
Vol.:(0123456789)

International Journal of Artificial Intelligence in Education
https://doi.org/10.1007/s40593-023-00388-5

1 3

ARTICLE

AI Adaptivity in a Mixed-Reality System Improves Learning

Nesra Yannier1  · Scott E. Hudson1 · Henry Chang1 · Kenneth R. Koedinger1

Accepted: 16 December 2023 
© The Author(s) 2024

Abstract
Adaptivity in advanced learning technologies offer the possibility to adapt to differ-
ent student backgrounds, which is difficult to do in a traditional classroom setting. 
However, there are mixed results on the effectiveness of adaptivity based on differ-
ent implementations and contexts. In this paper, we introduce AI adaptivity in the 
context of a new genre of Intelligent Science Stations that bring intelligent tutoring 
into the physical world. Intelligent Science Stations are mixed-reality systems that 
bridge the physical and virtual worlds to improve children’s inquiry-based STEM 
learning. Automated reactive guidance is made possible by a specialized AI com-
puter vision algorithm, providing personalized interactive feedback to children as 
they experiment and make discoveries in their physical environment. We report on a 
randomized controlled experiment where we compare learning outcomes of children 
interacting with the Intelligent Science Station that has task-loop adaptivity incorpo-
rated, compared to another version that provides tasks randomly without adaptivity. 
Our results show that adaptivity using Bayesian Knowledge Tracing in the context 
of a mixed-reality system leads to better learning of scientific principles, without 
sacrificing enjoyment. These results demonstrate benefits of adaptivity in a mixed-
reality setting to improve children’s science learning.

Keywords Educational technology · Learning sciences · Computer vision · 
Adaptivity · Mixed-reality learning

Introduction

Advanced learning technologies support different forms of adaptivity that are harder 
for teachers to implement in their classroom (Koedinger et al., 2013a, b, c). These 
technologies can assess learners on multiple dimensions and can adjust their peda-
gogical decision making accordingly (Aleven & Koedinger, 2013; Conati & Kardan, 
2013; Sottilare et al., 2013). A learning environment is defined to be adaptive if its 
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design is based on data on common learning challenges in the targeted content area, 
if its pedagogical decision-making changes based on the learning measures of indi-
vidual learners, and if it responds interactively to learner actions (cf.  Aleven et al., 
2015a, b; Aleven et al., 2013).

When adaptations are oriented toward improving student affect or motivation, 
they are often referred to as “personalization”. Such personalized adaptations typi-
cally make use of data about an individual students’ identity or interests. For exam-
ple, Cordova and Lepper (1996) demonstrated motivation and learning benefits 
from a personalization intervention that used the student’s name and friends name 
as part of an educational game scenario. Walkington and Bernacki (2019) used stu-
dent interest survey results to create math story problems that were personalized to 
individual student interests. Adaptations may also be oriented toward accelerating 
knowledge growth through data-driven selection of learning materials or activities 
that depend on a model that tracks student performance and knowledge growth. A 
general class of algorithms that engage in such tracking are referred to as “knowl-
edge tracing”. Knowledge Tracing is a well-established research area of artificial 
intelligence in education, which aims to leverage students’ learning interactions 
to estimate their knowledge states (i.e., unlearned and learned) (Liu, 2022). One 
approach to knowledge tracing, called Bayesian Knowledge Tracing, uses closed-
form equations derived from Bayes’ theorem applied to a simple two-state hid-
den Markov model (cf. Anderson et al., 1995). This model continually updates an 
assessment of learners’ knowledge growth and that assessment is used to select tasks 
that contain knowledge components that an individual student is not likely to have 
mastered. Bayesian Knowledge Tracing has been popular, for example, through its 
widely disseminated use within Cognitive Tutors (Ritter et al., 2016; Aleven et al., 
2015a, b), perhaps because of its relative simplicity to implement. A more sophisti-
cated approach to knowledge tracing uses more complex multi-state Bayesian Net-
works to model student knowledge and knowledge growth (cf. Conati et al., 2002). 
In our context, we chose the simpler BKT approach hypothesizing it would be ade-
quate to make effective task selection decisions that would optimize student learning 
relative to the pre-existing non-adaptive system.

There are mixed results in prior research about the effectiveness of knowledge 
tracing. An early positive result comes from Atkinson (1972), who studied task 
selection techniques in the context of learning German vocabulary. He showed that 
automated item selection showed the greatest gain on a delayed posttest, in com-
parison with both learner control and random selection conditions. He also provided 
evidence that having parameters that estimate difficulty of different target compo-
nents of knowledge enhances effectiveness. In another study, Corbett et  al. found 
that knowledge tracing improved the effectiveness of student learning compared to 
giving all students the same problem set (Corbett et  al., 2000). Corbett et  al. also 
found that students in the baseline condition averaged 87% correct across six quiz-
zes while students in the cognitive mastery condition averaged 95% correct, with a 
significant difference across conditions (Corbett et al., 2000). Zhao et al. (2013), on 
the other hand, found no difference between knowledge tracing and a fixed set of 
tasks in the context of second language English grammar instruction (Zhao et al., 
2013). In Corbett (Corbett et al., 2000), students in the knowledge tracing condition 
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spent more time than the baseline condition. Whereas in the Zhao study, the amount 
of time in instruction was the same. Thus, a potential alternative explanation can be 
that more time produces better learning.

In addition to the need for more investigation into whether and when knowledge 
tracing is effective, there is also a need to test the generality of the approach across 
different subject-matter domains and different technology approaches. Most knowl-
edge tracing studies so far have focused on language and math learning. We explore 
knowledge tracing in the context of science learning and particularly in guided 
inquiry-based learning of early physics principles. Also, adaptivity has mostly been 
integrated in screen-based learning technologies.

In this paper, we integrated knowledge tracing adaptivity in a mixed-reality sys-
tem - a new genre of Intelligent Science Stations we have developed, allowing chil-
dren to do experiments in the 3D physical world with interactive feedback from a 
virtual helper that provides guidance based on proven learning mechanisms. We 
report on a randomized controlled experiment where we compare learning outcomes 
of children interacting with the Intelligent Science Station that has task-loop adap-
tivity incorporated, compared to another version that provides tasks randomly. This 
paper makes a unique contribution in that it investigates the impact of adaptivity on 
learning in a novel AI-based mixed-reality system where children are performing 
real-world experiments with personalized interactive feedback.

Intelligent Science Stations

We have developed a new genre of Intelligent Science Stations (norillla.org) that use 
a specialized AI vision technology to track physical objects and children’s actions as 
they experiment and make discoveries in the real world (See Fig. 1). This AI-based 
technology encourages guided inquiry thinking processes through a predict, explain, 
observe, explain cycle. A gorilla character appears on a large display to guide stu-
dents as they make predictions, observations and explain results in the physical envi-
ronment (Yannier et al., 2016, 2021, 2022). Our design uses evidence-based prin-
ciples from learning science (e.g., Clark & Mayer, 2016; Gibson & Gibson, 1955; 
Chi et al., 1989; White & Gunstone, 1992) and game design (e.g., Falloon, 2010) 
including contrasting cases, self-explanation, predict-observe-explain, and real-time 

Fig. 1  Children interacting with the intelligent science station at the science center
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interactive feedback. The principle of contrasting cases (Gibson & Gibson, 1955) 
suggests use of aligned cases with minimal differences to help students notice infor-
mation that they might otherwise overlook. Building on this literature and more 
recent work (e.g., Schwartz et al., 2011; Rittle-Johnson & Star, 2009), we decided to 
include contrasting cases in our design.

In our first Intelligent Science Station, EarthShake, students are shown two tow-
ers that differ on only one principle (symmetry, wide-base, height, or center of mass 
principles) and are asked to make a prediction about which one will fall first when 
the table shakes (see Fig. 2d). Another instructional feature is prompted self-expla-
nation, which has been demonstrated to enhance learning and transfer (Aleven et al., 
2002). In our system, we utilize a self-explanation menu to help children explain the 
reasoning for why a tower falls. The menu consists of explanation choices that target 

Fig. 2  Screenshots of the interface where children are making a prediction about which tower will fall 
first and explaining the results with interactive feedback from the system
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the underlying physical principles in child friendly language such as: “because it is 
taller”, “because it has more weight on top than bottom”, “because it is not sym-
metrical”, “because it has a thinner base”. We also utilize a predict-observe-explain 
(POE) cycle in our mixed-reality system, a teaching-learning strategy proposed by 
White and Gunstone (White & Gunstone, 1992), including three stages: Prediction, 
Observation and Explanation, to help activate discussions among students (Kearney, 
2004). We utilize POE in our design to help children understand the physics princi-
ples of balance and stability and why structures fall.

Our AI-based mixed-reality system also provides real-time interactive feedback, 
which is a critical component for effective learning. Immediate feedback has been 
shown to be more effective than feedback on demand in intelligent tutoring systems 
(Corbett & Anderson, 2001). Also, the phenomenon of “confirmation bias” (Nicker-
son, 1998) suggests that children can see their predictions as confirmed even when 
they are not, thus explicit feedback can reduce this tendency and enhance learning. 
(Hattie & Clarke, 2018). Research suggests that learning from obtained outcomes is 
biased: people preferentially take into account positive, as compared to negative pre-
diction errors, and information that confirms their current choice (Palminteri et al., 
2017). Furthermore, overconfidence produces under achievement, undermining stu-
dent learning and retention (Dunlosky & Rawson, 2012). Explicit feedback can help 
lower confirmation-bias and overconfidence, by correcting errors, helping to unravel 
misconceptions and suggesting specific improvements (Hattie & Clarke, 2018). 
Explanatory feedback has also been shown to be effective for learning outcomes, 
enhancing sustainable learning outcomes (Clark & Mayer, 2016). Our system incor-
porates automated interactive and explanatory feedback in a real-world environment 
as the students are doing physical experiments to learn scientific concepts and criti-
cal thinking skills.

In addition to learning science principles, we have also utilized game design prin-
ciples in our system including use of an animated character in a game-like scenario. 
Our system has a character and scenario that guides the students and gives immedi-
ate feedback. Characters and virtual environments have been shown to have poten-
tial to act as powerful communication mediums for students to facilitate understand-
ing and foster engagement/motivation (Falloon, 2010; Cassell, 2000).

Our previous research has demonstrated that having a mixed-reality system com-
bining hands-on experience with interactive AI guidance and feedback in our Intel-
ligent Science Stations improves children’s learning significantly compared to a 
tightly matched screen-only version without the hands-on interaction (Yannier et al., 
2015, 2016, 2021), as well as compared to hands-on exploration without the interac-
tive AI layer (Yannier et al., 2020, 2022).

Scenario

In our scenario, users are first asked to place the towers shown on the screen on 
the physical earthquake table (See Fig. 1). These prebuilt towers are designed to be 
contrasting cases with only one difference between them so that the kids can focus 
on isolating the principles. A depth camera and our specialized computer vision 
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detects if towers placed on the table match the ones on the screen and gives feedback 
accordingly. If they place the correct tower as displayed on the screen, a green check 
appears above the tower on the screen and the gorilla character says “Good job! 
Click to continue” (See Fig. 2b). Otherwise, if the tower they place does not match 
the tower on the screen, the computer vision system detects that it was not the cor-
rect tower, and a red cross appears on the tower on the screen, and they’re asked to 
place the correct tower (See Fig. 2c).

Our computer vision algorithm uses depth information from the depth-sensing 
camera, performing blob detection and physics-based moment of inertia calculations 
(Yannier et  al., 2013, 2020) to recognize and differentiate objects of experimenta-
tion, i.e., the towers, and to recognize critical experimental outcomes, i.e., a falling 
tower. When students try to place a requested tower on the table, the vision algorithm 
computes a moment of inertia value that serves as a kind of signature of the identity 
of the tower, which is used to determine if the correct tower has been placed or not, 
to provide the pedagogical structure needed for guided inquiry. Once the user clicks 
continue, the gorilla character prompts him/her to make a prediction saying, “Which 
tower do you think will fall first when I shake the table?” (See Fig. 2d). They can 
choose either 1, 2 or the same by clicking on the buttons or one of the towers on the 
screen. Once they make a prediction, the gorilla character says: “You chose the left 
tower. Why do you think so? Discuss and then click SHAKE to see what happens”. 
Here they can discuss their prediction with their partners, why they think the tower 
they chose will fall first. After they discuss, they can then click the “Shake” button 
on the touch screen to shake the physical earthquake table (the touch screen triggers 
a relay that is connected to the motor of the earthquake table). After the physical 
table starts shaking and one of the towers falls, the depth camera and our specialized 
computer vision algorithm detects the fall and stops the earthquake table from shak-
ing. Our specialized vision algorithm then detects whether the left or right tower fell 
and if it matches with the prediction of the user. If the student’s prediction was cor-
rect and the correct tower fell first, then the gorilla character says “Good job! Your 
hypothesis was correct! Why do you think this tower fell first?”, as he starts to jump 
and dance on the screen. If the user’s prediction was wrong and the tower that fell 
does not match the tower that was predicted by the user, then the gorilla character 
says “Uh oh! Your prediction was not quite right! Why do you think this tower fell 
first?”. Users are asked to explain why they think the tower that fell, fell first, using 
a scaffolding explanation menu with four different choices: “It is taller”, “It has a 
thinner base”, “It has more weight”, “It is not symmetrical”. These explanations are 
matched with the four different principles of stability and balance, that are primary 
science content learning objectives for EarthShake. When they choose one of the 
explanations in the menu, the gorilla character tells them if their explanation was cor-
rect or wrong, with a visualization laid over the images of the towers on the screen 
to explain why the tower fell (See Fig. 2f). For example, if the reason was because it 
was taller, and their explanation was not correct, he says: “Actually it fell first because 
it was taller than the other tower. Good try. Click CONTINUE to play again.” The 
visualization on the towers shows a ruler to highlight the height of each tower.

This scenario is repeated for different contrasting cases of towers (Fig. 3). 
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Bayesian Knowledge Tracing and Adaptivity in Intelligent Science Stations

Knowledge Tracing is a technique used in intelligent tutoring systems to model stu-
dent growth of knowledge so as to determine when a target knowledge component 
(KC) has been mastered and if not, to give students more practice tasks to achieve 
mastery (Corbett & Anderson, 1994; Koedinger et al., 2013a, b, c). Bayesian Knowl-
edge Tracing (BKT) is a widely used approach to knowledge tracing that models stu-
dent knowledge growth as a latent variable using a two-state Hidden Markov Model. 
Domain knowledge is decomposed into KCs representing the skills and concepts 
that students need to correctly perform tasks (cf., Koedinger et al., 2012). For each 
KC, the student can either be in an “learned” or “unlearned” state, and Bayesian 
probability formulas are used to determine which of the two states a student is likely 
in based on their sequence of performance to achieve that KC. Each KC in BKT is 
modeled by four parameters: the initial probability of having already learned a KC, 
p  (L0), the probability of a student transitioning from the unlearned to the learned 
state for a KC at a particular opportunity to practice the KC, p(T), the probability 
of a student answering incorrectly even though the KC is known (e.g., slipping up), 
p(S), and the probability of a student answering correctly even though the KC is not 
known (e.g., by guessing), p(G). Ln (the probability of being in the learned state, 
knowing the KC, after nth opportunity) is calculated from these four parameters 
using this formula:

We have implemented an adaptive, BKT-enhanced version of Intelligent Science 
Stations, where the tasks in the scenarios are determined based on the mastery lev-
els of two types of knowledge components (i.e., prediction and explanation KC) for 
each task category (i.e., height, base-width, symmetry, center of mass). BKT does 
not determine how tasks are selected, but at what probability each KC in a task cat-
egory is learned. If the probability of knowing a KC (Ln) is above a given threshold, 
typically 0.95, it is considered that this KC has been mastered. If both KCs in a task 
category is above 0.95, we determine that that task category has been mastered.

For task selection, different algorithms have been implemented (cf., Zhao 
et  al., 2013; Koedinger et  al., 2013a, b, c,  2010). Our task selection algorithm 
implements a “gentle slope” of improvement whereby among all the task catego-
ries involving unmastered KCs, we pick the one that is estimated to be closest to 
mastery (i.e., closest to 0.95 without being over). Each task category has a pre-
diction (Ln_prediction) and explanation (Ln_explanation) score and the smaller 

p
(
Lt+1|obs = correct

)
=

p(Lt)⋅(1−p(S))

p(Lt)⋅(1−p(S))+(1−p(Lt))⋅p(G)

p
(
Lt+1|obs = wrong

)
=

p(Lt)⋅p(S)

p(Lt)⋅p(S)+(1−p(Lt))⋅(1−p(G))

p(Lt + 1) = p
(
Lt+1|obs

)
+ (1 − p(Lt+1|obs)) ⋅ p(T)

Fig. 3  Contrasting case tower pairs used in the system
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of the two is used to determine closeness to mastery. The tasks are selected from 
a set of 10 tasks (targeting 4 different principles: height, base-width, symmetry, 
and center of mass) based on the proximity of the task category to the mastery 
level (95%). To insert some variety and interleaving, if the same task category 
is selected 3 times in a row, the next easiest unmastered task category is selected 
next. If prediction and explanation Ln scores are both above 95% for a certain 
task category (which means that task category has been mastered), then that task 
category is not considered. We selected initial values  (L0) for each task category 
based on previous experiments (Yannier et al., 2015, 2016, 2020) where we found 
that height is easiest, and center of mass is hardest (height: 0.8; thinner base: 
0.6; symmetry: 0.5; center of mass: 0.4). Correspondingly, we selected p(T) val-
ues in a similar fashion, height having the highest p(T) value since it is easier to 
learn compared to thinner base, symmetry and center of mass (height: 0.7; thin-
ner base: 0.4; symmetry: 0.3; center of mass: 0.3). These values were estimated 
based on log data from previous experiments and experiences in pilot testing. We 
assumed that the chance of guessing p(G), and the chance of slipping p(S) are the 
same for each task category and set their values to be p(G) = 0.3, and p(S) = 0.1. 
Each time a student performs a task, the mastery level is updated by the BKT for-
mulas shown above.

Table  1 illustrates knowledge tracing updates and associated task selection. 
Row 0 shows the initial  L0 values for the four pairs of KCs (prediction and expla-
nation for each of height, base width, symmetry and center of mass). Based on 
these values, the task selection picks a height task because the initial values (0.80 
and 0.80) are closest to mastery threshold of 0.95. (When these values are dif-
ferent, the smaller one is used.) The first step of this task is to predict which 
tower will fall and in this case the student answers this prediction step correct. 
So, the Height Prediction Ln goes from 0.80 (L0 - init) to 0.98 (based on the 
formula given above) as shown in row 1a. In the second step, the student is asked 
to explain. The student selects the correct explanation, so the Ln value for the 
Height Explanation (H.Expl) KC goes from 0.8 to 0.98 also. Since both the 
Height Prediction and Explanation Ln’s are above 0.95 (see 1b), the next task will 
be determined by the highest Ln score not above 0.95 (The next highest category 
is Base (L0 = 0.60), so the next task given is a Base prediction task. For this task, 
the student predicts correctly (2a). Therefore, the Base Prediction Ln goes from 
0.60 to 0.89. Then the student is given the Base explanation task and selects an 
incorrect explanation (2b). So, the Base Explanation Ln drops to 0.51. Since the 
Base Prediction Ln and Base Explanation Ln are not both above 0.95, the next 
task that will be given will be a Base task again.

The experiment described below compares two different conditions, with BKT 
adaptivity or without (tasks randomly chosen), to evaluate whether or not BKT 
adaptivity improves children’s learning.
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Methods

We conducted the experiment within a controlled setting in a science center. Par-
ticipants were elementary aged students (first through fifth graders) attending the 
summer camp at the science center. We had an Institutional Review Board (IRB) 
approval for this research and every student had a consent form signed by the parent 
to participate in the study. The user group in this study is aligned with the design 
goals of the mixed-reality system and the early learning testing with K-5th grade 
children in our previous experiments. 36 children (18 pairs) interacted with the Intel-
ligent Science Station at the exhibit floor, away from the rest of the summer camp 
activities. The ages of the children were balanced for both conditions (2.5 average 
grade level for both conditions). The pairs were randomly selected and assigned to 
different conditions of the experiment. An earlier study showed no significant differ-
ence in learning and enjoyment between students working in pairs versus solo (Yan-
nier et al., 2015). However, since parents and teachers indicated a preference to have 
children interact collaboratively in pairs, we decided to conduct the study in pairs. 
Children interacted with the system in pairs in all conditions.

Measures

We used pre and post assessments that have been validated in previous experiments 
(29, 30) to measure scientific and engineering outcomes. To measure scientific out-
comes, we used paper pre and posttests, where children were asked to explain their 
predictions of which of the given towers will fall first based on four principles of 
stability and balance (height, base-width, symmetry and more weight on top ver-
sus the bottom – center of mass) (Fig. 4). These explanation outcomes show a deep 
understanding of scientific concepts. The paper pre- and post-tests, that were vali-
dated in previous experiments, were based on the NRC Framework & Asset Science 
Curriculum (40).

To measure engineering outcomes, we compared the quality of towers children 
built before and after interacting with the intervention, to see if they improved on 
any of the four scientific principles described above. We also evaluated students’ 

Fig. 4  Prediction (left) and explanation (right) items used in the paper pre/post-tests
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ability to predict which tower would fall first among the given pairs of towers. To 
measure pre- to post-test changes on the tower building task, we scored each stu-
dent’s towers according to three principles: height, symmetry, and center of mass 
(we did not use the fourth principle, wide base, as all students were instructed to 
use the same base block). For each principle, students were given one point if their 
towers improved from pre- to post-test, -1 for the reverse, and 0 for no change. Com-
paring pre- and post- towers for the height principle, a shorter post-tower scores 1, a 
taller post-tower scores − 1, and towers of the same height score 0. Likewise, post-
towers with more symmetry and a lower center of mass score one for each of those 
principles. Adding the scores for each principle yielded the student’s total score 
(Fig. 5).

Experimental Procedure

Children were randomly pulled out from their summer camps in pairs. They came 
to the museum floor where the equipment was set up (the exhibit was closed to the 
public during the times of the experiment). Before interacting with the system, stu-
dents were first given a tower pre-test. First, the experimenter gave the students a 
bag of blocks and asked them to build a tower that they think will withstand an 
earthquake. Then they were asked to complete a paper pre-test, consisting of some 
prediction and some explanation items. Children then interacted with their assigned 
condition, either Randomized or Adaptive condition. We did piloting with both con-
ditions to ensure balanced time for different conditions.

Children were randomly assigned to two different conditions: Randomized condi-
tion and Adaptive Condition. In the Randomized condition, the tasks that students 
were getting while interacting with the Intelligent Science Station were randomly 
selected from a set of 10 tasks that had a focus on (see Fig.  3). In the Adaptive 
condition we used Adaptive Task Selection (Aleven et al., 2016) based on Bayesian 

Fig. 5  Coding scheme for tower pre/posttests change
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Knowledge Tracing (Yudelson et  al., 2013) as described above. The tasks were 
selected based on the proximity of the knowledge component (KC) to the mastery 
level (95%). If both prediction and explanation mastery scores are above 95% for a 
certain KC, then the algorithm switches to the next KC. If the mastery score drops 
(the student keeps getting it wrong), the algorithm switches to the KC that is closest 
to mastery. We selected initial values for each KC based on previous experiments 
and the difficulty of each KC for students and the mastery level was updated after 
each task. Also, if they get more than 3 items per KC it switches to the next highest 
KC, with the goal of introducing some interleaving. We controlled the time for both 
conditions (~ 10 min). Based on the video and log data, average time on task for the 
intervention for Randomized Condition is approximately 9.61 min, and for Adaptive 
Condition is approximately 9.76 min with no significant difference between time on 
task in different conditions.

After interacting with the Intelligent Science Station, students were given a 
matched paper post-test, including prediction and explanation items. After the paper 
post-test, students were given the same tower building task as before the interven-
tion, to see if their towers had improved after interacting with the game. Finally, 
children were asked to fill out a survey to see how much they enjoyed the game.

Results

We wanted to see the effects of adaptivity on learning in a mixed-reality setting. To 
accomplish this, we analyzed paper pre and post-tests, tower pre and post-tests, and 
the enjoyment surveys that were given after interacting with the system.

We analyzed the results for the pre and post-tests to identify any differences 
between conditions, adaptivity versus randomized. We confirmed that our pre and 
posttest results were sufficiently normal by visually inspecting the distribution and 
finding small Pearson median skewness values for the pre-test of 0.39 and post-test 
of -0.10 (between − 0.50 and 0.50 indicates symmetry associated with normality). 
An ANOVA with overall pre-test score as the outcome variable confirmed no dif-
ferences between the conditions at pretest (p > 0.40). To test for learning benefits, 
we ran an ANCOVA with post-test score as the outcome variable and pre-test as 
the covariate. We found significant positive effects of the adaptivity condition. The 
overall results indicated that the average scores on the full post-tests (prediction and 
explanation items) was 69% for the adaptive condition and 54% for the randomized 
condition, F(1,34) = 4.02, p = 0.05, d = 0.66 (Cohen’s d). Our findings are summa-
rized in Fig. 6. We did not find any significant interaction of test type on learning 
gains.

An ANOVA testing the effect of the two conditions on transfer to engineering 
outcomes (tower building) showed a non-significant trend in favor of the adaptive 
condition (F(1, 34) = 1.75, p = 0.19, d = 0.48). The towers in the adaptive condi-
tion had a positive improvement (based on average score of improvement on height, 
symmetry and center of mass) while the randomized condition did not show any 
improvement.
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We confirmed that the reduced variability in the adaptive condition (e.g., getting 
another base question once they get a base question wrong) did not reduce engage-
ment. There was no significant difference in the enjoyment outcomes of the different 
conditions.

To understand the results better and investigate why the Adaptive condition might 
be learning better compared to the Randomized condition, we looked at our logs. 
We realized that in the Adaptive condition, students were getting more practice 
with the task categories they were having a hard time with (e.g., center of mass, see 
Fig. 7 − 3) and moving quickly through the concepts they already knew (e.g., height, 
see Fig. 7 − 1). Thus, they were able to master these concepts better. On the other 
hand, in the Randomized condition, they spent more time with height, and did not 
get enough opportunities with the more challenging concepts like center of mass, 
thus leading to less mastery of these concepts.

Our log data aims to provide a more in-depth understanding of the results of the 
pre and posttests which show that BKT adaptivity improves learning compared to 
random selection of items. As detailed below, our log analysis reveals that students 
in the Adaptive condition can spend more time on items that they are having dif-
ficulty mastering without losing time on items they already know (as a result of the 
adaptivity BKT algorithm provides).

Log Files Analysis

The log file analysis helps explain how knowledge tracing aids learning. Recall that 
we set the parameters in BKT based on prior data indicating that the height princi-
ple is easier to learn than the center of mass principle. Thus, the algorithm needs less 
observations of student success to determine mastery for height than center of mass. 
Figure 7  illustrates how students’ experience is thus better optimized in the adaptive 
condition, where tasks are selected based on BKT, than in the random condition. Com-
paring the first graph (see 1 in Fig. 7) to the second graph (in 2), we see that children 
in the Adaptive condition are assigned fewer height tasks (1–2 tasks) in comparison to 
children in the Random condition (2–3 tasks). Of the nine groups in the Adaptive con-
dition, eight have the correct prediction (green boxes) on the first opportunity, which 

Fig. 6  Overall post-scores were significantly higher for students in the adaptive group than those in the 
random group (p = 0.03) with non-significant trends in favor of the adaptive group for Tower Building 
scores
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is enough for BKT to estimate them as having reached mastery (see “mastered” status 
indication to the right in 1). One other, group 2 (see the bottom of 1), gets the first 
opportunity wrong and so is given a second opportunity and they get it right, which 
is enough for BKT to estimate mastery. In contrast, in the Random condition, only 
two groups get the BKT-predicted ideal amount of practice (groups 8 and 10, see the 
“unmastered” status indication to the right in 2) whereas most get more practice than 
needed (those indicated as “over practiced”) and a couple do not reach mastery (groups 
1 and 6). For the harder center of mass task (see 3 and 4 in Fig. 7) the situation is 
reversed: Because of the lower initial knowledge estimate for center of mass in BKT, 
children in the Adaptive condition are generally given more such tasks, especially if 
they make more errors, than children in the Random condition. In the Adaptive condi-
tion, most children reach mastery in predicting and explaining the center of mass tasks 
(6 of 9) and do so after 3 to 5 opportunities. (Note: If a group reached mastery in all 

Fig. 7   In the Adaptive condition (1), most students master the height principle in one opportunity, and 
thus are not given a second opportunity. On the other hand, in the Random condition (2), many stu-
dents who get it right the first time nevertheless receive a second opportunity, taking away valuable time 
that could have otherwise been used to master other concepts that are not yet mastered. For the Weight 
(center of mass) concept, many students in the Adaptive condition (3) get multiple opportunities that lead 
to a high proportion of students mastering at the end. On the other hand, students in the Random condi-
tion (4) don’t get enough opportunities (too much time was spent on easy concepts) and do not reach 
mastery
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four task categories before time ran out, they were given “extra practice” as happened 
for groups 3 and 7.) In the Random condition (on the right), none of the groups receive 
enough Center of Mass tasks to reach mastery.

Table 2 provides a summary across all groups on all four task types. In the Adaptive 
condition, over 80% of the 36 group-by-task sequences end in mastery. No Adaptive 
condition sequences involve over-practice (though some get some extra practice after 
mastering all four tasks). In contrast, in the Random condition, only 16.7% of the 36 
group-by-task sequences end in mastery. 27.8% of the sequences involve over practice, 
taking away valuable learning time that could otherwise be used for the unmastered 
sequences. 55.5% of the sequences as a result are unmastered.

Discussion and Conclusion

We found that adaptivity using Bayesian Knowledge Tracing in the context of a 
mixed-reality Intelligent Science Station led to better learning of scientific principles 
compared to random task selection, without sacrificing enjoyment. Our log analysis 
indicated that the students in the adaptive condition were getting more opportunities 
to work on concepts they were having a hard time learning, while the students in the 
adaptive condition overspent time on easy tasks and did not have enough opportunities 
to master the harder concepts. Thus, adaptivity helped focus the attention of students on 
concepts where they needed most help with, taking into account the variability among 
different students.

Prior results have shown the promise of improving learning through knowledge trac-
ing (Atkinson, 1972), though in some cases with confounds in extra time (Corbett et al., 
2000) and in other cases finding no benefit (Zhao et al., 2013). Our results provide pos-
itive evidence towards the effectiveness of knowledge tracing adaptivity without sacri-
ficing time (time is controlled for both adaptive and random task selection conditions). 
Also, since most knowledge tracing studies so far have focused on language and math 
learning and in screen-based technologies, our results show the effectiveness of AI 
adaptivity in a new context: inquiry-based science learning in a mixed-reality system. 
Potential future work could explore alternative adaptation algorithms that, for example, 
incorporate student-specific adjustments to the core guess, slip, learn rate parameters 
(cf., Yudelson et al., 2013) or integrate information about student preferences. Never-
theless, our current positive results demonstrate that such approaches, while potentially 
desirable, are not necessary to improve student learning through adaptive task selection.

We have demonstrated that techniques for active learning with automated feedback 
can be effectively extended through automated mastery-based adaptation. Our log anal-
ysis shows how adaptive mastery can be applied at the level of scientific principles that 

Table 2  A greater proportion 
of students master scientific 
principles in the adaptive 
condition

Condition Mastered Over practiced Unmastered

adaptive 80.5% 0.0% 19.5%
random 16.7% 27.8% 55.5%
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students discover on their own with well-crafted feedback and as-needed guidance. We 
find some principles are more intuitive than others (e.g., height) and thus require less 
inquiry practice whereas other principles (e.g., center of mass) are more novel and take 
more inquiry practice for students to understand and transfer. Further, some students 
reach mastery sooner than others. Our mastery-based algorithm effectively adjusts the 
inquiry experience to adapt to these content and student differences producing better 
learning outcomes. It is worth noting that our previous experiment has shown that chil-
dren interacting with the system in pairs versus alone did not have any significant dif-
ference in their learning outcomes (Yannier et al., 2016). This experiment was done in 
pairs, based on the preference of museum staff and teachers to have children work col-
laboratively. In future work, we plan to look into student conversations as well.

More generally, our results show the potential of adaptivity in a mixed-reality set-
ting to improve science learning for children in informal or formal learning settings. 
This result is especially important given the limited number of controlled experi-
ments on learning benefits of tangible interfaces and mixed-reality systems. Bring-
ing computer-monitored mastery learning to the 3D world is a novel contribution 
of our work made possible by automated assessment of students’ experimentation 
afforded by the AI vision algorithm.
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