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ABSTRACT
These days we have all become increasingly aware of the role
that exercise plays in a healthy lifestyle. Activities such as cycling,
triathlons, and running have become popular ways for people to
keep fit and test their abilities. For recreational athletes there is no
shortage of training advice or programmes to follow, yet most offer
only one-size-fits-all, or minimally tailored guidance, which often
leaves novices under-supported on their fitness journeys. In this
work, we describe a case-based reasoning system to generate per-
sonalised training recommendations for marathon runners, based
on their training histories and the training histories of similar run-
ners with comparable race goals. The system harnesses the type of
activity data that is routinely collected by smartwatches and apps
like Strava. It uses prefactual explanations to suggest to runners
how they may wish to adjust their training as their fitness goals
evolve.We evaluate the approach using a large-scale dataset of more
than 300,000 real-world runners and we show that it is feasible to
generate tailored, personalised recommendations for up to 80% of
these runners. Additionally, we show that the recommendations
produced are realistic and reasonable for a runner to implement,
as part of their training programme. These suggestions typically
include a small number (3-5) of incremental training adaptations,
such as a change in weekly distance, long-run distance, or mean
training pace. We argue that by engaging runners in this type of
dialog about their training progress and race goals, we can better
support novice runners, as their training unfolds, which may help
to keep runners motivated on their long journey to race day.

CCS CONCEPTS
•Computingmethodologies→Machine learning algorithms;
• Applied computing→ Health informatics.
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1 INTRODUCTION
The marathon [32] is an iconic test of endurance that attracts mil-
lions of recreational and elite runners every year. In this paper,
we demonstrate how user modeling and personalisation (UMAP)
techniques can support recreational athletes as they train for and
compete in marathons. This is a noteworthy departure from the
more conventional online targets of UMAP research – e.g. inferring
product preferences from online purchases, or assessing knowledge
and expertise by monitoring online learning and lesson engagement
– but not an unprecedented one, and there is increasing interest in
applying these ideas to the physical world [26, 47, 48]. Indeed the
marathon has been proposed as an appealing target for personal-
isation research [38, 42] because: (a) it attracts highly-motivated
participants, many of whom are novices in need of support during
their training and preparation; and (b) because there are several
distinct sub-tasks within marathon preparation that are well-suited
to user modeling and personalisation techniques, from profiling a
runner’s fitness and personalising their training to recommending
running routes, training partners, gear or races. In this work we
focus on profiling fitness and personalising training.

Preparing for the marathon requires at least 12-16 weeks of ded-
icated training with a careful mix of sessions designed and timed
to improve speed, fitness, strength, and endurance. Unfortunately,
when training for a marathon, recreational runners have limited op-
tions. Few have access to the type of one-to-one coaching that club
and elite athletes enjoy, and most find themselves following a one-
size-fits-all training programme found online. At best such fixed
programmes are tuned to a runner’s (often naïve) goal-time aspira-
tions and perhaps some limited training preferences (e.g. activity
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days per week), but most runners find themselves to be on their
own for monitoring their progress or adapting to training disrup-
tions – e.g.injury, busy weeks, or time away. Recently, developers
of wrist-worn sensors such as Garmin 1 have begun incorporating
personalised training into their devices which provides an ideal
way for the techniques described in this work to reach a wider
audience of runners. The system described in this paper is designed
primarily with novice runners in mind, who are inexperienced
marathoners. It uses activity data that runners routinely collect
as they exercise with smartwatches and mobile devices. This data
is used to recommend training adjustments to a runner, by using
ideas from case-based reasoning (CBR) [10] to harness the training
practices of similar runners.

Briefly, a runner is profiled using their prior training history.
Each runner is represented by a set of weekly training cases cover-
ing every week of training. Each weekly case encodes a number
of important distance and pacing features to reflect the current
week of training, and the marathon time that the runner went on
to achieve. Our approach uses CBR techniques in two important
ways: (i) to assess a runner’s current fitness, by predicting their
likely race-time based on their training so far [21, 23, 40, 41]; and
(ii) to generate personalised training suggestions based on a run-
ner’s training progress [20]. For (ii) – which is the primary unique
contribution of this work – we use ideas from prefactual reasoning
[6, 13, 18] to engage the runner in a dialog about how they might
adjust their training to achieve a more or less ambitious goal. For
example, the system might suggest the following: “Your current
training predicts a goal time of 244 minutes. If you wish to target
a sub-4 hour marathon, then, based on similar runners to you, you
should increase your long-run distance to 25km over the next two
weeks and target a fastest 10km pace of 4:45 mins/km”. If the run-
ner accepts this suggestion then future training sessions will be
adjusted accordingly, based on the corresponding sessions of the
most similar runners who have informed this prefactual suggestion.
In this paper we describe how to achieve this and present the re-
sults of a retrospective evaluation of the approach, using real-world
data from approximately 300,000 recreational Strava runners, who
trained for 500,000 unique marathons between 2014-2017.

2 RELATEDWORK
The fitness data revolution began with the introduction of the first
wireless heartrate monitor by Polar2 in 1982 [30] but only be-
came mainstream decades later, when companies like Fitbit brought
cheap, wearable sensors to the masses. Today millions of people
use these devices to track their daily activities [7, 14] with apps
like Strava3 and RunKeeper4 to share their progress with friends.
Recently, companies such as Whoop5 have begun to integrate data
about sleep, recovery, and exercise to help users to train more ef-
fectively and to recover more quickly. Services such as Training
Peaks 6 provide their users with functional estimates of their fitness
to guide their training efforts and monitor their recovery. Strava’s

1http:\www.garmin.com
2http:\www.polar.com
3http://www.strava.com
4http://www.runkeeper.com
5http://www.whoop.com
6http://www.trainingpeaks.com

users have access to information about their race-readiness and can
be recommended recovery activities to help keep them healthy as
they increase their training efforts in preparation for a big event.
This explosion in the adoption of fitness devices and apps created
new market opportunities, but current offerings still only scratch
the surface of what may be possible. Attracted by the availability
of data and a motivated user-base, machine learning and recom-
mender systems researchers have begun to focus their interest in
areas such as fitness assessment, training load estimation, recovery
guidance, personalised training recommendations, performance
prediction and race planning [36].

2.1 Estimating Fitness Metrics
Sports scientists use a variety of important laboratory metrics to es-
timate the fitness levels of individuals to analyse how they change
under various training conditions and how they impact perfor-
mance. For example, the well-known𝑉 02𝑚𝑎𝑥 score is an important
determinant of endurance capacity during prolonged exercise, but
in the past has had to be measured in a laboratory setting. Recently,
however, there have been efforts to use machine learning tech-
niques to predict 𝑉 02𝑚𝑎𝑥 without relying on laboratory data [2].
Similar ideas have been recently applied to other important fitness
metrics such as as a runner’s lactate threshold; the pace at which
a runner can no longer clear lactic acid from her muscles, which
will quickly impact running performance [8, 19]. These estimation
problems can be framed as classical supervised learning tasks and
the resulting models may transform the effectiveness of training
programmes by providing personalised advice and tailored recom-
mendations about how an athlete should train on a given day in
terms of their target pace, duration, and effort. Often training paces
are determined with respect to these pacing thresholds – a runner’s
𝑉 02𝑚𝑎𝑥 pace for fast sessions, their lactate threshold pace for so-
called tempo or threshold sessions, or their aerobic threshold pace
for easy runs – but many novice runners may not know how to
calculate these paces for themselves and will often end up training
in a sub-optimal manner.

2.2 Performance Prediction
Predicting an athlete’s performance has been a staple of sports
science for many years. In running there is a wealth of approaches
to predicting finish-times across a range of distances, using a variety
of data, and applied to different types of runners [28]. The advent
of large quantities of activity data has helped to validate many of
these conventional approaches using larger numbers of runners,
and has also helped to to generate new models for performance
prediction [17, 21, 40]. Indeed, machine learning techniques have
now been used to successfully predict performance in sports such
as cycling [29], tennis [35], soccer [1], Australian football, [9], and
even archery [45].

Understanding how an athlete is likely to perform is not only
useful as a way to set expectations, but also as the basis for plan-
ning an athlete’s training and race-day strategy. For example, as
mentioned above, when training for an endurance event such as the
marathon, it is important to have a realistic estimate of an athlete’s
goal time (or their marathon pace because many training sessions
will be calibrated with respect to this time or pace; e.g. “run a 5km
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session 10-15 seconds faster than marathon pace.” Moreover, when it
comes to race day, it will be important for a marathon runner to
have a goal time in mind so that they can plan their pacing over
the long distance of the race; in the absence of a sensible race-day
plan, they risk starting too fast [11, 12, 37] and ruining their race if
they hit the wall [3–5, 39].

2.3 Towards Personalised Training
In this work, wewant to generate personalised training programmes
that are capable of adapting to the progress of an athlete as they
train and compete. A marathon programme, for example, will typi-
cally consist of 12-16weeks of training, organised in 3-4week blocks
of activities. As training progresses, runners will complete sessions
that are designed to promote physiological adaptations, to improve
endurance, strength, speed, running economy, fuel consumption
etc., while trying to ensure that runners balance their training and
rest. It can be challenging for an inexperienced marathoner to find
a training programme that suits their personal circumstances and
goals, and many are left struggling to follow a one-size-fits-all pro-
gramme that is illsuited to their needs. This is why the idea of a
more personalized training programme – or an intelligent virtual
coach – is so appealing.

To date, several virtual coaching solutions surfaced to help guide
runners and other athletes. For example, the work of [31] presents
a running assistant to help runners during heartrate zone training,
where they need to maintain a certain heartrate during each session.
The work of [44] describes a technique for generating personalised
interval training sessions, which may be useful as part of an over-
all training programme. Other researchers have used techniques
such as reinforcement learning and particle swarm optimisation to
generate and adapt personalised training plans [24, 25].

In this work we propose a case-based reasoning approach to
generating personalised training recommendations. We adopt this
approach because the local, lazy, interpretable nature of CBR is well
suited to the task at hand:

(1) CBR methods have proven to be useful when it comes to
predicting marathon performance [21, 23, 40]. One reason
for this is the local reasoning used by CBR techniques for
prediction. A prediction for a target runner is based on maxi-
mally similar runners (local neighbours) in the feature space
which is appropriate given the noisy nature of running data;
runners don’t always have a good training/race day, raw
activity data can include GPS errors leading to outlier paces,
runners may engage in sessions that don’t reflect their ability
etc.

(2) CBR methods are lazy: they retain and rely upon the raw
instances used for reasoning. Here, a case is a representation
of a runner for a given week of training in terms of various
distance and pacing features. Advantageously, this allows us
to add new cases to the system, without the need to re-train
a complex model.

(3) Another advantage is that CBR approaches are more inter-
pretable than the “black-box" style reasoning used by some
other ML approaches. This is especially important in the con-
text of making personalised training recommendations to

runners. Recommendations need to be understandable if run-
ners are to trust them [34], and CBR methods have proven to
be well suited to producing different styles of explanations
as recommendations, including factual [16], counterfactual
[27], and prefactual [13] explanations.

In this work we focus on generating prefactual explanations to
encourage the runner to consider what might be achievable in the
future if certain adjustments are made to their current training,
based on their goals and progress to date. It is motivated by recent
research on how prefactual thinking may motivate marathoners to
train harder [43].

3 A CASE-BASED REASONING SYSTEM TO
RECOMMEND MARATHON TRAINING
PLANS

In this section we describe the technical details of our case-based
approach to personalised training recommendation. To understand
one important use-case, imagine a runner, Lucy, who began training
for her first marathon using a training programme based on a
goal-time of between 3.75 and 4 hours as she tried to break the
4-hour barrier. Lucy is now 6 weeks from race-day and her training
has gone reasonably well, but she has missed a couple of recent
sessions. The system predicts that Lucy’s marathon time is likely
to be about 4 hours and 5 minutes, just shy of her desired goal time,
and recommends that if Lucy wants to get back on track for a sub-4
hour finish then she should increase her weekly training volume
by about 10km and aim to run her fastest 10km during training at
approximately 4:45 mins/km.

There are a few points to make about this approach:

(1) First, the system predicts Lucy’s current marathon time,
based on her training to date.

(2) Second, since the predicted time does not agree with Lucy’s
goal time, the system suggests a training adaptation.

(3) Third, the system does not prescribe a specific training ses-
sion or set of sessions per se, but rather recommends certain
goals for the weeks ahead (e.g. distance and pacing goals).
This allows runners to adapt their training within the con-
text of their existing training programme whatever that may
be.

A related use-case allows Lucy to specify how she wants to adjust
her goal to receive a suitable training adjustment. For example,
in the above scenario, perhaps Lucy realises that her goal-time
aspirations are unrealistic – perhaps she is feeling exhausted from
her training so far – and wants to consider the implications of
targeting a 4 hour and 15 minute goal-time (a 5% slowdown from
her current predicted marathon time). In this case, the CBR system
generates a prefactual explanation based on this slower finish-time;
for example, Lucy might be recommended to maintain her weekly
volume, but to ease off on her effort, perhaps by slowing her fastest
10km pace 5:30 mins/km.

In the sections that follow we describe how to transform activ-
ity data into cases that the CBR system can then use to predict
marathon times for runners based on their training so far. We
further describe how to suggest training adjustments to runners
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who wish to modify their predicted time, as per the pseudo-code
presented in Algorithm 1

3.1 From Raw Activity Data to Training Cases
The raw data provided by Strava is made up of individual activities
for users. Each activity is associated with a number of time series
capturing information about distance, time, and elevation. For the
purpose of this work we convert the distance (m) and time (secs)
information into pace (mins/km) and use the elevation data (m) to
produce a grade-adjusted pacing value [33] (GAP). Grade-adjusted
pace is a pacing value (mins/km) that has been adjusted for eleva-
tion/gradient. Uphill paces are adjusted to be faster, while downhill
paces are adjusted to be slower, so that it is easier to compare paces
independently of gradient.

Since runners use different devices to track their activities, the
raw Strava data contains time, distance, and elevation data samples
at different rates. We transform this raw data into smoothed 100m
averages. Thus, each GAP value represents the grade-adjusted pace
for a 100m segment so that an activity with a time series comprising
100 GAP values corresponds to a 10km activity.

To produce a training representation that is suitable for CBR,
for each runner 𝑟 and week𝑤 of training we extract a number of
features for the set of activities for week𝑤 , including:

(1) 𝑇𝑜𝑡𝐷𝑖𝑠𝑡 - Total weekly distance (km).
(2) 𝑀𝑎𝑥𝐷𝑖𝑠𝑡 - Distance of the longest activity (km).
(3) 𝑁𝑢𝑚𝑅𝑒𝑠𝑡 - Total number of rest days.
(4) 𝑀𝑎𝑥𝐵𝑟𝑒𝑎𝑘 - The longest consecutive number of rest days.
(5) 𝑀𝑒𝑎𝑛𝑃𝑎𝑐𝑒 - Mean weekly pace (mins/km) overall all activi-

ties.
(6) 𝐹𝑎𝑠𝑡𝑒𝑠𝑡10𝑘𝑚𝑃𝑎𝑐𝑒 - Fastest 10km pace (mins/km) in a single

activity in week𝑤 .
These features were chosen because they are meaningful train-

ing indicators for marathon runners and are often used in training
programmes. Other than the 𝐹𝑎𝑠𝑡𝑒𝑠𝑡10𝑘𝑚𝑃𝑎𝑐𝑒 , these features have
been included in a meta-regression [15]. Additionally, we also cal-
culate the cumulative mean values for the above features for all
training weeks up to and including week 𝑤 and also the cumu-
lative “best” (longest/fastest) values for the above features up to
and including week𝑤 . Thus, 𝐶𝑢𝑚𝑀𝑒𝑎𝑛𝑇𝑜𝑡𝐷𝑖𝑠𝑡 (𝑟,𝑤) refers to the
average total weekly distance for 𝑟 for all training weeks up to
and including week𝑤 and 𝐶𝑢𝑚𝐵𝑒𝑠𝑡𝐹𝑎𝑠𝑡𝑒𝑠𝑡10𝑘𝑚𝑃𝑎𝑐𝑒 (𝑟,𝑤) corre-
sponds to the fastest 10km pace so far seen for 𝑟 during training
weeks up to an including week𝑤 . Thus, these sets of weekly and
cumulative features correspond to a feature-based representation
for a given week of training (𝐹 (𝑟,𝑤)). This representation will be
used to find similar runners to 𝑟 given the training complete by
week𝑤 .

It is worth noting that this list of features is far from complete.
While we do further split the case-base by sex, few runners track
their age and weight which were excluded (although previous ex-
perimentation of the authors found these to be insignificant features
in the model). Additionally, heartrate can provide a useful indica-
tor of training intensity, however since the data accessed in this
work was tracked between 2014-2017, many runners do not have
heartrate data. Finally, since we don’t have any access to the run-
ners themselves, we don’t have any input from them about the

types of sessions they were completing, their physiological fitness
metrics, or whether breaks in their training were due to injury, a
lack of activity, or simply not wearing their tracker. To mitigate
this last point, we restrict the data to those who have tracked at
least 8 weeks of training in the 16 weeks before race-day.

To recommend training adjustments in the weeks that follow
week 𝑤 , we will need the case representation to also contain a
pointer to the training features for𝑤 + 1, as well as the cumulative
training features that occur in all of the subsequent training weeks
up to race-day, denoted 𝐹 ′ (𝑟,𝑤 + 1).

Then, the case representation for a runner 𝑟 in week𝑤 is made
up the current week’s training features and cumulative features
to date (𝐹 (𝑟,𝑤)), plus the next week’s training features and the
cumulative training features in the subsequent period from week
𝑤 + 1 to race-day (𝐹 ′ (𝑟,𝑤 + 1)), and the runner’s marathon time
(𝑀𝑇 ) as shown in Equation 1.

𝐶 (𝑟,𝑤) = (𝐹 (𝑟,𝑤), 𝐹 ′ (𝑟,𝑤 + 1), 𝑀𝑇 ) (1)
In this way, for every runner in our dataset we produce a set

of weekly training cases which represent their training up to this
point, and after this point in training and the marathon finish-time
that this produced. In what follows we describe how we use these
cases to: (i) predict marathon times for new runners; and (ii) to
suggest training adaptations for runners, based on their predicted
or target times.

3.2 Race-Time Prediction
To generate a predictedmarathon finish-time (𝑃 (𝑟𝑞,𝑤)) for a (novice)
runner 𝑟𝑞 in week𝑤 , we adopt the same approach as demonstrated
and evaluated in [23]. Specifically, we use 𝐹 (𝑟𝑞,𝑤), 𝑟𝑞 ’s current
training week, to identify 𝑘 other cases with week𝑤 features that
are maximally similar to 𝐹 (𝑟𝑞,𝑤) and compute the average of their
marathon finish-times; see line 3 in Algorithm 1. For this we use a
standard Euclidean distance metric, to compare the features of the
query and candidate cases; all feature values are min-max scaled to
facilitate matching. We also, filter cases, prior to similarity, based on
the sex of the runner because the physiology of male and females
runners is materially different.

These predicted finish-times are useful for runners in several
ways. Firstly, as they approach race-day the predicted finish-times
can help runners to plan for a realistic goal-time and to determine
their pacing accordingly. Secondly, during training, these predic-
tions provide a useful evaluation of how training is progressing. If
the weekly finish-time predictions remain stable, or are improving,
then training is going well. If the predicted finish-times are dis-
improving, then training is not going well. Finally, these predictions
offer runners a way to compare their training progress against their
planned goal-time, which we use as a stepping stone for training
adaptations as discussed next.

3.3 Generating Prefactual Training
Recommendations

If a runner’s predicted marathon time is slower than their goal-
time then the runner has a choice. They can continue as they have
been, accepting the slower finish-time and adjusting their race-
day expectations accordingly. Or they can explore what training
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adjustments might be required to improve their predicted time
and get closer to their goal-time. This is a relatively novel concept
in marathon training, especially for most runners who are left
following a one-size-fits-all training programme. Often they have
no real way to evaluate their training progress or to translate this
into a predicted finish-time – although some smart-watches will
at least do this – and unless they are an experienced runner they
will have little ability to adjust their training in such as way as to
improve their prospects.

The novel contribution of this work is to provide runners with
a solution to this problem. For example, consider a runner 𝑟𝑞 who
wishes to improve her predicted time 𝑃 (𝑟𝑞,𝑤) by a factor of 𝛿 . To
do this we generate two sets of cases that are similar to 𝐹 (𝑟𝑞,𝑤),
as follows:

(1) Factual Cases (𝐶𝑓 ): the top 𝑘 most similar cases to 𝐹 (𝑟𝑞,𝑤)
with a marathon time that is 𝑃 (𝑟𝑞,𝑤) or slower ; line 5 in
Algorithm 1.

(2) Prefactual Cases (𝐶𝑝 ): the top 𝑘 most similar cases to 𝐹 (𝑟𝑞,𝑤)
with a marathon time equal to 𝑃 (𝑟𝑞,𝑤) ∗ (1 + 𝛿) or faster;
line 6 in Algorithm 1.

Thus, 𝐶𝑓 corresponds to runners who are similar to 𝑟𝑞 and with
a marathon time that is no faster that 𝑟𝑞 ’s current predicted time,
whereas 𝐶𝑝 correspond to runners who are similar to 𝑟𝑞 , but with
a marathon time that is a factor of 𝛿 faster than 𝑟𝑞 ’s predicted time.
Because of their faster finish-times, we should expect the training
features associated with the 𝐶𝑝 to be different from the training
features associated with the 𝐶𝑓 . Moreover, these differences, if
significant, may serve as a useful way to explain to 𝑟𝑞 how the
faster runners are training compared to runners like 𝑟𝑞 .

With this in mind, we use a two-sided t-test to compare the mean
values of each of the features in the next week of training and the
cumulative training features that follow in the weeks leading up
to race-day (𝐹 ′ (𝑟𝑖 ,𝑤 + 1)) for the cases in 𝐶𝑓 and 𝐶𝑝 ; see lines 11-
14 in Algorithm 1. Then, any features associated with statistically
different feature values (𝑝 < 0.1) form the basis for a training
adjustment recommendation for 𝑟𝑞 , such as:

Runners who achieved a marathon time that is at least
3% faster than your projected marathon time (245 mins)
completed a greater total distance (55km) and ran a
quicker fastest 10k pace (5:10 mins/km) for next week’s
training comparedwith runners who complete amarathon
with a similar time to your projected time (total distance
50km, fastest 10k pace of 5:20mins/km).

Later, in Section 5, we will further discuss how this type of
information can be used to suggest training adjustments to runners.
Additionally, it should be noted that an analogous approach can
be applied in the case where the runner decides to target a slower
finish-time, for example if she feels that the training programme
she is following is too challenging, but for now we will focus on
the use-case where a runner is optimistic and wants to improve
their time.

3.4 Discussion
In this section we have discussed how raw activity data can be
transformed into weekly marathon training cases for use in a CBR
system to predict marathon finish-times during training, and to

Algorithm 1 Generating Race-Time Predictions and Prefactual
Training Recommendations
Input: q, the query case for runner r; CB, the case base;
Parameters: w, the week in training; 𝛿 the factor difference
between a runner’s predicted and goal finish-times; k, the number
of factual and prefactual cases to retrieve; p, the level of
significance.
Output: P the predicted marathon-time 𝐶𝑓 , a set of Factual cases;
𝐶𝑝 , a set of Prefactual cases; sig, features that differ significantly
between the factual and prefactual cases.
1: 𝐶 ← 𝑓 𝑖𝑙𝑡𝑒𝑟 (𝐶𝐵,𝑤𝑒𝑒𝑘 = 𝑞.𝑤𝑒𝑒𝑘, 𝑠𝑒𝑥 = 𝑞.𝑠𝑒𝑥)
2: 𝐶′ ← 𝑠𝑜𝑟𝑡 (𝐶, 𝑠𝑖𝑚(𝑞, 𝑐))
3: 𝑃 ←𝑚𝑒𝑎𝑛(𝐶′ .𝑀𝑇 .ℎ𝑒𝑎𝑑 (𝑘))
4: if 𝛿 ≤ 0 then
5: 𝐶𝑓 ← 𝐶′ [𝐶′ .𝑀𝑇 ≥ 𝑃] .ℎ𝑒𝑎𝑑 (𝑘)
6: 𝐶𝑝 ← 𝐶′ [𝐶′ ≤ 𝑃 ∗ (1 + 𝛿)] .ℎ𝑒𝑎𝑑 (𝑘)
7: else
8: 𝐶𝑓 ← 𝐶′ [𝐶′ .𝑀𝑇 ≤ 𝑃] .ℎ𝑒𝑎𝑑 (𝑘)
9: 𝐶𝑝 ← 𝐶′ [𝐶′ ≥ 𝑃 ∗ (1 + 𝛿)] .ℎ𝑒𝑎𝑑 (𝑘)
10: end if
11: 𝑠𝑖𝑔← []
12: for 𝑓 in 𝐶′ .𝐹 ′ do
13: 𝑠𝑖𝑔.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑓 ) if 𝑡𝑡𝑒𝑠𝑡 (𝐶𝑓 .𝑓 ,𝐶𝑝 .𝑓 ) < 𝑝

14: end for
15: return 𝑃,𝐶𝑓 ,𝐶𝑝 , 𝑠𝑖𝑔

recommend training adjustments based on these predictions. While
predicting marathon finish-times is not novel per se – similar ideas
have been presented by others [23] – recommending training adjust-
ments is novel and valuable. Moreover, the approach, as described,
does not rely on any detailed representation of a target runner’s
specific marathon programme, only a feature based summary of
their training so far. And the recommendations produced are not
for specific sessions, which may or may not be compatible with
a runner’s recent training or programme, but rather a prescrip-
tion about how a runner may want to adjust their training week
(more/less distance, slower/faster pace).

4 EVALUATION
As an initial evaluation of our approach we will focus on an (offline)
evaluation of the training adjustment recommendations; the effec-
tiveness of finish-time prediction has been demonstrated previously
[23], and in that work the authors reported error rates of 6-7% with
𝑘 = 15. The present work implements an equivalent finish-time
prediction model with similar error rates, but this is not reported
in detail here for reasons of space.

4.1 Dataset and Methodology
For this evaluation we use a dataset of Strava activities logged be-
tween 2014-2017. The dataset was made available to the authors
as part of a data sharing agreement with Strava Inc. The dataset
included training activities up to 16 weeks before race-day for
almost 60,000 female runners and over 233,000 male runners; sum-
mary statistics for this dataset, including the average age, marathon
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Table 1: A summary of the dataset used in this work divided
between male and female runners and showing: the number
of unique runners; theirmean age and finish-times; themean
number of marathons per runner completed in the period;
the mean weekly training distance per week.

Sex Unique Runners Age MT No. Races Dist/Wk
F 59118 38.51 264.23 1.57 40.56
M 233205 40.22 239.85 1.79 41.8

finish-time, and number of marathons completed is shown in Table
1.

To evaluate the recommended training adjustments we will focus
on the following important metrics:

(1) Coverage - The percentage of query cases that can be associ-
ated with a training adjustment, for a given 𝛿 .

(2) Number of Adjustments - The number of training features
that require modification for 𝑟𝑞 .

(3) Degree of Adjustments - The average difference in training
feature values between factual and prefactual cases.

(4) Adjustment Consistency - The extent to which the same fea-
tures are repeatedly suggested for adjustment.

Ideally, our approach should deliver high coverage – it should
be able to offer most runners a suggested training adjustment for a
range of desired 𝛿 ’s – while at the same time limiting the number
of training parameters that are changed. Additionally, runners will
likely expect a certain degree of consistency in the adjustments that
are recommended; for example, it would be strange to find very
different features being recommended for adjustment from week
to week.

For this evaluation we split the data into 90% training and 10%
testing to perform a standard hold-out set validation. Each test case
was used as a query against the training cases for different values
of −.2 ≤ 𝛿 ≤ .2; acknowledging that this is a wide range of 𝛿 values
and it is unlikely that many runners will want to adjust their finish-
time by as much as ± 20%. Nevertheless it is useful to understand
how coverage and adjustments vary across this range. For these test
queries and 𝛿 values we calculated the coverage (number of queries
where a suggested training adjustment can be made), the mean
number of feature adjustments and the scale of the adjustment. We
report these results in the following sections.

4.2 Explanation Coverage
Figure 1(a) shows the coverage results for varying values of 𝛿 ,
comparing male and female runners, early (12 weeks from race-
day) and late (6 weeks from race day) in their training. For realistic
values of 𝛿 (𝑎𝑏𝑠 (𝛿) ≤ 0.10) coverage is reasonably high (70-80%)
but coverage declines for more extreme 𝛿 values, due to insufficient
prefactual cases.

Interestingly, females usually enjoy greater levels of coverage
than males when we control for 𝛿 and training stage (early or late).
This may be due to differences in the proportion of slower and
faster males and females, or it may indicate greater variation in the
training patterns of females. It makes for an interesting avenue for
further exploration.

Coverage is also marginally higher when runners seek training
adjustments close to race day (6 weeks to race day) compared with
when they seek training adjustments earlier in their training (12
weeks to race day). This difference is statistically significant based
on a two proportion z-test with 𝑝 = 0.05 and is consistent with
the work of [21, 23] showing that marathon finish-time prediction
tends to be more accurate closer to race-day, which likely improves
the system’s ability to find similar factual and prefactual cases.

4.3 A Feature Analysis of Explanations
Being able to make personalised suggestions for a majority of run-
ners who wish to modify their training bodes well for this approach,
but whether runners will respond well to these suggestions will
likely depend on their ability to interpret them, and whether they
view them as practical to implement. For example, it is reasonable
to expect that runners will not want to have to implement large
changes to many aspects of their training, and thus it is preferable
for training adjustments to involve small numbers of features that
need to change by modest amounts.

To explore this, in Figure 1(b) we present the average number
of feature adjustments per recommendation, again by varying 𝛿

and based on runner sex and training stage. Once again the results
are encouraging. For reasonable values of 𝛿 we see that, when rec-
ommendations can be made, they only involve 3-5 training feature
adjustments (recall that there are 18 possible features that could be
called upon, including the average and cumulative best and max
versions of each feature). Females tend to be associated with more
training adjustments than males, and there are marginally more
adjustments recommended later in training compared with earlier
in training. The difference between males and females may once
again indicate that there there is greater training variety among
females than males. While the difference between the number of
training adjustments close to race-day (more) versus earlier in train-
ing (fewer) is modest, it is statistically significant (based one sided
t-test with 𝑝 = 0.01) for males and females. This difference could
be due to the fact that early in training there is still plenty of time
to make up training gradually, whereas closer to race-day, changes
will need to be more extreme to have the desired effect.

It is also instructive to examine the degree of change that is
associated with the different features that are recommended for
adjustment. For example, a large change might be viewed as unreal-
istic by a runner: suggesting a runner should increase their weekly
distance by more than 10% per week is ill-advised, for example.
In Figure 2(a & b) we show how often different types of training
features are recommended as part of an adjustment for males (a)
and females (b) 6 weeks before race day and for a 5% improvement
in marathon time (𝛿 = −0.05). Separately, Figure 2(c & d) show
the average change for the different features for males (c) and fe-
males (d) 6 weeks before race day and for 𝛿=-0.05. We can see that
for males and females the cumulative maximum fastest 10km is
the most common training adaptation, appearing in almost 40%
of male and 60% of female adjustments for a 5% improvement in
marathon time. The cumulative average fastest 10km also appears
high in the recommendations. Recall that in the recommendations,
the cumulative features represent the average and best training
completed in the following weeks until race-day, in this case weeks
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Figure 1: (a) The proportion of test cases for which we can make a training recommendation versus 𝛿 , by sex and training stage.
(b) The average number of features that are significantly different (𝑝 < 0.1) among factual and prefactual cases for different
values of 𝛿 and showing differences between sex and point in training.

1-6 before race-day. Overall the current week of training features
rank lower than the cumulative training features, indicating that
gradual training changes must be made to achieve faster times,
rather than simply trying to up the training load or intensity for the
next week alone. We can see that out of the next week of training
features, the feature that is most commonly recommended is again
the fastest 10km pace. This aligns with previous work [23] which
showed that the fastest 10km pace was the most important feature
for predicting marathon performance. For each of the mean pace,
and fastest 10km pace features, the recommendation is to reduce
the pace (run faster) by about 4-5% which is reasonable consider-
ing the goal to run the marathon 5% faster. For the distance-based
features (total weekly distance, and longest distance per week), the
advice is to increase the next week of training and average training
distances by about 10% for males and by 10 and 12% respectively for
females and to increase the best (longest) distances by about 13%
for males and 15% for females. The recovery based features were
recommended least commonly which aligns with previous work
demonstrating that these features were not important indicators
in a model for marathon performance, likely due to the fact that
they correlate with total weekly distance [23]. The recommenda-
tion for these features is a slight increase or decrease for example
reducing the number of rest days per week or max break by 5%,
which is not a meaningful difference, compared to reducing a pace
by 5% or increasing distance by 10-15%. More generally, we can
see that the degree of change in training features in Figure 2(c & d)
all fall within a reasonable range from -0.1 to +0.15, which means
that runners need not change their training too drastically. The
standard deviations vary for these values, for the current training
week features they are more drastic indicating that there is larger

variation in the current training week than in the overall training
in subsequent weeks. This makes sense since runners will be var-
ied in their approaches to training week to week but often these
variations even out over a longer period.

Finally, in Figure 3, we show how often a given feature type
is the most significant feature to adjust in a recommendation for
various points in training (12, 9, 6, and 3 weeks before race day).
Pacing features tend to be the most common feature adjustments
followed by distance and recovery features. Moreover, there is good
consistency across the training weeks meaning that runners will
not be surprised to see certain features being recommended.

4.4 Discussion
We have described a preliminary evaluation of our approach to rec-
ommending training adjustments as runners train for a marathon
and as their race expectations evolve. The evaluation is preliminary
because it is a retrospective analysis rather than a live-user trial.
This facilitates the use of a very large dataset of (> 300, 000) runners
to evaluate various aspects of the training recommendations, in-
cluding coverage, number/degree of adjustments, and consistency.
However, a live-user trial should be completed to examine how real
runners respond to the recommendations, whether they find them
useful, and whether they have the desired effect on performance.
Such a user trial is planned in the future.

Notwithstanding the above, we have learned a lot about the
type of training adjustments that can be made from this prelimi-
nary evaluation. Coverage is typically high, meaning that we can
make suggestions for most runners in most situations. The recom-
mendations are not overly complex – they typically involve minor
adjustments to small numbers of features – and they appear to be
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Figure 2: The proportion of test cases for which each feature is in the recommended training adjustments for (a) males and (b)
females. The average percentage difference change recommended when comparing prefactual to factual cases for (c) males and
(d) females.

.

reasonably straightforward to implement given that the degree of
change required is modest.

5 AN EXAMPLE USER INTERFACE
The road to deployment for this system involves developing a Strava
companion app using the Strava developer API. This would pair
with Strava and pull in a user’s uploaded activity data and require
the runner to input a goal marathon time as well as a proposed
date for their future marathon. From there, the CBR system would

be capable of providing a weekly update to the runner about their
progress in terms of their predicted marathon time, as well as
recommend training adjustments to keep the runner on track for
their goal. Developing a companion app was beyond the scope
of this current work and we leave it for future work but for now,
see Figure 4 for the current prototype. It is worth noting that the
user-interface of this system could take many formats, and will
involve extensive designing and testing with real runners. In this
work we give one example of what the interface could look like.
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Figure 3: Each feature category ranked 3, 6, 9, and 12 weeks from race-day by how frequently the top most significant feature
for a runner is in the feature category.

In the left-hand side image we can see a weekly progress report
which provides a factual explanation of why the query runner Lucy
is not currently meeting their goal – "You missed two sessions
this week which reduced your overall mileage and slowed your
predicted time". Lucy is then offered two training adjustments – to
increase her planned distance by 10km, and to try to run a faster
10km at a pace of 5:10 mins/km. These recommended training
adjustments are a form of prefactual explanation of Lucy’s training
since if she can do what is recommended, she will be predicted to
achieve her goal marathon time, whereas if she does not make the
changes she will stay at her current predicted time.

The right-hand side image contains a "peer analysis" to give the
runners a sense of how their training fits into the the most similar
training plans and indeed how this contributes to their predicted
marathon time. The peer-set can offer somewhat of a confidence
interval for the runner’s future marathon time as well as a suitable
range for the training features tracked by the runners who achieve
a finish-time similar to their goal. This factual explanation may
improve the user’s trust of the system’s ability to predict their time
since they can see exactly how similar they are to their nearest
neighbours driving their prediction: if the feature values provided
are drastically different from their own then they can make an
informed decision about how accurate the predicted race-time is
likely to be for them.

What we would like to provide users with is a fully interactive
interface whereby the sliders can be dragged to alter one of the
training features of the next week of training and a new plan would
be provided by finding the most similar cases. Similarly if our query
runner Lucy wanted to learn about how she could alter her training
to achieve a more challenging race-time then she could simply
drag the lowest slider towards the right and a new set of features
above would be provided. With a case-based reasoning approach,
this level of user-adaptation is achievable by filtering the case-base
according to a set of user-defined feature values.

Another key element to this system would be providing runners
with a sense of the risk imposed by the training recommendations,
since taking on more strenuous training could lead them to become
injured. This could build upon previous work on using counter-
factual explanations to understand injury risk [22], and domain
knowledge of how acute-chronic workload ratio (training load mea-
sure) changes, indicating injury risk with the training adjustments
[46].

6 CONCLUSIONS AND FUTUREWORK
This paper describes a novel case-based reasoning system for rec-
ommending training adjustments to marathon runners. The system
predicts a runner’s marathon time based on their current training
to date, using the marathon times of similar previous marathoners.
By leveraging prefactual reasoning, the system provides runners
with a set of recommended training adjustments to help them meet
their goal-time by comparing groups of runners who did and did
not attain their goal-time.

The system was evaluated offline in terms of its ability to recom-
mend sensible training adjustments using a real-world dataset of
over 500,000 marathon training programmes, from nearly 300,000
unique marathoners, who tracked their activities in Strava between
2014-2017. We found that it was possible to make training recom-
mendations for to up to 80% of runners when they target a conser-
vative ambitious goal-time (5-10% faster than predicted time). The
results indicate that if runners want to meet their goals they need
to make changes by increasing their weekly distance and overall
activity, and improve their pace, and keep these changes consistent
to race-day.

As discussed, in order to fully test this recommender system
and determine the efficacy of the recommendations, a live-user
study is planned for future work. Several opportunities also exist
for extending the system as described, for example by considering
further training features such as average or maximum heart-rate.
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Figure 4: The current prototype implementing the proposed system in the form of the weekly training advice that could be
provided to runners via a Strava companion app.

Additionally, ideas from previous work on understanding injury
implications of marathon training could be incorporated by ex-
pressing how the recommended changes might alter the runner’s
injury likelihood [22, 46]. The proposed user interface needs to be
fully developed and tested rigorously before deployment as a Strava
companion app. A similar system could be applicable to races of
other distances for example 10km races or ultramarathons, as well
as other endurance sports.
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