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ABSTRACT

In this paper we describe research on using egkitig data for
on-line assessment of user meta-cognitive behadiming the
interaction with an intelligent learning environnheWe describe
the probabilistic user model that processes tHirimation, and
its formal evaluation. We show that adding eyekeac
information significantly improves the model acayaon

assessing user exploration and self-explanation\bers.

Categories and Subject Descriptors

1.2.1 [Artificial Intelligence ]: Applications and Expert Systems
1.2.3 [Artificial Intelligence ]: Deduction and Theorem Proving —
uncertainty and probabilistic reasoning

K.3.1 [Computers and Educatiorj: Computer Uses in Education
— computer-managed instructiq@MI).

General Terms
Human Factors, Experimentation.

Keywords
Intelligent assistance for complex tasks, adapitiverfaces, user
modeling, eye-tracking, meta-cognitive skills, Illigent learning
environments

1. INTRODUCTION

One of the functionalities that an Intelligent Useterface may
include is providing user tailored support for cdexptasks. This
involves building a model of user traits relevaatadequately
tailor the interaction, i.e., aser model Depending on the nature
of the task and the extent of the support, thevagieuser traits
may include simple performance measures (suctegsédncies of
interface actions), domain-dependent cognitivetdrgsuch as
knowledge and goals), meta-cognitive processes dhiaaicross
tasks and domains, and affective states. Arguabéy higher the
level of the traits to be captured, the more ditfigt is to assess
them unobtrusively from simple interaction eventhis has
generated a stream of research on using innovaéresing
devices to enrich the information available to erusodel.

This paper contributes to this research stream iBsenting
results on using real time eye-tracking informationinform a
user model designed to assess student meta-cagtiékavior
during interaction with an Intelligent Learning HEmnment
(ILE). The meta-cognitive behaviors covered by thedel
include the capability to effectively learn fronedr exploration [7,
17] and the capability teelf-explaininstructional material, i.e.,
to clarify and elaborate the given information ight of the

underlying domain theory (e.g., [4] and [15]). Bometa-
cogpnitive skills have been shown to improve theliguaf student
learning, but it has also been shown that manyestisdack them
[4, 15].

As a consequence, there have been several effiotite iliterature
to support the acquisition of these skills in IlHowever, few of
these efforts have tried to generate support &dldo student
meta-cognitive needs. For effective exploration,simeork has
focused on providing interface tools that stimuldbe right
exploratory behaviors [13, 17]. For self-explaoatiresearch has
focused either on generating untailored promptsdfipn relying
on simple performance measures for tailoring, sagiprompting
for self-explanation after every new action or aéteery incorrect
action [12]. One of the reasons for this is thefiaifty of
assessing user meta-cognitive behaviors. ConatiVamiehn [6]
have proposed a system that models user self-eatpan
behavior using interface artifacts that allows slystem to obtain
relevant information on user attention. Howeveiisihot always
possible to devise interface artifacts that dointgrfere with the
nature of the interaction. For this reason, weeaygoring the use
of eye-tracking data to provide information on useeta-
cognition.

In this paper, we will discuss how we included &geking
information in a previously developed student motteltrack
student self-explanation and exploration behawdpr The student
model is to be used by ACE, an ILE to support stide
exploration-based learning in the domain of mathemia
functions. The main contribution of this work is farmal
evaluation of this student model, showing that ihgusion of
eye-tracking information significantly improves thenodel
assessment of student self-explanation, as comptredhe
previous model. The evaluation also shows that nzm@irate
assessment of student self-explanation behavionifisigntly
improves the assessment of student learning threxgloration.

There is a well established body of research omgusye-tracking
data for off-line evaluation of interface designl]lor as an
alternative form of input to allow a user to exjilic operate an
interface [11, 16]. However, research on real-tinsage of this
type of data to enable on-line adaptation of theraction is still
in its infancy. Some of this work uses gaze tragkm help assess
usertask performancesuch as reading performance for automatic
reading remediation [18], owhat task a user is performing
independently from the underlying application (ergading email
vs. reading a web page) [10]. Others have exploedg gaze
data to assess usemental statessuch asinterestin various
elements of an interactive story [1@ittentionin the context of
assessing learner motivation during interactiorhveih ILE [14]
and studenproblem-solving strategies a tutoring system for



algebra [9]. We contribute to this body of researbl
demonstrating how eye-tracking can improve recagmiof user
meta-cognitive skills.

In the rest of the paper, we first describe the AlgBrning
environment. We then briefly illustrate previoussiens of the
ACE student model and their limitations. Next, wesckibe the
new model and the evaluation we ran to test itecéffeness
compared to the previous versions. We also dissessitivity of
the model to accurate onset information and diffetiypes of
available evidence.

2. THE ACE LEARNING ENVIRONMENT

ACE is an adaptive learning environment for the dimmof

mathematical functions designed to support studeatning

through exploration. ACE'’s activities are dividedo units and

exercises. Units are collections of exercises whosgerial is

presented with a common theme and mode of interacti
Exercises within units differ in function type aaedquation.

Figure 1 shows the main interaction window for EHet Unit. We

will focus on this unit throughout the paper beeaiiss the most
relevant to the research presented in later sectibnthe Plot
Unit, a learner can explore the relationship betwadunction’s

graph and equation by moving the graph in the Gmmteplane
and observing how that affects the equation (dygalebelow the
graph area). The student can also change the equyarameters
and see how these affect the graph.

T35 To  support the
T4 exploration process,
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Fiaure 1. ACE Plot Unit see [2]. In the next

section we describe the general structure of AGEident model.

3. PREVIOUS VERSIONS OF ACE'S
STUDENT MODEL

3.1 Version with no self explanation

ACE’s student model uses a Dynamic Bayesian Net®fko

manage the uncertainty in assessing students’ eatply

behavior. The main cause of this uncertainty i$ tha reasoning
processes that influence the effectiveness of stueeploration
are not easily observable unless students arereshjtd make
them explicit. However, forcing students to artatel this
reasoning would likely be intrusive and clash with unrestricted
nature of this type of learning.

The first version of ACE’s student model was dediieom an
iterative design process [2] that yielded a baitederstanding of
what defines effective exploration. Figure 2 shawkigh-level
description of this model's structure, which comps several
types of nodes to assess exploratory behaviouiffateht levels
of granularity. These includeRelevant Exploration Cases

representing exploration of individual exploratiases in an
exercise (e.g., changing the slope of a line @ [@psitive number,
in the Plot Unit);Exploration of Exerciseand Exploration of

Units representing adequate exploration for the vario@EA
exercises and units, respectiveligxploration of Categories,
representing the exploration of groups of relevarploration

cases that appear across multiple exercises (alf.the

exploration cases involving a positive slope in et Unit). The

links among the different types of exploration n®depresent
how they interact to define effective exploratidxploration

nodes have binary values that represent the pridgathiat the

learner has sufficiently explored the items asdediawith the

node.

| Relevant Exploration Cases |

| Exploration of Exercises | | Exploration of Categories | | Correct Behavior

Exploration of Units

Knowledge

Figure 2. High-level Structure of ACE's Student Moctl

ACE'’s student model also includes binary nodesesgmting the
probability that the learner understands the relev@ieces of
knowledge (summarized by the nddleowledgen Figure 2). The
links between knowledge and exploration nodes sgpriethe fact
that the degree of exploration needed to understamdncept

depends on how much knowledge a learner already has

Knowledge nodes are updated only through actiomswioich
there is a clear definition of correctness. Thesdes are never
updated within the Plot Unit since it consists obrely
exploratory activities.

Initial studies on ACE generated encouraging eudetnat the
system based on the model in Figure 2 could heigesits learn
better from exploration [2]. However, these studiso showed
that sometimes the ACE student model — labetediel 1from

now on - overestimated students’ exploratory behavyibecause
it considered interface actions to be sufficievidence of good
exploration, without taking into account whethestadent was

self-explaining the outcome of these actions. For instance, a

student who quickly moves a function graph arouradcreen in
the Plot Unit - but never reflects on how thesevemoents change
the function equation - performs many exploratarycas but can

hardly learn from them because she is not reflgctn (self-

explaining) their outcomes. We observed this bedrawvi several

study participants.

3.2 Extending ACE to Track and Support

Self-Explanation

To address the model limitation described above, stated

extending ACE's interface and student model toktaand support
self-explanation. The original version of ACE onfgnerated
hints indicating that a student should further expl some
elements of a given exercise. Augmenting ACE witie t
capability to track self-explanation allows ACE rootly to detect
when a student’'s exploration is sub-optimal, busoalto

understand if the cause is a lack of self-explanasind generate
tailored hints to correct this behavior.



There are two types of self-explanation that ACEdseto detect:
(i) explicit self-explanation, i.e., self-explarati that the student
generates using menu-based tools available inntezface; (ii)
implicit self-explanation, that students generat¢hieir head. The
latter is the most difficult to detect due to treck of hard
evidence of its occurrence, and is the focus ofetktensions to
the student model we describe in the next sections.

Negative
Intercept

Positive
Intercept

Plot Unit
Exploration

Figure 3. Original ACE student model with self-expanation

The first version of the ACE student model withamsessment of
self-explanation [3] -model 2- only used time spent on each
exploratory action as evidence of implicit self-exmtion.
Figure 3 shows a time slice in this model, corresiiag to an
implicit self-explanation action (similar slices ptare the
occurrence of explicit self-explanation). Nodepresenting the
assessment of self-explanation are shaded grahidrigure, the
learner is currently exploring exercise 0 (nogleirethe Plot Unit,
for which two relevant exploration casegdasg and gCase in
Figure 3) are shown. Each exploration case inflasnone or
more exploration categories (positive interceptsl aregative
intercepts in the figure). Here the learner perforam action
corresponding toqsease. In this new version of the model, the
probability that a learner’s action implies effeetiexploration of
a given case depends on both the probability tleastudent self-
explained the action and the probability that smews the
corresponding concept, as assessed by the sebwfddge nodes
in the model (summarized in Figure 1 by the nétewledgg.
Factors influencing the probability that impliciélsexplanation
occurs include théime spent exploring the case and #tenuli
that the learner has to self-explain. Low time ligags taken as
negative evidence for implicit explanation. Thelmbility of self-
explanation with longer time on action depends dretiver there
is a stimulus to self-explain, i.e., on the leaimgeneratendency

Knowledge

to self-explainand on whether the system generated an explicit

hint to self-explain

Time, however, can be an ambiguous predictor folf- se
explanation. First, it is hard to define for diffet learners what is
insufficient time for self-explanation. Furthermpeestudent may
be completely distracted during a long interval wesn
exploration cases. Thus, we chose to explore aitiania source
of evidence of self-explanation behavior, i.e., thwident's
attention patterns during the exploration of a gicase.

4. ADDING EYE TRACKING TO ACE

The intuition for using an eye-tracker to assed$sesglanation
behaviour is that self-explanation may be more lyikié the
student actually attends to the parts on the iatershowing the
effects of a specific exploratory action. As anragée, if a student
has modified the function equationgaze shifpattern suggestive
of self-explanation would start from the equatiegion and then
hover around the graph region above.

To collect empirical data on the mapping betweemacstudent
self-explanations, time and attention patternsravea user study
[5], briefly summarized here because it lays theugdwork for

the new model and evaluation methodology describethter

sections. In this study, we collected data from ur8versity

students using ACE while their gaze was trackedryyelink |

eye-tracker, developed by SR Research Ltd., Can&dah

participant received instructions to try and vewalall his/her

thought processes while using the system. Finaldy tused the
system for as much time as needed to go throughallnits. All

the student exploration cases were logged, anchsynized with

the output of software we developed for the raaktidetection of
gaze-shifts analogous to the one described eatl@nplete video
and audio data of the interaction was also coltediewever the
analysis described here focuses on the plot unjt dssing the

audio and video data, two experts independentlyyaed each
participant’s exploratory actions for signs of theesence or
absence of self-explanation. Only exploratory axti@mn which

the coders fully agreed were used in the rest ef ahalysis,
generating 149 data points.

We found a statistically significant difference ween the average
time taken for actions accompanied by self-explanatand
actions that were not, indicating that time canabpredictor of
self-explanation behavior. We then used ROC cunagdyais [5]
to determine the optimal threshold to indicate isigft time for
self-explanation, which we determined to be 16 sdso

Three predictors of self-explanation were considerand
compared: (i) gaze shifts only, (ii) time only afii) gaze shifts
and time used in combination. Gaze shifts provedeidhe most
reliable at detecting the absence of self-explanatHowever,
gaze shifts and time performed best together attifgng self-
explanation when it occurred. Depending on whegrérity is
given to sensing the absence of self-explanatiothabnecessary
intervention occurs or minimizing unwanted intetrap, one of
these predictors may be preferable to anothemdulsl also be
noted that an eye-tracker may not always be availdibe to cost
and other considerations, so time may sometimeshbeonly
predictor available.

Given these arguments, we felt that it is worthestdtlding eye-
tracking information to the ACE model, and in swuclway that
allows for flexibility in deciding which predictgior combination
of predictors) to use. We then proceeded to chahgeACE
model based on the study data.

4.1 THE NEW ACE STUDENT MODEL

The shaded nodes in Figure 4 show the part of BE Atudent

model that we modified to include evidence from-tgeking to

assess implicit self-explanation. Tgaze shifnode has a binary
value which indicates whether or not a gaze staf bccurred.
Timeis also a binary node indicating whether a timegkr than



the threshold T identified from the study data hedapsed,
indicating sufficient time for self-explanation.

Knowledge

Figure 4. The ACE student model

As the figure shows, the revised modemedel 3- relies on a
clear separation between the causes of implicftesgllanation
and its effects, i.e., gaze shifts and time onoactThese effects
are encoded as independent predictors as in a mayesian
classifier.

The main advantage to this approach is that iighl{» modular,

allowing thegaze shifandtime nodes to be easily used or ignored

as needed. Modularity also facilitates learning the relevant
conditional probabilities tables (CPTs) from datdjile in the
previous model the portion which tracks self-explIon was
based on intuition and reasonable estimates of itondl
probabilities. The disadvantage of this structgréhat it assumes
independence between time and the presence ofbdi= which
is not necessarily true. In fact, our data actuallggests a small
positive correlation between the two. However, Emi
assumptions in pure naive Bayesian classifiers haem shown
to perform surprisingly well in practice, even whehis
independence cannot be guaranteed. The CPTs feraim gaze
shift were derived directly from frequencies in admtaset, as
shown in Table 1

Table 1: CPTs for time and gaze shift in the new ndel

new data and the accuracy of the ACE student moded this
data. Subsection 5.2 illustrates cross-validatioalysis carried
out to provide a more precise picture of the dvgrrformance
and stability of the model in assessing self-exatiam and
exploration of individual students. In subsectiod, 3he model is
tested using different evidence of implicit selpination.

For purposes of comparison, we also tested the prewious
versions of the ACE model: the one which doesimdtde self-
explanation at all (labeled as model 1) and thewitte time only
(labeled as model 2). This allows an assessmehedhcremental
effects of adding self-explanation and then theegdata to the
ACE model. The new model will be labeled model 3hie rest of
the paper.

In order to gain more data for model testing we i@ more

subjects with the same experimental setup and datdysis

adopted for the first study. As in the previousdgtuparticipants
were university students who had not taken anyegelllevel

math. This new set of subjects yielded 109 expionatases with
self-explanation and 68 without, which were theeduto assess
the performance of the three models.

In this set of accuracy tests, the knowledge tmiency to SE
nodes in each model were assigned a generic madapility of

0.5. Thus the models began with an identical assassof the
knowledge and tendency for each student.

5.1 Accuracy of Implicit SE assessment

To test model accuracy in assessing implicit sgttanation, we
needed a threshold probability to decide whemaplicitSE node
predicts the occurrence of self-explanation. Thas werived from
data from the previous study as follows. Usingnausated student
program, the log files from the first study (traigidata) were run
through each of the two models that do assess dingelf-
explanation, e.g., model 2 and model 3. The prdibasi of

implicitSE nodes were then compared against the coded data

points from the first study. Each data point cqumegls to a user
action which the experts determined was or was swif-

explained. ThemplicitSE node in each model (see Figures 3 and
4) also yielded probabilities that self-explanatmeturred at the
time of this action. These probabilities were coregato expert
assessments to test the predictive performanceadf model. A

implicitSE | P(time < 16s) implicitSE | - P(gaze shift) small fragment of this data appears in Table 2welo
Y 0.71 Y 0.61 Table 2 Values ofimplicitSE nodes corresponding to actions in
N 0.32 N 0.24 study data
To determine the relationship between tendencyetbesplain action | Experts SE Model 2 ~ Model3
and implicit self-explanation, the study participamere divided assessment] (time only) (time and gaze shifts)
into self-explainers- those who self-explained at least 20% of the Y 0.698 0.723
time - andnon-self-explainers- those who did not. We found that N 0.287 0.180
self-explainers and non-self-explainers self-exm@édi 79.8% and
13.3% of the time, respectively. These frequensies then used 3 Y 0.409 0.645

to set the conditional probabilities for the Imgli8E node.

Note that the new version of the model in Figureleks not
currently include the Coach’s hints to self-explawdes. This is
because no hints were provided during the useysardi thus we
had no data to set the relevant conditional prditiaisi

5. TESTING THE NEW STUDENT MODEL

In this section the performance of the new modeévaluated
using new user data. Subsection 5.1 describes dection of

To determine a good threshold over implicit SE ofte each
model, a Receiver Operating Characteristic (ROQyveuvas
constructed for thesinplicitSE probabilities. A ROC curve is a
standard technique used in machine learning taat@the extent
to which an information filtering system can sucfelly
distinguish between relevant data (episodes ther fitorrectly
classifies as positive, or true positives) and edipisodes the



filter incorrectly classifies as positive, or falgesitives), given a
choice of different filtering thresholds.

Figure 5 shows the ROC curves for our two modelsere the
filter is the threshold over implicit SE probabés. From these
curves, we chose for each model the thresholdapgmizes the
tradeoff between true positive rate and false pesitate, as is
standard practice in machine learning. These tbtdshare
marked by an asterisk in Figure 5.
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Figure 5. ROC curves for models as predictors of iplicit self-
explanation over training data

Next, the user log files from the new study (testadl were run
through each model. Using the thresholds found ftbenROC
curves over the training set, the modeitslicitSE nodes were
tested for accuracy against the new set of code¢a dable 3
shows the true positive rate (i.e., percentage etffexplained
cases correctly classified as such,sensitivityof the predictor)
and true negative rate (i.e., percentage of “néesgllanation”
cases correctly classified as such specificity of the predictor)
for the two models.

Table 3 Accuracies oimplicitSE nodes

Model 2 Model 3
(time only) (time and gaze shifts)
True Positive rate 65.1% 71.6%
(sensitivity)
True Negative rate 62.6% 74.3%
(specificity)
Combined 63.9% 73.0%

curves with larger area correspond to better ptedicover the
data. As shown in Figure 6, model 3 yields a RO@/ewvith
greater area than that of model 2. This differencearea is
statistically significant to the z > 1.96 level [8]
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Figure 6. ROC curves for models as predictors of iplicit self-
explanation over testing data

5.2 Accuracy of Exploration Assessment

Each of the 3 versions of the ACE model (includimgdel 1,
which does not assess self-explanation) was alatuaed as a
predictor of adequate exploration. Data for thisleation was
collected as follows. In both user studies, pgréints completed a
post-test on the mathematical concepts represeantéide ACE
model, immediately after interacting with ACE. Armespondence
was then created between these concepts and sppo#i-test
questions. These questions were then used to deterthe
student’s aptitude in each of the concepts (easitipe intercepts
and negative intercepts) at the end of the expeatintie addition,
when a student’s log file is run through any of theee models,
the final probabilities of thexploration of categoriesodes (e.qg.,
nodes Negative Interceptad Positive Interceptin Figure 3)
represent the model assessment that the studeetstiziads these
concepts at the end of the interaction. (i.e., thatstudent had
adequately explored this material). This assessmamtthen be
compared with the corresponding post-test scoregveluate
model accuracy over effective exploration.

.Table 4 Accuracies of exploration nodes

A combined measure, the average of the two acagai also
reported. Here the addition of the eye-tracker esum increase
in each of the measures, with the increase being sgbstantial
for specificity. This is consistent with the assuimp, supported
by data in the first study, that the use of eyeking will catch

many of the false positives inherent in the usetime as a
predictor.

To further compare the accuracy of the two modeésgenerated
the ROC curves of their performance as predictbimplicit SE
over the new data set. These curves appear ind=gurhe area
under a ROC curve is equal to the probability thagandomly
selected positive case will be given a higher podlg by the
model than a randomly selected negative case [BlisTROC

Model 1 Model Model 3
(N0 SE) | (time only) | (time and gaze
shifts )
True Positive 62.7% 70.4% 73.9%
ate (sensitivity)
True Negative 55.2% 71.5% 76.3%
rate (specificity)
Combined 59.0% 71.0% 75.1%

As before, a ROC curve was constructed for eacheinmekr the
training data to determine the best threshold aickvhan
exploration node could be found to indicate adegjeaploration
— and thus understanding — of the material. Thassholds were
then used to determine the accuracy of each model the



testing data, resulting in the accuracies in Tablé&ach of the
accuracies increased with each successive modglesting that
the addition of self-explanation and gaze shiftadatre in fact
improvements. It also confirms that an increasthéaccuracy of
implicit self-explanation detection does in factisa an increase
in the accuracy of exploration assessment.

ROC curves were also generated to compare each I'mode

performance on exploration assessment over thesatstThese
appear in Figure 7. As shown in the figure, theaanader the
curve increased with the inclusion of self-expl@matto the
student model. The addition of gaze shift data alansed an
increase. Both of these increases were found tstaéstically
significant at the z > 1.96 level [8].

It should, however, be noted that the increasecauracy caused
by the addition of the eye-tracker is higher foe tmplicitSE

nodes than for the exploration nodes. This is dube difference
in the way each is measured. EatiplicitSE probability is taken
at the time that the associated action occurs whilyy the

probabilities of the exploration nodes at the efithe interaction
are used in the analysis. Thus, while timeplicitSE nodes

represent the state of the user at a specific inteare strongly
affected by the presence or absence of a gazetbleifexploration
nodes’ final probabilities are the result of mangti@ns

throughout the interaction and are influenced byeptfactors.
Given these results, we can conclude that the rbamefit in

adding eye-tracking versus using time only is ri@re accurate
assessment of implicit self-explanation, which &8oACE to

generate more precise real-time interventions dutire student
interaction with the system.

5.3 Cross-validation Analysis

We then conducted cross-validation analysis taadsstter picture
of how the various model versions perform on indiinl students.
This also yielded results concerning the stabdftgach model.

For each student modelgave-one-outcross-validation was
performed using all 36 students from both studiéss involved
isolating a student and then setting model threlshchnd
conditional probabilities using the data from afimaining
students. This was done for each of the 36 students the
accuracy results from each student were averaged.

The mean combined accuracies and the standardidesidor the
implicitSE nodes for each model with generic prior probabdit

are given in the first row of Table 5. These valsksew improved
performance with the addition of the eye-tracker vesl as
slightly higher stability. The performance diffecenis statistically
significant at the 0.05 level (one-tailed t-test).

-.E /‘ P - - —model ] : no SE
“':'2/ e — —model 2 : tirme only
oL, ’ —— miodel 3 : time and gaze shafts
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Figure 7. ROC curves for models as predictors of sficient
exploration over testing data

The first row of Table 6 shows analogous results tloe

exploration nodes. As before, there is an improvenie mean
accuracy with each successive model. ANOVA analgbiswved

statistical significance in the differences withime set of mean
accuracies and then one-tailed T-tests showedhbalifferences
between each model are statistically significant.

The results reported so far are obtained by assjgai generic
prior probability of 0.5 to knowledge artdndency to 5 nodes
for each test. We now discuss the influence ofgassg student
tailored priors on models performance.

Knowledge node priors were set based on each sardigipant’s
performance on a pretest given before the intemaatiith ACE
(the pretest is equivalent to the post-test disigzrlier). If the
student answered the corresponding pretest itemsatly, a prior
probability of 0.85 was assigned to the correspogdinowledge
node. Otherwise the probability was set to 0.1®s€1validation
was then performed again using customized priobadvdities for
knowledge nodes. The mean accuracies forrtficitSE nodes
appear in the second row of Table 5. While customgizhese
prior probabilities causes an increase in accuaacy stability for
each model, this increase was only statisticalipificant for the

Table 5 Cross-validatiaesults onimplicitSE nodes for different models and prior probabilities

Model 2 with | Model 3 with time
time only and gaze shifts
Generic priors Combined 62.1% 71.6%
Accuracy
Std Dev 8.1% 7.9%
Customized priors Combined 65.8% 75.2%
for knowledge nodes | Accuracy
Std Dev 7.4% 7.2%
Customized priors Combined 67.2% 76.4%
for knowledge and Accuracy
SE Tendency nodes  Fgiq pey 7.6% 71%




Table 6 Cross-validatioesults on exploration nodes for different modelsad prior probabilities

Model 1 Model 2 with | Model 3 with time
without SE time only and gaze shifts
Generic priors Combined 57.3% 65.3% 71.6%
Accuracy
Std Dev 11.6% 9.4% 8.7%
Customized priors Combined 64.7% 69.9% 76.8%
for knowledge nodes| Accuracy
Std Dev 10.1% 9.3% 8.4%
Customized priors Combined 68.4% 70.4% 77.5%
for knowledge and Accuracy
SE Tendency nodes |"giq ey, 9.2% 10.3% 7.9%

model which uses time and gaze shifts to detetesgplanation.
Results with customized priors are also given ffar ¢xploration
nodes in the second row of Table 6. Here the cugaiion
causes a statistically significant increase inrttean accuracy for
each model as well as an increase in stability.

Priors for thetendency to SEnode were derived from our
previously discussed classification of study ipgrants intoself-
explainers— those who self-explained at least 20% of thes tim
and non-self-explainers- those who did not. If a student was
classified as a self-explainer, the prior probapfior hertendency
to SEnode was set to 0.85, while for a non-self-exggia value
of 0.15 was used (these values were arbitrarilgguicafter trying
a few for both the high and low probabilities aedlizing that the
model was not sensitive to small changes over th&epeating
the cross-validation procedure using tailored gridor both
knowledge and’endency to SBodes yielded the results given in
the third rows of Tables 5 and 6. In each caseedoh model, the
improvement brought about by the customizatiorhefftendency
to SEnode failed to achieve statistical significandeywing that
the model is not very sensitive to this paraméfhis may be due
to the fact that after many actions tieedency to Sprobability
can change significantly with user behavior so #ifects of
setting these prior probabilities can lessen oiee.t However,
we believe it is still worth keeping this node iretmodel for two
reasons. First, it provides ACE with an extra pieteformation
on potential causes of student poor exploratioa.,(low self-
explanation tendency). Second, its influence magoime more
relevant in presence of the “coach hint to selfl@xg node,
which we plan to add as an additional cause of ioitpself-
explanation once we add data on the effect of thests on
student behavior.

In summary, we found that adding eye-tracking te #tudent
model causes a statistically significant improvemeém the

assessment of both implicit self-explanation andficsent

exploration. It is also advantageous to use pretestlts, if
available, to customize the prior probabilitiestbé knowledge
nodes. Tailoring th&endency to SErior probabilities, however,
fails to bring about a significant improvement.

5.4 Performance with Different Evidence

This section illustrates how the new model's (modzl
performance changes depending upon the type otewéused
(time alone, gaze shifts alone or both).

The log files of the new study participants wera through the
new model two more times, one withholding eye-tnagkdata,
the other withholding time data. For each run, smcy of the
model assessment over implicit self-explanation exploration
were computed as described earlier, yielding tlseltg in Table
7. For purposes of comparison, the table also tepdae
accuracies of the model that receives evidence both time and
gaze shifts. As shown in the table, information tome alone
generates higher sensitivity than information ameggshifts alone,
while the latter generates higher specificity. Ehisdings match
those of the original user study [5]. They are alsosistent with
the assumption that time overestimates self-exfitamdehavior
by assuming that the user spends all idle time ideriag the
exploration. For each measure, the combined pradict
outperforms either on its own.

Table 7. ImplicitSE accuracies for ACE model 3 using
different predictors as evidence of implicit self-gplanation

time Eye-tracking | time and eye-
evidence Evidence tracking
only only evidence
True positive 67.9% 62.3% 71.6%
rate (sensitivity)
True negative 64.8% 67.8% 74.3%
rate (specificity)
Combined 66.3% 65.1% 73.0%

A similar analysis was performed to assess theuénite of
evidence type over exploration assessment, wittulteesas
reported in Table 8. As with theplicitSE nodes, information on
time alone has a higher sensitivity than using agdge shifts.
However, gaze shifts alone achieve higher spetifictThese
predictors combine to vyield the highest accuracy &ach
measure. This is due to the fact that accuracydrgs with more
evidence used. It should also be noted that eadiespredictor
seems to succeed where the other fails so this lcoentary
behavior likely contributes to the high accuracytted combined
predictor.

Notably, the accuracies generated by the new matieh only
time information is used are comparable to (alttowgghtly
higher than) the accuracies of model 2, despéedtfierences in
structure and method of CPT definition (data-basednodel 3
and expert-based for model 2).



Table 8. Model 3 accuracy with different evidence

time Eye-tracking | time and eye-
evidence Evidence tracking
only only evidence
True positive 71.2% 69.8% 73.9%
rate (sensitivity)
True negative 72.9% 73.4% 76.3%
rate (specificity)
Combined 72.1% 71.6% 75.1%

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented research on usaldime eye-
tracking data for the on-line modeling of user rgnitive

behaviors during interaction with an ILE. The gsaio enable the
environment to provide adaptive support to imprtvese meta-
cognitive behaviors and consequent student learning

The main contribution of the paper is a formal aatibn showing
that the model including eye-tracking informaticioyides a more
accurate assessment than a model using only tiradcager level
predictor. The evaluation also shows that modetimg meta-
cognitive skill of self-explanation improves the deb
performance on modeling student exploratory behavias
opposed to only relying on student interface astioifhis
supports the argument that modeling high level dsgts can
improve the adaptive capability of an Intelligensdd Interface,
providing an initial justification for the efforhivolved in this type
of high level user modeling.

Obviously, the final proof of the utility of richser models must
come from empirical evidence that adaptive inteliginterfaces
based on these models improve user performancendktestep
of our research is to provide this empirical evitkefor ACE. We
have designed a variety of interface tools thabvallACE to

provide different levels of prompting for both eapition and
self-explanation by relying on the assessment@&thdent model
described here. We are in the process of designimger study to
test the effectiveness of these adaptive tools.

A longer term research step is to consider theusich in the
model of other meta-cognitive skills involved in fegfive
exploratory behaviors, including the capabilityféom hypothesis
and to monitor one’s progress in the learning task.
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