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ABSTRACT 
In this paper we describe research on using eye-tracking data for 
on-line assessment of user meta-cognitive behavior during the 
interaction with an intelligent learning environment. We describe 
the probabilistic user model that processes this information, and 
its formal evaluation. We show that adding eye-tracker 
information significantly improves the model accuracy on 
assessing user exploration and self-explanation behaviors. 

Categories and Subject Descriptors 
I.2.1 [Artificial Intelligence ]: Applications and Expert Systems  
I.2.3 [Artificial Intelligence ]: Deduction and Theorem Proving – 
uncertainty  and probabilistic reasoning;  
K.3.1 [Computers and Education]: Computer Uses in Education 
– computer-managed instruction (CMI). 

General Terms 
Human Factors, Experimentation. 

Keywords 
Intelligent assistance for complex tasks, adaptive interfaces, user 
modeling, eye-tracking, meta-cognitive skills, intelligent learning 
environments 

1. INTRODUCTION 
One of the functionalities that an Intelligent User Interface may 
include is providing user tailored support for complex tasks. This 
involves building a model of user traits relevant to adequately 
tailor the interaction, i.e., a user model. Depending on the nature 
of the task and the extent of the support, the relevant user traits 
may include simple performance measures (such as frequencies of 
interface actions), domain-dependent cognitive traits (such as 
knowledge and goals), meta-cognitive processes that cut across 
tasks and domains, and affective states. Arguably, the higher the 
level of the traits to be captured, the more difficult it is to assess 
them unobtrusively from simple interaction events. This has 
generated a stream of research on using innovative sensing 
devices to enrich the information available to a user model.  

This paper contributes to this research stream by presenting 
results on using real time eye-tracking information to inform a 
user model designed to assess student meta-cognitive behavior 
during interaction with an Intelligent Learning Environment 
(ILE). The meta-cognitive behaviors covered by the model 
include the capability to effectively learn from free exploration [7, 
17]  and the capability to self-explain instructional material, i.e., 
to clarify and elaborate the given information in light of the 

underlying domain theory (e.g., [4] and [15]).  Both meta-
cognitive skills have been shown to improve the quality of student 
learning, but it has also been shown that many students lack them 
[4, 15].  

As a consequence, there have been several efforts in the literature 
to support the acquisition of these skills in ILE. However, few of 
these efforts have tried to generate support tailored to student 
meta-cognitive needs. For effective exploration, most work has  
focused on providing interface tools that stimulate the right 
exploratory behaviors [13, 17]. For  self-explanation, research has 
focused either on generating untailored prompts [1], or on relying 
on simple performance measures for tailoring, such as prompting 
for self-explanation after every new action or after every incorrect 
action [12]. One of the reasons for this is the difficulty of 
assessing user meta-cognitive behaviors. Conati and Vanlehn [6] 
have proposed a system that models user self-explanation 
behavior using interface artifacts that allows the system to obtain 
relevant information on user attention. However, it is not always 
possible to devise interface artifacts that do not interfere with the 
nature of the interaction. For this reason, we are exploring the use 
of eye-tracking data to provide information on user meta-
cognition.  

In this paper, we will discuss how we included eye-tracking 
information in a previously developed student model to track 
student self-explanation and exploration behavior [3]. The student 
model is to be used by ACE, an ILE to support student 
exploration-based learning in the domain of mathematical 
functions. The main contribution of this work is a formal 
evaluation of this student model, showing that the inclusion of 
eye-tracking information significantly improves the model 
assessment of student self-explanation, as compared to the 
previous model. The evaluation also shows that more accurate 
assessment of student self-explanation behavior significantly 
improves the assessment of student learning through exploration. 

There is a well established body of research on using eye-tracking 
data for off-line evaluation of interface design [11], or as an  
alternative form of input to allow a user to explicitly  operate an 
interface [11, 16]. However, research on real-time usage of this 
type of data to enable on-line adaptation of the interaction is still 
in its infancy. Some of this work uses gaze tracking to help assess 
user task performance, such as reading performance for automatic 
reading remediation [18], or what task a user is performing 
independently from the underlying application (e.g., reading email 
vs. reading a web page) [10]. Others have explored using gaze 
data to assess user mental states such as interest in various 
elements of an interactive story [19], attention in the context of 
assessing learner motivation during interaction with an ILE [14] 
and student problem-solving strategies in a tutoring system for 



algebra [9]. We contribute to this body of research by 
demonstrating how eye-tracking can improve recognition of user 
meta-cognitive skills.  

In the rest of the paper, we first describe the ACE learning 
environment. We then briefly illustrate previous versions of the 
ACE student model and their limitations. Next, we describe the 
new model and the evaluation we ran to test its effectiveness 
compared to the previous versions. We also discuss sensitivity of 
the model to accurate onset information and different types of 
available evidence. 

2. THE ACE LEARNING ENVIRONMENT 
ACE is an adaptive learning environment for the domain of 
mathematical functions designed to support student learning 
through exploration.  ACE’s activities are divided into units and 
exercises. Units are collections of exercises whose material is 
presented with a common theme and mode of interaction. 
Exercises within units differ in function type and equation.  

Figure 1 shows the main interaction window for the Plot Unit. We 
will focus on this unit throughout the paper because it is the most 
relevant to the research presented in later sections. In the Plot 
Unit, a learner can explore the relationship between a function’s 
graph and equation by moving the graph in the Cartesian plane 
and observing how that affects the equation (displayed below the 
graph area). The student can also change the equation parameters 
and see how these affect the graph. 

To support the 
exploration process, 
ACE includes a 
coaching component 
that provides tailored 
hints when ACE’s 
student model 
predicts that students 
have difficulty 
exploring effectively. 
For more details on 
ACE’s interface and 
coaching component 
see [2]. In the next 

section we describe the general structure of ACE’s student model. 

3. PREVIOUS VERSIONS OF ACE’S  
STUDENT MODEL 
3.1 Version with no self explanation 
ACE’s student model uses a Dynamic Bayesian Network [3] to 
manage the uncertainty in assessing students’ exploratory 
behavior. The main cause of this uncertainty is that the reasoning 
processes that influence the effectiveness of student exploration 
are not easily observable unless students are required to make 
them explicit. However, forcing students to articulate this 
reasoning would likely be intrusive and clash with the unrestricted 
nature of this type of learning.   

The first version of ACE’s student model was derived from an 
iterative design process [2] that yielded a better understanding of 
what defines effective exploration. Figure 2 shows a high-level 
description of this model’s structure, which comprises several 
types of nodes to assess exploratory behaviour at different levels 
of granularity. These include Relevant Exploration Cases, 

representing exploration of individual exploration cases in an 
exercise (e.g., changing the slope of a line to 3, a positive number, 
in the Plot Unit); Exploration of Exercises and  Exploration of 
Units representing adequate exploration for the various ACE 
exercises and units, respectively; Exploration of Categories,  
representing the exploration of groups of relevant exploration 
cases that appear across multiple exercises (e.g., all the 
exploration cases involving a positive slope in the Plot Unit). The 
links among the different types of exploration nodes represent 
how they interact to define effective exploration. Exploration 
nodes have binary values that represent the probability that the 
learner has sufficiently explored the items associated with the 
node. 

 

Figure 2. High-level Structure of ACE's Student Model 

ACE’s student model also includes binary nodes representing the 
probability that the learner understands the relevant pieces of 
knowledge (summarized by the node Knowledge in Figure 2). The 
links between knowledge and exploration nodes represent the fact 
that the degree of exploration needed to understand a concept 
depends on how much knowledge a learner already has. 
Knowledge nodes are updated only through actions for which 
there is a clear definition of correctness. These nodes are never 
updated within the Plot Unit since it consists of purely 
exploratory activities. 

Initial studies on ACE generated encouraging evidence that the 
system based on the model in Figure 2 could help students learn 
better from exploration [2]. However, these studies also showed 
that sometimes the ACE student model – labeled model 1 from 
now on - overestimated students’ exploratory behaviour, because 
it considered  interface actions to be sufficient evidence of good 
exploration, without taking into account whether a student was 
self-explaining the outcome of these actions. For instance, a 
student who quickly moves a function graph around the screen in 
the Plot Unit - but never  reflects on how these movements change 
the function equation - performs many exploratory actions but can 
hardly learn from them because she is not reflecting on (self-
explaining) their outcomes. We observed this behavior in several 
study participants. 

3.2 Extending ACE to Track and Support 
Self-Explanation 
To address the model limitation described above, we started 
extending ACE’s interface and student model to track and support 
self-explanation. The original version of ACE only generated 
hints indicating that a student should further explore some 
elements of a given exercise. Augmenting ACE with the 
capability to track self-explanation allows ACE not only to detect 
when a student’s exploration is sub-optimal, but also to 
understand if the cause is a lack of self-explanation and generate 
tailored hints to correct this behavior.  

Figure 1. ACE Plot Unit 



There are two types of self-explanation that ACE needs to detect: 
(i) explicit self-explanation, i.e., self-explanation that the student 
generates using menu-based tools available in the interface; (ii) 
implicit self-explanation, that students generate in their head. The 
latter is the most difficult to detect due to the lack of hard 
evidence of its occurrence, and is the focus of the extensions to 
the student model we describe in the next sections. 
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Figure 3. Original ACE student model with self-explanation 

The first version of the ACE student model with an assessment of 
self-explanation [3] – model 2 - only used time spent on each 
exploratory action as evidence of implicit self-explanation.  
Figure 3 shows a time slice in this model, corresponding to an 
implicit self-explanation action (similar slices capture the 
occurrence of explicit self-explanation).   Nodes representing the 
assessment of self-explanation are shaded grey. In this figure, the 
learner is currently exploring exercise 0 (node e0) in the Plot Unit, 
for which two relevant exploration cases (e0Case0 and e0Case1 in 
Figure 3) are shown. Each exploration case influences one or 
more exploration categories (positive intercepts and negative 
intercepts in the figure). Here the learner performs an action 
corresponding to e0case1.  In this new version of the model, the 
probability that a learner’s action implies effective exploration of 
a given case depends on both the probability that the student self-
explained the action and the probability that she knows the 
corresponding concept, as assessed by the set of knowledge nodes 
in the model (summarized in Figure 1 by the node Knowledge). 
Factors influencing the probability that implicit self-explanation 
occurs include the time spent exploring the case and the stimuli 
that the learner has to self-explain. Low time is always taken as 
negative evidence for implicit explanation. The probability of self-
explanation with longer time on action depends on whether there 
is a stimulus to self-explain, i.e., on the learner’s general tendency 
to self-explain and on whether the system generated an explicit 
hint to self-explain 

Time, however, can be an ambiguous predictor for self-
explanation. First, it is hard to define for different learners what is 
insufficient time for self-explanation. Furthermore, a student may 
be completely distracted during a long interval between 
exploration cases. Thus, we chose to explore an additional source 
of evidence of self-explanation behavior, i.e., the student’s 
attention patterns during the exploration of a given case.  

4. ADDING EYE TRACKING TO ACE 
The intuition for using an eye-tracker to assess self-explanation 
behaviour is that self-explanation may be more likely if the 
student actually attends to the parts on the interface showing the 
effects of a specific exploratory action. As an example, if a student 
has modified the function equation, a gaze shift pattern suggestive 
of self-explanation would start from the equation region and then 
hover around the graph region above. 

To collect empirical data on the mapping between actual student 
self-explanations, time and attention patterns, we ran a user study 
[5], briefly summarized here because it lays the groundwork for 
the new model and evaluation methodology described in later 
sections. In this study, we collected data from 18 university 
students using ACE while their gaze was tracked by an Eyelink I 
eye-tracker, developed by SR Research Ltd., Canada. Each 
participant received instructions to try and verbalize all his/her 
thought processes while using the system. Finally they used the 
system for as much time as needed to go through all the units. All 
the student exploration cases were logged, and synchronized with 
the output of software we developed for the real-time detection of 
gaze-shifts analogous to the one described earlier. Complete video 
and audio data of the interaction was also collected; however the 
analysis described here focuses on the plot unit only. Using the 
audio and video data, two experts independently analyzed each 
participant’s exploratory actions for signs of the presence or 
absence of self-explanation. Only exploratory actions on which 
the coders fully agreed were used in the rest of the analysis, 
generating 149 data points.  

We found a statistically significant difference between the average 
time taken for actions accompanied by self-explanation and 
actions that were not, indicating that time can be a predictor of 
self-explanation behavior. We then used ROC curve analysis [5] 
to determine the optimal threshold to indicate sufficient time for 
self-explanation, which we determined to be 16 seconds 

Three predictors of self-explanation were considered and 
compared: (i) gaze shifts only, (ii) time only and (iii) gaze shifts 
and time used in combination. Gaze shifts proved to be the most 
reliable at detecting the absence of self-explanation. However, 
gaze shifts and time performed best together at identifying self-
explanation when it occurred. Depending on whether priority is 
given to sensing the absence of self-explanation so that necessary 
intervention occurs or minimizing unwanted interruption, one of 
these predictors may be preferable to another. It should also be 
noted that an eye-tracker may not always be available due to cost 
and other considerations, so time may sometimes be the only 
predictor available.    

Given these arguments, we felt that it is worthwhile adding eye-
tracking information to the ACE model, and in such a way that 
allows for flexibility in deciding which predictor (or combination 
of predictors) to use. We then proceeded to change the ACE 
model based on the study data. 

4.1 THE NEW ACE STUDENT MODEL 
The shaded nodes in Figure 4 show the part of the ACE student 
model that we modified to include evidence from eye-tracking to 
assess implicit self-explanation. The gaze shift node has a binary 
value which indicates whether or not a gaze shift has occurred. 
Time is also a binary node indicating whether a time longer than 



the threshold T identified from the study data has elapsed, 
indicating sufficient time for self-explanation. 
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Figure 4. The ACE student model 

As the figure shows, the revised model – model 3 - relies on   a 
clear separation between the causes of implicit self-explanation 
and its effects, i.e., gaze shifts and time on action. These effects 
are encoded as independent predictors as in a naïve Bayesian 
classifier.   

The main advantage to this approach is that it is highly modular, 
allowing the gaze shift and time nodes to be easily used or ignored 
as needed. Modularity also facilitates learning all the relevant 
conditional probabilities tables (CPTs) from data, while in the 
previous model the portion which tracks self-explanation was 
based on intuition and reasonable estimates of conditional 
probabilities. The disadvantage of this structure is that it assumes 
independence between time and the presence of gaze shifts, which 
is not necessarily true. In fact, our data actually suggests a small 
positive correlation between the two. However, similar 
assumptions in pure naïve Bayesian classifiers have been shown 
to perform surprisingly well in practice, even when this 
independence cannot be guaranteed. The CPTs for time and gaze 
shift were derived directly from frequencies in our dataset, as 
shown in Table 1 

Table 1: CPTs for time and gaze shift in the new model 

implicitSE P(time < 16s)  implicitSE P(gaze shift) 

Y 0.71  Y 0.61 

N 0.32  N 0.24 

To determine the relationship between tendency to self-explain 
and implicit self-explanation, the study participants were divided 
into self-explainers – those who self-explained at least 20% of the 
time - and non-self-explainers – those who did not. We found that  
self-explainers and non-self-explainers self-explained 79.8% and 
13.3% of the time, respectively. These frequencies were then used 
to set the conditional probabilities for the Implicit SE node.  

Note that the new version of the model in Figure 4 does not 
currently include the Coach’s hints to self-explain nodes. This is 
because no hints were provided during the user study, and thus we 
had no data to set the relevant conditional probabilities.  

5. TESTING THE NEW STUDENT MODEL 
In this section the performance of the new model is evaluated 
using new user data. Subsection 5.1 describes the collection of 

new data and the accuracy of the ACE student model over this 
data. Subsection 5.2 illustrates cross-validation analysis carried 
out to  provide a more precise picture of the overall performance 
and stability of the model in assessing self-explanation and 
exploration of individual students. In subsection 5.4, the model is 
tested using different evidence of implicit self-explanation.  

For purposes of comparison, we also tested the two previous 
versions of the ACE model:  the one which does not include self-
explanation at all (labeled as model 1) and the one with time only 
(labeled as model 2). This allows an assessment of the incremental 
effects of adding self-explanation and then the gaze data to the 
ACE model. The new model will be labeled model 3 in the rest of 
the paper. 

In order to gain more data for model testing we ran 18 more 
subjects with the same experimental setup and data analysis 
adopted for the first study. As in the previous study, participants 
were university students who had not taken any college level 
math. This new set of subjects yielded 109 exploration cases with 
self-explanation and 68 without, which were then used to assess 
the performance of the three models. 

In this set of accuracy tests, the knowledge and tendency to SE 
nodes in each model were assigned a generic prior probability of 
0.5. Thus the models began with an identical assessment of the 
knowledge and tendency for each student.  

5.1 Accuracy of Implicit SE assessment  
To test model accuracy in assessing implicit self-explanation, we 
needed a threshold probability to decide when an implicitSE node 
predicts the occurrence of self-explanation. This was derived from 
data from the previous study as follows. Using a simulated student 
program, the log files from the first study (training data) were run 
through each of the two models that do assess implicit self-
explanation, e.g., model 2 and model 3. The probabilities of  
implicitSE nodes were then compared against the coded data 
points from the first study. Each data point corresponds to a user 
action which the experts determined was or was not self-
explained. The implicitSE node in each model (see Figures 3 and 
4) also yielded probabilities that self-explanation occurred at the 
time of this action. These probabilities were compared to expert 
assessments to test the predictive performance of each model. A 
small fragment of this data appears in Table 2 below.  

Table 2 Values of implicitSE nodes corresponding to actions in 
study data 

action Experts SE 
assessment 

Model 2  
(time only) 

Model 3   
( time and gaze shifts) 

1 Y 0.698 0.723 

2 N 0.287 0.180 

3 Y 0.409 0.645 

 

To determine a good threshold over implicit SE nodes for each 
model, a Receiver Operating Characteristic (ROC) curve was 
constructed for these implicitSE probabilities. A ROC curve is a 
standard technique used in machine learning to evaluate the extent 
to which an information filtering system can successfully 
distinguish between relevant data (episodes the filter correctly 
classifies as positive, or true positives) and noise (episodes the 



filter incorrectly classifies as positive, or false positives), given a 
choice of different filtering thresholds. 

Figure 5 shows the ROC curves for our two models, where the 
filter is the threshold over implicit SE probabilities. From these 
curves, we chose for each model the threshold that optimizes the 
tradeoff between true positive rate and false positive rate, as is 
standard practice in machine learning. These thresholds are 
marked by an  asterisk in Figure 5. 

 

Figure 5. ROC curves for models as predictors of implicit self-
explanation over training data 

Next, the user log files from the new study (test data) were run 
through each model. Using the thresholds found from the ROC 
curves over the training set, the model’s implicitSE nodes were 
tested for accuracy against the new set of coded data. Table 3 
shows the true positive rate (i.e., percentage of self-explained 
cases correctly classified as such, or sensitivity of the predictor) 
and true negative rate (i.e., percentage of “no self-explanation” 
cases correctly classified as such, or specificity of the predictor) 
for the two models.  

Table 3 Accuracies of implicitSE nodes 

 Model 2  
(time only)  

Model 3                       
( time and gaze shifts) 

True Positive rate 
(sensitivity) 

65.1% 71.6% 

True Negative rate 
(specificity) 

62.6% 74.3% 

Combined  63.9% 73.0% 

 

A combined measure, the average of the two accuracies, is also 
reported. Here the addition of the eye-tracker causes an increase 
in each of the measures, with the increase being more substantial 
for specificity. This is consistent with the assumption, supported 
by data in the first study,  that the use of eye-tracking will catch 
many of the false positives inherent in the use of time as a 
predictor. 

To further compare the accuracy of the two models, we generated 
the ROC curves of their performance as predictors of implicit SE 
over the  new data set. These curves appear in Figure 6. The area 
under a ROC curve is equal to the probability that a randomly 
selected positive case will be given a higher probability by the 
model than a randomly selected negative case [8]. Thus ROC 

curves with larger area correspond to better predictors over the 
data. As shown in Figure 6, model 3 yields a ROC curve with 
greater area than that of model 2. This difference in area is 
statistically significant to the z > 1.96 level [8].   

 

Figure 6. ROC curves for models as predictors of implicit self-
explanation over testing data 

5.2  Accuracy of Exploration Assessment 
Each of the 3 versions of the ACE model (including model 1, 
which does not assess self-explanation) was also evaluated as a 
predictor of adequate exploration. Data for this evaluation was 
collected as follows. In both user studies, participants completed a 
post-test on the mathematical concepts represented in the ACE 
model, immediately after interacting with ACE. A correspondence 
was then created between these concepts and specific post-test 
questions. These questions were then used to determine the 
student’s aptitude in each of the concepts (e.g., positive intercepts 
and negative intercepts) at the end of the experiment. In addition, 
when a student’s log file is run through any of the three models, 
the final probabilities of the exploration of categories nodes (e.g., 
nodes Negative Intercept ad Positive Intercept in Figure 3) 
represent the model assessment that the student understands these 
concepts at the end of the interaction. (i.e., that the student had 
adequately explored this material). This assessment can then be 
compared with the corresponding post-test scores to evaluate 
model accuracy over effective exploration.  

.Table 4 Accuracies of exploration nodes 

 Model 1  
(no SE) 

Model  

(time only ) 

Model 3  

(time and gaze 
shifts ) 

 True Positive   
rate (sensitivity) 

62.7% 70.4% 73.9% 

 True Negative  
rate (specificity) 

55.2% 71.5% 76.3% 

 Combined   59.0% 71.0% 75.1% 

 

As before, a ROC curve was constructed for each model over the 
training data to determine the best threshold at which an 
exploration node could be found to indicate adequate exploration 
– and thus understanding – of the material. These thresholds were 
then used to determine the accuracy of each model over the 



testing data, resulting in the accuracies in Table 4. Each of the 
accuracies increased with each successive model, suggesting that 
the addition of self-explanation and gaze shift data were in fact 
improvements. It also confirms that an increase in the accuracy of 
implicit self-explanation detection does in fact cause an increase 
in the accuracy of exploration assessment. 

ROC curves were also generated to compare each model’s 
performance on exploration assessment over the test set. These 
appear in Figure 7. As shown in the figure, the area under the 
curve increased with the inclusion of self-explanation to the 
student model. The addition of gaze shift data also caused an 
increase. Both of these increases were found to be statistically 
significant at the z > 1.96 level [8]. 

It should, however, be noted that the increase in accuracy caused 
by the addition of the eye-tracker is higher for the implicitSE 
nodes than for the exploration nodes. This is due to the difference 
in the way each is measured. Each implicitSE probability is taken 
at the time that the associated action occurs while only the 
probabilities of the exploration nodes at the end of the interaction 
are used in the analysis. Thus, while the implicitSE nodes 
represent the state of the user at a specific time and are strongly 
affected by the presence or absence of a gaze shift, the exploration 
nodes’ final probabilities are the result of many actions 
throughout the interaction and are influenced by other factors. 
Given these results, we can conclude that the main benefit in 
adding eye-tracking versus using time only is  the more accurate 
assessment of implicit self-explanation, which allows ACE to 
generate more precise real-time interventions during the student 
interaction with the system.  

5.3 Cross-validation Analysis 
We then conducted cross-validation analysis to get a better picture 
of how the various model versions perform on individual students. 
This also yielded results concerning the stability of each model. 

For each student model, leave-one-out cross-validation was 
performed using all 36 students from both studies. This involved 
isolating a student and then setting model thresholds and 
conditional probabilities using  the data from all remaining 
students. This was done for each of the 36 students and the 
accuracy results from each student were averaged.  

The mean combined accuracies and the standard deviations for the 
implicitSE nodes for each model with generic prior probabilities 

are given in the first row of Table 5. These values show improved 
performance with the addition of the eye-tracker as well as 
slightly higher stability. The performance difference is statistically 
significant at the 0.05 level (one-tailed t-test). 

 

Figure 7. ROC curves for models as predictors of sufficient 
exploration over testing data 

The first row of Table 6 shows analogous results for the 
exploration nodes. As before, there is an improvement in mean 
accuracy with each successive model. ANOVA analysis showed 
statistical significance in the differences within the set of mean 
accuracies and then one-tailed T-tests showed that the differences 
between each model are statistically significant. 

The results reported so far are obtained by assigning a generic 
prior probability of 0.5 to knowledge and tendency to SE nodes 
for each test. We now discuss the influence of assigning student 
tailored priors on models performance.  

Knowledge node priors were set based on each study participant’s 
performance on a pretest given before the interaction with ACE 
(the pretest is equivalent to the post-test discussed earlier). If the 
student answered the corresponding pretest items correctly, a prior 
probability of 0.85 was assigned to the corresponding knowledge 
node. Otherwise the probability was set to 0.15. Cross-validation 
was then performed again using customized prior probabilities for 
knowledge nodes. The mean accuracies for the implicitSE nodes 
appear in the second row of Table 5. While customizing these 
prior probabilities causes an increase in accuracy and stability for 
each model, this increase was only statistically significant for the 

                          Table 5 Cross-validation results on implicitSE nodes for different models and prior probabilities 

 Model 2 with 
time only 

Model 3 with time 
and gaze shifts 

Combined 
Accuracy 

62.1% 71.6% Generic priors  

Std Dev 8.1% 7.9% 

Combined 
Accuracy 

65.8% 75.2% Customized priors 
for knowledge nodes 

Std Dev 7.4% 7.2% 

Combined 
Accuracy 

67.2% 76.4% 

 

Customized priors 
for knowledge and 
SE Tendency nodes Std Dev 7.6% 7.1.% 

           



model which uses time and gaze shifts to detect self-explanation. 
Results with customized priors are also given for the exploration 
nodes in the second row of Table 6. Here the customization 
causes a statistically significant increase in the mean accuracy for 
each model as well as an increase in stability. 

Priors for the tendency to SE node were derived from our 
previously  discussed classification  of study participants into self-
explainers – those who self-explained at least 20% of the time - 
and non-self-explainers – those who did not. If a student was 
classified as a self-explainer, the prior probability for her tendency 
to SE node was set to 0.85, while for a non-self-explainer, a value 
of 0.15 was used (these values were arbitrarily picked after trying 
a few for both the high and low probabilities and realizing that the 
model was not sensitive to small changes over them). Repeating 
the cross-validation procedure using tailored priors for both 
knowledge and Tendency to SE nodes yielded the results given in 
the third rows of Tables 5 and 6. In each case, for each model, the 
improvement brought about by the customization of the Tendency 
to SE node failed to achieve statistical significance, showing that 
the model is not very sensitive to this parameter. This may be due 
to the fact that after many actions the tendency to SE probability 
can change significantly with user behavior so the effects of 
setting these prior probabilities can lessen over time.  However, 
we believe it is still worth keeping this node in the model for two 
reasons. First, it provides ACE with an extra piece of information 
on potential causes of student poor exploration (i.e., low self-
explanation tendency). Second, its influence may become more 
relevant in presence of the “coach hint to self-explain” node, 
which we plan to add as an additional cause of implicit self-
explanation once we add data on the effect of these hints on 
student behavior. 

In summary, we found that adding eye-tracking to the student 
model causes a statistically significant improvement in the 
assessment of both implicit self-explanation and sufficient 
exploration. It is also advantageous to use pretest results, if 
available, to customize the prior probabilities of the knowledge 
nodes. Tailoring the Tendency to SE prior probabilities, however, 
fails to bring about a significant improvement. 

5.4 Performance with Different Evidence 
This section illustrates how the new model’s (model 3) 
performance changes depending upon the type of evidence used  
(time alone, gaze shifts alone or both).  

The log files of the new study participants were run through the 
new model two more times, one withholding eye-tracking data, 
the other withholding time data. For each run, accuracy of the 
model assessment over implicit self-explanation and exploration 
were computed as described earlier, yielding the results in Table 
7. For purposes of comparison, the table also repeats the 
accuracies of the model that receives evidence from both time and 
gaze shifts. As shown in the table, information on time alone 
generates higher  sensitivity than information on gaze shifts alone,  
while the latter generates higher specificity. These findings match 
those of the original user study [5]. They are also consistent with 
the assumption that time overestimates self-explanation behavior 
by assuming that the user spends all idle time considering the 
exploration. For each measure, the combined predictor 
outperforms either on its own.   

Table 7. ImplicitSE accuracies for ACE model 3 using 
different predictors as evidence of implicit self-explanation 

 time 
evidence 

only 

Eye-tracking 
Evidence 

only 

time and eye-
tracking 
evidence 

True positive 
rate (sensitivity) 

67.9% 62.3% 71.6% 

True negative 
rate (specificity) 

64.8% 67.8% 74.3% 

Combined  66.3% 65.1% 73.0% 

 

A similar analysis was performed to assess the influence of 
evidence type over exploration assessment, with results as 
reported  in Table 8. As with the implicitSE nodes, information on 
time alone has a higher sensitivity than using only gaze shifts. 
However, gaze shifts alone achieve higher specificity. These 
predictors combine to yield the highest accuracy for each 
measure. This is due to the fact that accuracy improves with more 
evidence used. It should also be noted that each single predictor 
seems to succeed where the other fails so this complimentary 
behavior likely contributes to the high accuracy of the combined 
predictor.    

Notably, the accuracies generated by the new model when only 
time information is used are comparable to (although slightly 
higher than) the  accuracies of model 2, despite the differences in 
structure and method of  CPT definition (data-based for model 3 
and expert-based for model 2). 

                          Table 6 Cross-validation results on exploration nodes for different models and prior probabilities  

 Model 1 
without SE 

Model 2 with 
time only 

Model 3 with time 
and gaze shifts 

Combined 
Accuracy 

57.3% 65.3% 71.6% Generic priors  

Std Dev 11.6% 9.4% 8.7% 

Combined 
Accuracy 

64.7% 69.9% 76.8% Customized priors 
for knowledge nodes 

Std Dev 10.1% 9.3% 8.4% 

Combined 
Accuracy 

68.4% 70.4% 77.5% 

 

Customized priors 
for knowledge and 
SE Tendency nodes Std Dev 9.2% 10.3% 7.9% 

           



 

Table 8. Model 3 accuracy with different evidence  

 time 
evidence 

only 

Eye-tracking 
Evidence 

only 

time and eye-
tracking 
evidence 

True positive 
rate (sensitivity) 

71.2% 69.8% 73.9% 

True negative 
rate (specificity) 

72.9% 73.4% 76.3% 

Combined 72.1% 71.6% 75.1% 

 

6. CONCLUSIONS AND FUTURE WORK 
In this paper, we have presented research on using real-time eye-
tracking data for the on-line modeling of user meta-cognitive 
behaviors during interaction with an ILE. The goal is to enable the 
environment to provide adaptive support to improve these meta-
cognitive behaviors and consequent student learning.  

The main contribution of the paper is a formal evaluation showing 
that the model including eye-tracking information provides a more 
accurate assessment than a model using only time as a lower level 
predictor.  The evaluation also shows that modeling the meta-
cognitive skill of self-explanation improves the model 
performance on modeling student exploratory behavior, as 
opposed to only relying on student interface actions. This 
supports the argument that modeling high level user traits can 
improve the adaptive capability of an Intelligent User Interface, 
providing an initial justification for the effort involved in this type 
of high level user modeling.  

Obviously, the final proof of the utility of rich user models must 
come from empirical evidence that adaptive intelligent interfaces  
based on these models improve user performance. The next step 
of our research is to provide this empirical evidence for  ACE. We 
have designed a variety of interface tools that allow ACE to 
provide different levels of prompting for both exploration and 
self-explanation by relying on the assessment of the student model 
described here. We are in the process of designing a user study to 
test the effectiveness of these adaptive tools.  

A longer term research step is to consider the inclusion in the 
model of other meta-cognitive skills involved in effective 
exploratory behaviors, including the capability to form hypothesis 
and to monitor one’s progress in the learning task. 
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