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Abstract. Information visualization systems have traditionally followed a one-
size-fits-all paradigm with respect to their users, i.e., their design is seldom per-
sonalized to the specific characteristics of users (e.g. perceptual abilities) or 
their tasks (e.g. task difficulty). In view of creating information visualization 
systems that can adapt to each individual user and task, this paper provides an 
analysis of user eye gaze data aimed at identifying behavioral patterns that are 
specific to certain user and task groups. In particular, the paper leverages the 
sequential nature of user eye gaze patterns through differential sequence min-
ing, and successfully identifies a number of pattern differences that could be 
leveraged by adaptive information visualization systems in order to automati-
cally identify (and consequently adapt to) different user and task characteristics. 
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1 Introduction 

Information visualization (Infovis) has long been established as a powerful tool to 
help humans understand and communicate information in a concise and effective 
manner. Many different types of Infovis techniques have been devised for a wide 
variety of applications, but they each typically follow a one-size-fits-all paradigm 
with respect to users, i.e., their design is seldom personalized to the specific character-
istics of users (e.g. perceptual abilities) or their tasks (e.g. task difficulty). However, 
recent research has shown that user differences can significantly influence task per-
formance and satisfaction with Infovis [1][2][3][4], suggesting that user-adaptive 
Infovis could be of significant benefit to individual users.  

Such user-adaptive visualizations are the long-term goal of our research. In particu-
lar, we aim to design novel Infovis systems that can (i) identify relevant user and task 
characteristics in real-time (i.e., during interaction); and (ii) adapt to these characteris-
tics in order to improve a user’s visualization processing. This paper contributes to the 
first of these two challenges with an analysis of user gaze data, aiming to uncover 
specific gaze behaviors that are indicative of different user and task characteristics. 
These behaviors could then be used to drive a system that automatically identifies and 
dynamically adapts to new system users. 

Previous work already indicates that different visualizations, tasks, and user char-
acteristics impact a user’s eye gaze behavior [5][6]. Furthermore, Steichen et al. [7] 
have shown that gaze data can be leveraged to predict several user and task character-



 

 

istics. However, the features used in this related work only include summative 
measures of gaze data (e.g. total number of gaze fixations, mean of fixations dura-
tions, number of transitions between two areas, etc.), as opposed to taking into ac-
count the sequential nature of eye movements. Furthermore, although the accuracies 
achieved using these summative gaze features were better than the baseline [7], they 
are arguably too low for reliable real-world application.  

Our paper contributes to this line of research by leveraging the sequential nature of 
user eye gaze patterns through differential sequence mining, and our results show that 
several sequential gaze behaviors are indicative of specific user/task characteristics. 
Hence, our results complement prior work with valuable additional features that Info-
vis systems can leverage to more accurately identify and adapt to such characteristics. 

In the rest of the paper, we first discuss related work on adaptive information visu-
alization, pattern detection, and eye tracking. Next, we describe the user study that 
generated the gaze data used in the paper. We then present our method for analyzing 
gaze sequences, followed by the analysis results, discussion and future work. 

2 Related Work 

Information visualization research has traditionally maintained a one-size-fits-all 
approach, typically ignoring an individual user’s needs, abilities and preferences. 
However, recent research has shown that, for example, cognitive measures such as 
perceptual speed and verbal working memory have an influence on a user’s perfor-
mance and satisfaction when working with visualizations (also depending on task 
difficulty) [1][2][8]. Likewise, Ziemkiewicz et al. [3], as well as Green and Fisher [9] 
have shown that the personality trait of locus of control can impact relative visualiza-
tion performance for different visualizations. These results indicate that there is an 
opportunity to apply adaptation and personalization to improve usability. 

One of the only attempts to adapt to individual user differences in visualization 
systems is presented in [10], where a user’s visualization expertise and preferences 
are dynamically inferred through monitoring visualization selections (e.g. how long it 
takes a user to decide on which visualization to choose). Using this inferred level of 
user expertise and preferences, the system then attempts to recommend the most suit-
able visualizations for subsequent tasks. However, this work does not monitor a user’s 
behavior during a task, and thus cannot adapt in real-time to help the user with the 
current task. By contrast, the system developed by Gotz and Wen [11] is, to the best 
of our knowledge, the only system that actively monitors real-time user behavior dur-
ing visualization usage to infer needs for intervention. In their work, a user’s interac-
tions through mouse clicks are constantly tracked to detect suboptimal usage patterns, 
i.e., click activities that are of a repetitive (hence inefficient) nature. Each of these 
suboptimal patterns indicates that an alternative visualization may be more suitable to 
the current user activity. Once these patterns are detected, the system then triggers 
adaptation interventions similar to those in [10], namely they recommend alternative 
Infovis. However, there are a number of shortcomings of this work. First, their usage 
patterns are determined by experts a priori, rather than being based on empirical find-
ings. Secondly, they only utilize explicit visualization interactions, therefore the ap-



 

 

proach is not suitable if a user is only “looking” at a visualization without manipulat-
ing its controls/data. Thirdly, they do not try to infer properties of the tasks (e.g. easy 
vs. difficult tasks), nor does their approach try to adapt to any user characteristics. 

A solution to the first issue (i.e., requiring an expert’s a priori identification of pat-
terns) is presented in [12], albeit not applied to information visualization. Specifically, 
Kinnebrew and Biswas [12] present an approach to identify differences in activity 
patterns between two predefined groups (in their case ‘effective learning’ vs. ‘non-
effective learning’) through differential sequence mining. By extracting all combina-
tions of interaction sub-patterns for both groups, and then comparing the overall pat-
tern occurrence differences between groups, they are able to identify patterns that are 
most discriminative. Thus, they propose to monitor these specific patterns in an adap-
tive system to be able to personalize to the inferred user characteristics. In this paper, 
we leverage this idea of differential sequence mining. 

Regarding the second limitation of [11] (i.e. requiring explicit user interactions), 
we look at using eye tracking as an alternative/complementary source of real-time 
behavior information, since visual scanning and processing are fundamental compo-
nents of working with any information visualization (and they are in fact the only 
components for non-interactive visualizations). Although such technology is currently 
confined to research environments, the rapid development of affordable, mainstream 
eye tracking solutions (e.g. using standard webcams) will soon enable the widespread 
application of such techniques [13]. In the fields of HCI and Infovis, research has 
already been conducted on identifying user gaze differences for alternative visualiza-
tions [6], task types (e.g. reading vs. mathematical reasoning) [14], or individual user 
differences [5]. Techniques used in these studies typically involve calculating summa-
tive measures (e.g. total number of gaze fixations, mean of gaze durations, number of 
transitions between two areas, etc.) [6][5] to identify differences between groups of 
users. By contrast, our work takes into account the sequential nature of gaze data. 
Related work on sequential scan path analysis typically involves comparing (using 
string distance functions) full gaze traces from a complete interaction [15][16]. Vari-
ous tools have been developed for such analyses, such as eyePatterns [17], allowing 
the comparison/clustering of whole gaze path sequences. By contrast, our work con-
sists of identifying individual (short) gaze patterns that could be tracked and lever-
aged during a user’s interaction. In particular, we propose to apply the abovemen-
tioned idea of differential sequence mining [12] to eye tracking data, in order to un-
cover eye gaze patterns that are indicative of specific user and task characteristics. For 
this purpose, we leverage an additional functionality provided by eyePatterns [17], 
namely the counting of frequencies of shorter patterns within the full scan paths. 

In terms of actually using eye tracking data for real-time prediction, most research 
has so far focused on identifying user intentions or activities, for example for predict-
ing user intentions in playing simple puzzle games [18], for recognizing user activities 
within analytics and e-learning tasks [19], or for predicting user learning [20][21]. By 
contrast, our work is focused on predicting user and task characteristics during infor-
mation visualization usage. In particular, in our previous work [7], we have proposed 
to classify users based on these features using machine learning techniques. While the 
experiment results in [7] have already shown promise for real-time user/task classifi-



 

 

cation, the achieved accuracies were arguably too low for reliable real-world imple-
mentation. However, the features used in [7] only consisted of summative measures 
(similar to [18]), thereby leaving ample room for improvement through other features. 
In this paper, we provide additional features to potentially improve the results from 
previous work, by taking into account the sequential nature of users’ gaze traces. 

3 User Study 

In order to investigate the effect of different task and user characteristics on a user’s 
eye gaze behavior, we designed and ran a user eye tracking study with two basic visu-
alization techniques, namely bar graphs and radar graphs. By choosing two different 
types of visualizations, we aimed to support the generalizability of our results. The 
study consisted of a set of tasks that required participants to evaluate student grades in 
eight different courses. The tasks were based on a set of low-level analysis tasks that 
Amar et al. [22] identified as largely capturing people’s activities while employing 
Infovis. The tasks were chosen so that each of our two target visualizations would be 
suitable to support them. A first battery of tasks involved 5 questions comparing the 
grades of one student with the class average for 8 courses, e.g., "In how many courses 
is Maria below the class average?". A second battery of tasks involved 4 questions 
comparing the performance of two different students along with the class average, 
e.g., "Find the courses in which Andrea is below the class average and Diana is above 
it?". Each user performed a total of 28 trials, which included 20 tasks from the first 
battery (10 per visualization) and 8 tasks from the second battery (4 per visualization). 

The long-term user traits that we investigated in this study consisted of the follow-
ing three cognitive abilities: perceptual speed (a measure of speed when performing 
simple perceptual tasks), verbal working memory (a measure of storage and manipula-
tion capacity of verbal information), and visual working memory (a measure of stor-
age and manipulation capacity of visual and spatial information). Perceptual speed 
and visual working memory were selected because they were among the perceptual 
abilities explored by Velez et al. [2], as well as among the set that Conati and 
Maclaren [1] found to impact user performance with radar graphs and a Multiscale 
Dimension Visualizer (MDV). We also chose verbal working memory because we 
hypothesized that it may affect a user’s performance with a visualization in terms of 
how the user processes its textual components such as labels. In the following sec-
tions, we describe our analysis and results regarding the effect that these three user 
traits, as well as task difficulty (defined in section 5.4) have on a user’s gaze behavior. 

4 Eye-gaze processing 

An eye tracker captures gaze information through fixations (i.e., maintaining gaze at 
one point on the screen) and saccades (i.e., a quick movement of gaze from one fixa-
tion point to another), which can be analyzed to derive a viewer’s attention patterns. 
In this paper, we analyze a user’s attention with respect to so-called ‘Areas of Inter-
est’ (AOI), which relate to specific parts of the Infovis used in the study. 



 

 

4.1 Areas of Interest 

A total of five AOIs were defined for each of our two visualizations, selected in order 
to capture their distinctive and typical uses. Figure 1 shows how the AOIs map onto 
bar and radar graph components respectively. 

 
Figure 1. The five AOI regions defined over bar graph and radar graph 

- High Area (Hi): covers the upper half of the data elements of each visualization. 
This area contains the relevant data values. For the bar graph, it corresponds to a 
rectangle over the top half of the vertical bars; for the radar graph, it corresponds 
to the combined area of the 8 trapezoidal regions covering the data points. 

- Low Area (Lo): covers the lower half of the data elements for each visualization. 
- Labels (La): covers all the data labels in each graph. 
- Question Text (Te): covers the text describing the task to be performed. 
- Legend (Le): covers the legend showing the mapping between each student and 

the color of the visualization elements that represent their performance. 

4.2 Sequence Generation and Pattern Frequency Measures 

Using the AOI definitions presented above, we converted users’ raw eye gaze data 
into sequences of AOIs. Specifically, in this paper we define a sequence as the se-
quence of AOIs for a complete user scan path of an entire trial. To generate these 
sequences, for each trial we mapped each fixation onto one of the 5 AOIs. For exam-
ple, ‘…Hi-La-Le…’ represents one fixation at the ‘High’ AOI, followed by a fixation 
at the ‘Label’ AOI, followed by a fixation at the ‘Legend’ AOI. Similarly, ‘…Te-Te-
Hi-Hi…’ would represent two consecutive fixations at the ‘Text’ AOI, followed by 
two fixations at the ‘High’ AOI. In total, we converted the raw eye gaze data from 32 
users (each having performed 28 trials), for a total of 725 complete corresponding 
sequences. Note, some user trials had to be removed due to issues with calibration or 
other user related matters (e.g., excessive user movements). 

Using the eyePatterns tool [17], we then extracted frequencies of patterns within 
these complete sequences. In this paper, patterns are defined as sub-sequences within 
a sequence. We extracted patterns in both their “expanded” and “collapsed” form. An 
expanded pattern comprises all fixations, including consecutive fixations within the 

High%Area% %Low%Area% Labels% Ques2on%Text% Legend%



 

 

same AOI (repetitions, from now on). Collapsed patterns lump repetitions into a sin-
gle AOI. For each of the different user/task groups, e.g. high/low perceptual speed 
(determined via a median split), we extracted the occurrence frequencies of expanded 
and collapsed patterns of length 3 to 71. 

Similar to Kinnebrew et al. [12], we then compared the frequencies of patterns 
(e.g. ‘Hi-Hi-Hi’, ‘Hi-Hi-La’, ‘Hi-La-La’ etc.) between different groups (e.g. high vs. 
low perceptual speed), in order to see whether some of these patterns are more com-
mon for particular groups. More specifically, we compared the following measures: 

- Sequence Support - SS (s-support in [12]): The number of sequences in a group 
where the pattern occurs (regardless of how frequently the pattern re-occurs within 
the sequence) as a proportion of the total number of sequences in the group, i.e., 

𝑆𝑆! 𝑝 =
number  of  sequences  that  contain  pattern  𝑝  in  group  𝑔  

total  number  of  sequences  in  group  𝑔
 

For example, if a group (e.g., high perceptual speed users) consists of 300 se-
quences, and 150 of these sequences contain a particular pattern (e.g. “Hi-La-Te”), 
then the group’s SS for this pattern would be 50%. The SS measure thereby repre-
sents how ‘common’ it is for a pattern to appear for sequences of a particular 
group (i.e. if a pattern’s SS is very high for a group, this means that most sequenc-
es from this group contain this pattern). 

- Average Pattern Frequency - APF (instance support, or i-support, in [12]): Total 
number of occurrences of the pattern in all sequences of a group (including reoc-
currences within a sequence), divided by the group’s total number of sequences, 
i.e., 

APF! p =
number  of  occurrences  of  pattern  p  in  group  𝑔  

total  number  of  sequences  in  group  𝑔
 

For example, if a group consists of 300 sequences, and a particular pattern appears 
600 times in total (including reoccurrences within a sequence), then the group’s 
APF for this pattern would be 2. The APF thereby represents the ‘reoccurrence 
frequency’ of a pattern in a particular group (i.e. a pattern with a very high APF 
for a particular group means this pattern frequently reoccurs in this group). 

- Proportional Pattern Frequency – PPF: Total number of occurrences of the pat-
tern per group (including reoccurrences) as a proportion of the total number of 
patterns in the group, i.e., 

𝑃𝑃𝐹! 𝑝 =
number  of  occurrences  of  pattern  𝑝  in  group  g  

total  number  of  patterns  in  group  g
 

For example, if the total number of patterns across all sequences (including reoc-
currences) in a group is 10,000 and a particular pattern appears 600 times in total, 
then the group’s PPF for this pattern would be 6%. The PPF thereby represents the 
‘relative frequency’ of a pattern in a particular group, compared to all other pat-

                                                             
1 Patterns longer than 7 were very infrequent. Patterns of length 1 and 2 are typically included 

in simple summative analyses (as presented in Section 2). 



 

 

terns from the group (i.e. a pattern with a very high PPF for a particular group 
means that this pattern is, compared to other patterns, occurring more frequently). 
While PPF was not included in [12], we believe that it allows an additional dimen-
sion of analysis, showing how patterns change in terms of relative frequency. 

4.3 Statistical Analysis 

For our statistical analysis, we followed Kinnebrew et al.’s [12] approach of only 
considering patterns that are above a certain SS threshold in at least one of the groups 
to be compared (e.g., at least in either the high or low perceptual speed user group). 
This ensures that we do not analyze patterns that are too infrequent for any realistic 
application in an adaptive system. We used the threshold values of 40% for expanded 
patterns, and 30% for collapsed patterns2. 

To evaluate the statistical significance of SS and PPF differences, we conducted 
two sets of Pearson’s chi-square tests for each user/task characteristic group, separate-
ly for expanded and collapsed sequences. Since we evaluated multiple patterns for 
differences within each set, we increased the likelihood of performing a type I error. 
Thus, we applied the Bonferroni correction to test individual comparisons at signifi-
cance levels of α/n, where α = .05 and n = the number of patterns analyzed in each set. 

In contrast to SS and PPF, calculating statistical significance for APF differences 
involves the comparison of means, hence requiring the variances of the pattern fre-
quencies for individual sequences. However, this information is not available in the 
eyePatterns tool (only overall frequencies are available), and we were hence not able 
to calculate statistical significance for this measure. We will therefore not discuss 
APF in the results section below, except for cases where it may provide some com-
plementary insight on intuitively contradictory results. 

5 Results 

With the goal of finding gaze patterns that may characterize users with specific cogni-
tive characteristics, or are indicative of different task characteristics, we compared the 
SS and PPF across i) low vs. user high perceptual speed users, ii) low vs. high user 
verbal working memory users, iii) low vs. high user visual working memory users, and 
iv) easy vs. difficult tasks. 

5.1 Perceptual Speed (PS) - Low vs. High 

We found a number of patterns that statistically significantly differed in terms of SS 
and/or PPF between low and high PS users (see Table 1). 

As shown in the first row of Table 1, patterns involving two fixations at the 'High’ 
AOI (Hi-Hi), followed by a fixation at the ‘Label’ AOI (La) have a statistically signif-
                                                             
2 Note that Kinnebrew et al. used 50% as a threshold, however, they allowed for ‘gaps’ in se-

quences, which is not supported by the pattern extraction feature in eyePatterns. We there-
fore slightly lowered the threshold of expanded sequences to 40%. Also, collapsed patterns 
are generally more infrequent, hence the slightly lowered threshold of 30%. 



 

 

icantly greater PPF for high PS users compared to low PS users. Similarly, the invert-
ed pattern La-Hi-Hi (second row of Table 1) has a statistically significantly greater 
PPF for high PS users compared to their low PS counterparts. This means that high 
PS users comparatively make more use of the data labels after/before looking at mul-
tiple values displayed in the visualization (i.e. the ‘High’ AOI). The fact that we did 
not find a statistically significant difference for this pattern in terms of SS indicates 
that this pattern is still common for low PS users (i.e. it still occurs in a similar num-
ber of sequences), but it does not reoccur as often. 

By contrast, ‘High’ AOI to ‘Label’ AOI transitions that are broken up by an inter-
mediate fixation at the ‘Low’ AOI (i.e., Hi-Lo-La) occur more frequently for low PS 
users. This result was found for both SS and PPF, indicating a strong difference be-
tween groups. One possible interpretation for this finding might be that low PS users 
are less precise when trying to locate the small 'Label’ AOIs after visiting one of the 
visualization values. 

Table 1.  Pattern differences that occurred between low and high perceptual speed users. 

 Sequence Support (SS) 
Stat. sig. greater for: 

Proportional Pattern 
Frequency (PPF) 

Stat. sig. greater for: Pattern 

Hi-Hi-La - High PS users 
La-Hi-Hi - High PS users 

  Hi-Lo-La * Low PS users Low PS users 
Te-Te-Lo Low PS users - 
Te-Te-Te Low PS users - 
Te (x4) Low PS users - 
Te (x5) Low PS users - 

             * found for collapsed and expanded patterns 

The final set of results in Table 1 shows that it is much more common for low PS 
users to have some repeated fixations within the ‘Text’ AOI. In particular, we found 
that the SS was greater for several ‘Text’-related patterns (Te-Te-Te, Te (x4), etc.), 
suggesting that a single appearance of such a pattern in a user’s sequence may indi-
cate low PS. This finding may therefore signify that low PS users generally require 
more effort to process the larger textual components of visualizations. 

None of these results were found using simple summative measures in previous 
work (e.g. [5]), hence showing that our sequential analysis can indeed reveal com-
plementary features for inferring user characteristics.  

5.2 Verbal Working Memory (Verbal WM) - Low vs. High 

We found that it is much more common for low verbal working memory users to have 
highly repeated fixations at the 'Text' AOI (i.e., through patterns such as Te (x5, x6, 
x7)) compared to their high verbal working memory counterparts (see Table 2).  

This is in line with previous results found in [5], where the overall proportion of 
time spent in the text AOI was found to be higher for low verbal working memory 
users. In fact, our findings further qualify these previous results, indicating that the 



 

 

increased time spent by low verbal working memory users stems from highly repeated 
transitions within the text AOI, rather than repeatedly coming back to the text AOI 
after visiting other AOIs. Another result we found was that it is more common for 
high verbal working memory users have an increased frequency of the pattern La-Lo-
Hi. The interpretation of this result is less intuitive, but nonetheless it may serve as an 
additional feature for detecting low/high verbal working memory users (as it repre-
sents another result not previously found using only summative measures). 

Table 2. Pattern differences between low and high verbal working memory users 

 Sequence Support (SS) 
Stat. sig. greater for: 

Proportional Pattern 
Frequency (PPF) 

Stat. sig. greater for: Pattern 

Te (x5) Low Verbal WM users - 
Te (x6) Low Verbal WM users - 
Te (x7) Low Verbal WM users - 

La-Lo-Hi * High Verbal WM users - 
              * found for collapsed and expanded patterns 

5.3 Visual Working Memory (Visual WM) - Low vs. High 

While the study in [5] found no effect of visual working memory on gaze measures, 
our sequential analysis reveals that low visual working memory users had increased 
repetitions in the text AOI (however, only the Te (x6) pattern was statistically signifi-
cant), as well as two increased patterns involving the 'High', 'Low', and 'Label' AOI 
(see Table 3). These results are similar to the above findings on perceptual speed and 
verbal working memory, and represent, to the best of our knowledge, the first results 
linking visual working memory to eye gaze behavior. 

Table 3. Pattern differences for low vs. high visual working memory users 

 Sequence Support (SS) 
Stat. sig. greater for:  

Proportional Pattern 
Frequency (PPF) 

Stat. sig. greater for:  Pattern 

Te (x6) - Low Visual WM users 
Hi-Lo-La * - Low Visual WM users 
La-Lo-Hi * - Low Visual WM users 

               * found for collapsed and expanded patterns 

5.4 Task Difficulty  - Easy vs. Difficult 

In addition to analyzing the effect of user characteristics, our work also aims to find 
the impact of characteristics related to a user’s task. To this end, we also analyzed 
pattern differences with respect to the overall ‘difficulty’ of a task. For this measure, 
we generated, a posteriori, an aggregated difficulty value for each task through a 
principal component analysis (PCA) using task completion time and a user’s reported 
confidence on the task (see [5] for a detailed description of this PCA analysis).  



 

 

The results regarding the pattern frequency differences between easy and difficult 
tasks are shown in Table 4. As can be seen from this table, there were many differ-
ences regarding repeated fixations of the ‘High’ AOI (Hi-Hi-Hi, Hi x4, etc.). This 
difference occurred for both SS and PPF measures, showing that repeated fixations in 
the ‘High’ AOI are a strong indicator for a difficult task. 

Table 4. Pattern differences for easy vs. difficult tasks 

 Sequence Support (SS) 
Stat. sig. greater for: 

Proportional Pattern 
Frequency (PPF) 

Stat. sig. greater for: Pattern 
Hi-Hi-Hi Difficult Tasks - 
Hi (x4) Difficult Tasks Difficult Tasks 
Hi (x5) Difficult Tasks Difficult Tasks 
Hi (x6) Difficult Tasks Difficult Tasks 
Hi (x7) Difficult Tasks Difficult Tasks 

Te-Te-Te Difficult Tasks   Easy Tasks 
Te (x4) Difficult Tasks   Easy Tasks 
Te (x5) Difficult Tasks - 
Te (x6) Difficult Tasks - 
Te (x7) Difficult Tasks Difficult Tasks 

Te-Hi-Hi Difficult Tasks - 
Te-Te-Hi Difficult Tasks - 
Hi-Hi-Te Difficult Tasks - 

Te-Hi-Hi-Hi Difficult Tasks - 
Te-Te-Hi-Hi Difficult Tasks - 
Te-Te-Te-Hi Difficult Tasks - 
Te-Hi (x4) Difficult Tasks - 

We also found that patterns involving repeated fixations in the ‘Text’ AOI had a 
larger SS for more difficult tasks. Interestingly, however, we found that PPF for two 
of these ‘Text’ AOI patterns was statistically significantly greater for easier tasks. In 
order to investigate this counterintuitive result, we also looked at the APF measure, 
which revealed that the average re-occurrence of repeated ‘Text’ AOI patterns actual-
ly increases for more difficult tasks. However, because the aforementioned ‘High’ 
AOI patterns had increased by a much greater extend (up to threefold), the propor-
tional occurrence of ‘Text’ AOI patterns within the difficult task group (as measured 
by PPF) had actually decreased. While this analysis makes use of the APF measure 
that we could not check for statistical significance, these very high numbers for the 
‘High’ AOI pattern increase therefore seem to be the most plausible explanation for 
this seemingly contradictory finding. 

In addition to these patterns involving repeated fixations in either only the ‘High’ 
or ‘Text’ AOIs, we found that patterns involving the combination of the two (includ-
ing intermediate fixations at the ‘Low’ AOI) also increased for difficult tasks. 

None of these results have been found previously using summative measures, 
which confirms that our sequential pattern analysis was able to find many new dis-
criminatory features. 



 

 

6 Conclusion, Discussion, and Future Work 

In conclusion, our analysis has found a number of gaze behavior differences between 
different user/task groups during Infovis usage. While some results confirm previous 
findings that were discovered using simple summative measures (e.g. increased fixa-
tions in the text AOI for high verbal working memory users), our novel application of  
differential sequence mining was able to uncover many additional results, including 
new results for perceptual speed, verbal working memory, visual working memory, 
and task difficulty. 

In view of building Infovis systems that can adapt to each individual user and task 
characteristics, these findings provide important indicators as to which particular pat-
terns could be monitored for predicting and adapting to the various characteristics. 
For example, observing a user’s frequent exhibition of a pattern that is common for a 
certain user/task group may indicate that the user belongs to this group, and that she 
may therefore benefit from a specific type of adaptive support. Carenini et al. [24] 
have already presented a number of possibilities for providing such support in Infovis 
systems, and have also highlighted that the effect of interventions indeed depends on 
various user/task characteristics (e.g., a user’s subjective rating of different highlight-
ing mechanisms is shown to be affected by visual WM). 

While we found a number of patterns to be indicative for more than one user/task 
characteristic group (e.g. repeated patterns in the text AOI was found for all 4 charac-
teristics), it is worth noting again that our pattern difference results can be comple-
mented with features from i) other eye gaze features (e.g. non-sequential features, 
pupil dilation features), and/or ii) other interaction features (e.g. mouse clicks). To 
this end, the next steps of our research consist of complementing the results from this 
paper with previously reported summative features [5] to build a combined machine 
learning model for automatically inferring user/task characteristics. 
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