 Eye gaze features 

Table 1. Description of basic eye tracking measures 

Measure  Description 

Fixation rate  Rate of eye fixations per milliseconds  

Number of Fixations Number of eye fixations detected during an interval of interest 

Fixation Duration Time duration of an individual fixation  

Saccade Length  Distance between the two fixations delimiting the saccade (d in Fig. 5) 

Relative Saccade Angles The angle between the two consecutive saccades (e.g., angle y in Fig. 5) 

Absolute Saccade Angles The angle between a saccade and the horizontal  (e.g., angle x in Fig. 5) 

 

 

Fig. 5. Saccade based eye measures 

An eye-tracker provides eye-gaze information in terms of fixations (i.e., maintaining 
eye-gaze at one point on the screen) and saccades (i.e., a quick movement of gaze 
from one fixation point to another), which are analyzed to derive a viewer’s attention 
patterns. As mentioned in the related work section, previous research on using gaze 
information for assessing learning in IS relied on tracking one specific attention pat-
tern, predefined a priori [3, 4]. In contrast, in our analysis we use a large set of basic 
eye-tracking features, described by [22] as the building blocks for comprehensive 
eye-data processing. These features are built by calculating a variety of statistics upon 
the basic eye-tracking measures described in Table 1. Of these measures, Fixation 
rate, Number of Fixations and Fixation Duration are widely used (e.g., [11, 16–18]); 
we also included Saccade Length (e.g., distance d in Fig. 5), Relative Saccades Angle 
(e.g., angle y in Fig. 5) and Absolute Saccade Angle (e.g., angle x in Fig. 5), as sug-
gested in [22], because these measures are useful to summarize trends in user atten-
tion patterns within a specific interaction window (e.g., if the user’s gaze seems to 
follow a planned sequence as opposed to being scattered). Statistics such as sum, 
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average and standard deviation can be calculated over these measures with respect to: 
(i) the full CSP applet window, to get a sense of a user’s overall attention; (ii) specific 
areas of interest (AOI from now on) identifying parts of the interface that are of spe-
cific relevance for understanding a user’s attention processes. 
     We defined four AOIs for our analysis, corresponding to the areas that provide 
conceptually different functionalities in the CSP applet. Rectangles corresponding to 
these AOIs are shown in Fig. 1. One AOI covers the region of the applet toolbar that 
includes action buttons (toolbar AOI); one covers the main graph panel (graph AOI); 
one covers the part of the top panel where the description of every step of the algo-
rithm is displayed (top AOI); the last covers the part of the bottom panel that displays 
domain splitting information (bottom AOI).  

Table 2. Derived eye tracking features for 
the full CSP applet window 

Fixation rate 
Total Number of Fixations 
Sum of Fixation Durations 
Mean and Std. Dev. of Fixation Durations 
Mean and Std. Dev. of Saccade Length 
Mean and Std. Dev. of Relative Saccade Angles 
Mean and Std. Dev. of Absolute Saccade Angle 

 

Table 3. Derived eye tracking features for 
each of the four AOIs 

Fixation rate 
Total Number of Fixations 
Proportion of Total Number of Fixations 
Mean Fixation Durations 
Proportion of Total of Fixation Durations 
Highest Fixation Duration 
Number of Transitions between pairs of AOIs 
Proportion of Transitions between pairs of AOIs 

Table 2 shows the set of gaze features calculated from the eye movement measures in 
Table 1 over the full CSP applet window. Table 3 shows the set of features calculated 
for each of the four AOIs. As the table shows, the two sets are different. For the AOIs, 
we added features that measure a user’s relative attention to each AOI: Proportion of 
Total Number of Fixations and Proportion of Total Fixation Duration give the per-
centage of the overall number of fixations and fixation time, respectively, that were 
spent in each AOI. We also added features that quantify gaze transitions between 
different pairs of AOIs [22] (including from an AOI to itself), as a way to capture the 
dynamics of a user’s attention patterns. Transitions are represented both in terms of 
total number  (Number of Transitions between pairs of AOIs in Table 3), as well as a 
proportion of all transitions (Proportion of Transitions between pairs of AOIs).  Add-
ing the aforementioned AOI-specific features substantially increases the overall num-
ber of features considered. In order to keep this number manageable, for the AOIs we 
did not compute saccade-based features, which are less commonly used than fixation-
based features in eye-tracking research. In total, we included 67 features, 11 for the 
full CSP window, and 56 for AOI. 

7 Classifying learners based on gaze data 

To ascertain whether a user’s success in learning with the CSP applet can be identi-
fied using his/her eye movement data, we built two different classifiers using this 
data. The first classifier uses the eye-tracking features described in section 6, comput-
ed over the complete interaction of a student with the CSP applet (Whole Interaction 
dataset from now on). Thus, this classifier relies on features that describe a user’s 



overall attention patterns during the study task. The second classifier uses features 
that reflect the changes in the user’s attention patterns between solving the first and 
the second problem (Interaction Evolution dataset). Each classifier is built to discrim-
inate between two classes of users, High Achievers (HA) and Low Achievers (LA), 
defined based on the median split of Proportional Learning Gain (PLG) from pre-test 
to post-test. PLG is calculated using equation 1. 

ܩܮܲ  ൌ ௉௢௦௧௘௦௧ௌ௖௢௥௘ି௉௥௘௧௘௦௧ௌ௖௢௥௘

ெ௔௫௉௢௦௦௜௕௟௘ௌ௖௢௥௘ି௉௥௘௧௘௦௧ௌ௖௢௥௘
ൈ 100	,																								ሺ1ሻ 

The median PLG is 45.83, resulting 23 LA and 22 HA. The average PLG overall is 
41.25 (SD = 35.31). It is 68.27 (SD = 12.39) for the HA and 15.40 (SD = 30.29) for 
the LA group. In the next two sections, we discuss each classifier and its performance 
results. 

7.1 User classification based on the Whole Interaction dataset  

This classifier aims to predict a user’s class label (HA vs. LA) using the Whole Inter-
action dataset, i.e., the 67 features that describe a user’s overall attention patterns 
during the study task. We tried 6 different classifiers from the different classifier 
types available in the Weka data mining toolkit (Decision Tree based, Support Vector 
Machine, Linear Ridge Regression, Binary Logistic Regression and Multilayer Per-
ceptron), using feature-selection and leave-one-out cross-validation. The classifier 
with the highest accuracy is a Decision Tree based Classifier generated using the C4.5 
algorithm (DTC from now on). The accuracy of the DTC for each class and overall is 
shown in Fig. 6 (we will discuss the RRC classifier shown in the picture in the next 
section). The figure also reports the accuracy of a baseline classifier that always se-
lects the most likely class (LA in our case), thus failing in all cases of the other class. 
The DTC achieves 71.1% overall accuracy, which is significantly higher than baseline 
(χ2 (1) = 16.01, p < 0.001). DTC does not have very high accuracy (63.3% ) for the 
HA class, but achieves 78.3% accuracy for the LA class, showing that it can recog-
nize those students who may need help to better learn with the CSP applet. These 
results clearly show the potential of using eye movement data as a source of infor-
mation to classify learning performance.  
    The structure of the decision tree, shown in Fig. 7, indicates which features con-
tribute to discriminate between high and low achievers with the CSP applet. In Fig. 7, 
each node represents a feature with a partitioning value that DTC uses to separate 
users into two groups, one with values higher than the partitioning value (right branch 
of the node) and one with values that are lower (left branch of that node). The num-
bers next to each branch specify how many HA and LA datapoints are found in the 
corresponding subgroup. The leaves of the tree assign a class label to all the users in 
the corresponding subgroups.  For simplicity, we will only look at the top three nodes 
of the tree The partition of datapoints created by the root node 
(prop_Total_fixations_Bottom in Fig. 7) shows that LA tend to have a higher propor-
tion of fixations in the Bottom AOI than HA. The Bottom panel is only used for dis-
playing domain splitting information, which becomes relevant only when a CSP 
graph has been made arch consistent. Thus, showing a higher proportion of fixations 
in this panel may be an indication that LA are looking at irrelevant information due to 



confusion or not knowing which action to perform next. Interestingly, the partition 
created by the left child of the root node, (Bottom_fixation_rate in Fig. 7), shows that 
most HA in this branch have higher fixation rate in the Bottom AOI, suggesting that, 
although HA look at the bottom panel less often than LA, when they do look they 
seem to pay more attention. 
 

Fig. 6. The classifier performance in 
each class and overall 

 

Fig. 7. The Decision Tree Classifier 

Thus, it appears that HA know the value of the information displayed in the Bottom 
panel and only use it when it is relevant. These results are consistent with the findings 
in problem solving research indicating that successful problem solvers show selective 
attention to relevant information, while unsuccessful problem solvers tend to get dis-
tracted by irrelevant information [18,19]. The right child of the root node 
(num_Top_to_Graph) generates a partition based on the number of transitions be-
tween Top and Graph AOIs, and it appears twice in the right subtree. At the second 
level of the tree it identifies a subgroup of LA who show a high number of transitions, 
while at the third level it identifies a subgroup of HA who show this pattern. Since the 
Top panel is used for displaying the outcome of any action related to stepping through 
the AC-3 algorithm, for the HA sub-group the high number of transitions between the 
two AOIs could be a sign of focused attention to the workings of the algorithm, which 
helped them learn from the interaction. For LA, on the other hand, the high number of 
transitions from top to graph panel, may be another indication of confusion, for in-
stance if they happened in a few clusters as opposed to regularly after every action. A 
more detailed gaze-data analysis at the level of user actions would be necessary to 
gain further insights on what is happening with this group of LA.  

7.2 User classification based on the Interaction Evolution dataset. 

For our second classifier, we wanted to explore whether changes in the user’s atten-
tion patterns from the first to the second problem (P1 and P2 from now on) could be 
predictors of learning. We calculated the 67 features described in section 6 for each of 
the two periods during which the user was interacting with P1 and P2, respectively, 
and then we compared the values obtained to verify whether any difference actually 
existed. A battery of paired t-tests on the values for each feature in P1 and P2 resulted 
in 44 features that are significantly different, indicating that users’ attention patterns 
do change to some extent when solving these two problems.  
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   We used these 44 features, with values assigned to be the difference between their 
corresponding values for P1 and P2 (Interaction Evolution dataset), to train a second 
classifier of LA vs. HA. As with the previous dataset, we tried 6 different classifiers, 
with the classifier using Ridge Regression (RRC from now on), obtaining the highest 
accuracy. The RRC’s performance of for each class and overall, is shown in Fig. 6. 
The RRC achieves 77.8% accuracy overall, which is significantly higher than baseline 
(χ2 (1) = 29.17, p < 0.001). The overall accuracy of the RRC is also higher than 
DTC’s, but the difference is not significant. It should be noted, however, the RRC 
achieves significantly higher accuracy than DTC on the HA class (χ2 (1) = 8.408, p = 
0.004), thus yielding a much better balance between the accuracy of the HA and LA 
classes (77.3% and 78.3% respectively). These results indicate that changes in a us-
er’s gaze patterns as the interaction with the CSP proceeds and the user attempts more 
difficult problems  can be even more informative than overall attention patterns for 
predicting learning with this IS.  

Table 4. Regression features with non-zero coefficients 

Feature 
Change 
(P1 to P2) 

Stand. 
Coef. 

Feature 
Change   
(P1 to P2) 

Stand. 
Coef. 

Bottom_num_fixations Increase 1.3837 Total_num_fixations Increase -0.2487 

num_Toolbar_to_Toolbar Increase 0.6519 Top_longest_fixation Decrease -0.3498 

prop_Graph_to_Graph Increase 0.5857 num_Graph_to_Toolbar Increase -0.4110 

num_Toolbar_to_Top Decrease 0.3441 num_Graph_to_Top Decrease -0.5729 

Top_fixationrate Increase 0.3177 num_Graph_to_Bottom Increase -0.8279 

 SD_absolute_saccade_angles Decrease -0.8783 

As we did with the classifier described in the previous section, we now discuss some 
of the features that contribute to distinguish LA from HA in our second classifier. The 
complete set of features with non-zero coefficients in the regression model is shown 
in Table 4. The table also reports, for each feature, the direction of change between P1 
and P2, as well as its standardized coefficient. Here we discuss some of the most intu-
itive features with high impact in the regression (as measured by the standardized 
coefficients). The strongest positive indicator of learning in Table 4 is an increase in 
the number of fixations on the Bottom AOI (Bottom_num_fixations) from  P1 to P2. 
As discussed in the previous section, the Bottom panel shows domain splitting infor-
mation. Domain splitting is required more often in P2 than in P1, so the trend found 
shows that HA change the amount of attention they devote to the bottom panel ac-
cordingly while LA fail to do so. Table 4 also shows that one of the highest negative 
predictors of learning is an increase in the number of transitions between Graph and 
Bottom panels from P1 to P2 (num_Graph_to_Bottom), i.e., the number of transitions 
from the Graph to the Bottom panel increases from P1 to P2 for LA. However, except 
for the times when domain splitting is performed, there is no new information pre-
sented in the bottom panel, so these results could be further evidence that LA tend to 
look at the bottom panel when it is not relevant, as indicated by the results discussed 
in the previous section. Another strong negative indicator of learning is an increase in 
the number of transitions from the Graph to the Toolbar AOI 
(num_Graph_to_Toolbar). As users gain more experience with the interface, it is 
expected that they would shift their attention less often between the Graph and 



Toolbar. Thus, an increase in number of transitions can be interpreted as a sign that, 
during the interaction with the second more complex problem, LA were more often at 
loss about what action to perform next and looked frequently at the Toolbar for inspi-
ration. In contrast, Table 4 shows that the number of gaze shifts staying in the Toolbar 
buttons area (num_Toolbar_to_Toolbar) is positively associated with learning. This 
feature shows the process of making decisions about which action to perform next. A 
likely reason for HA to go back and forth between the items on the toolbar more often 
during P2 than during P1 is that more actions are relevant at the same time for solving 
P2 (e.g., continuing to step through the solution of a sub-case resulting from domain 
splitting vs. deciding to backtrack to an alternative sub-case because the current one 
does not look promising) and HA are carefully considering the available options.   
To summarize, the good classification performance on the Interaction Evolution da-
taset shows that taking into account temporal information on how attention patterns 
evolve during logical units of interactions (e.g., different problems in our case) can 
further improve the potential of eye-tracking data for user modeling for IS.  

8 Conclusion and Future Work  

We presented results on the value of eye-tracking data to assess user learning with an 
interactive simulation for constraint satisfaction problems (the CSP applet). We 
showed that a classifier using solely information on a user’s overall attention patterns 
during a complete session with the CSP applet can already achieve good accuracy in 
distinguishing students who learned well from students who did not. Adding infor-
mation on how students’ attention patterns changed while solving two different prob-
lems of increasing difficulty further improved classification accuracy.  
    Our next step will be to leverage the results discussed here and the results obtained 
with a previous classifier that relied only on interaction logs to identify high vs. low 
learners [2] to build a classifier user model for the CSP applet that integrates both 
sources of information. We also plan to investigate techniques to further exploit the 
temporal nature of attention patterns, such as clustering of scanpaths (sequences of 
consecutive saccades). Finally, we are investigating how to design adaptive interven-
tions for the CSP applet, to be provided to users when the user model detects that they 
are not learning well from the interaction.   
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