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ABSTRACT
Large and high-dimensional real-world datasets are being
gathered across a wide range of application disciplines to en-
able data-driven decision making. Interactive data visualiza-
tion can play a critical role in allowing domain experts to se-
lect and analyze data from these large collections. However,
there is a critical mismatch between the very large number
of dimensions in complex real-world datasets and the much
smaller number of dimensions that can be concurrently visu-
alized using modern techniques. This gap in dimensionality
can result in high levels of selection bias that go unnoticed
by users. The bias can in turn threaten the very validity of
any subsequent insights. In this paper, we present Adaptive
Contextualization (AC), a novel approach to interactive visual
data selection that is specifically designed to combat the in-
visible introduction of selection bias. Our approach (1) moni-
tors and models a users visual data selection activity, (2) com-
putes metrics over that model to quantify the amount of selec-
tion bias after each step, (3) visualizes the metric results, and
(4) provides interactive tools that help users assess and avoid
bias-related problems. We also share results from a user study
which demonstrate the effectiveness of our technique.

Author Keywords
Visualization; Visual Analytics; Exploratory Analysis;
Intelligent Visual Interfaces

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g., HCI):
Miscellaneous

INTRODUCTION
Large and complex datasets are being gathered across a wide
range of application disciplines to support data-driven deci-
sion making. From healthcare to advertising to business in-
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telligence, these datasets are often gathered “in the wild” with
large numbers of heterogeneous and diverse variables.

Unlike data for traditional prospective studies—which is
gathered narrowly according to a study design determined
a priori with the goal of supporting a specific analytical
question—these real-world datasets capture a vast and diverse
sample of data from the system under investigation without
knowing in advance the types of questions that will be asked.
The aim in these settings is to gather data with enough vari-
ation and richness that a wide range of ad hoc, targeted anal-
yses can be performed retrospectively—after data has been
collected— to quickly provide precision data-driven evidence
to decision makers or investigators.

As just one example, there is growing interest within the
healthcare domain in using “Big Data” to help personalize
care and support precision treatment decisions [23]. The
so-called Learning Health System [18] concept is receiving
heavy investment, with the aim of creating methods and tools
that enable a data-driven environment in which evidence that
informs medical treatment can be obtained via analysis of
large populations of real-world patient data. The subsequent
outcomes from those decisions could then be added to the
population-based dataset, with new analyses of the updated
data producing a powerful learning effect [1, 10, 11].

These sorts of large-scale data-driven analyses, regardless of
domain, require analysts to select subsets of data that can be
further analyzed to answer a specific question of interest. This
data selection process is often accomplished using visual
analysis technologies [34] which are designed to leverage in-
teractive visualization algorithms to help user quickly and in-
tuitively navigate complex datasets. For example, visual anal-
ysis techniques have been applied to problems in the health-
care domain, allowing users to quickly identify and select
a cohort of patients for further analysis during population-
based studies [37]. This form of visual data selection can be
highly effective, supporting an analysis workflow that is both
intuitive and high speed.

However, there is a critical limitation that must be overcome
when this approach is applied to high-dimensional datasets.
More specifically, there is a dramatic mismatch between the
relatively small number of dimensions displayed simulta-
neously even in “multi-dimensional” visualization methods
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(e.g., most often less than 20) compared to the very high-
dimensional nature of many real-world datasets (e.g., tens of
thousands of features in real-world medical data).

This dramatic difference in dimensionality means that users
performing visual data selection must apply filters with an
exceptionally narrow view of the dataset they are manipu-
lating. Unfortunately, because the variables in many real-
world, high-dimensional datasets are highly interdependent,
the filters applied during visual data selection can produce
large amounts of selection bias which—for the vast majority
of variables that are omitted from the visualization—can oc-
cur invisibly and go undetected. As a result, the bias that is
introduced can be a silent yet critically limiting factor which
undermines the quality of all subsequent analyses of the se-
lected data.

In this paper, we present Adaptive Contextualization (AC),
a novel approach to interactive visual data selection that is
specifically designed to combat the invisible introduction of
selection bias. Our approach (1) monitors and models a user’s
visual data selection activity, (2) computes metrics over the
model to quantify the degree of selection bias introduced dur-
ing the process, (3) visually represents the results for con-
textual awareness, and (4) provides interactive tools that help
users assess bias when it is discovered and revert problematic
filters to explore alternative selections. Specifically, our work
offers the following contributions:

• Algorithms for capturing and assessing the introduc-
tion of bias during data selection. We define a context
model that captures the sequence of steps performed by a
user during the visual data selection process. We then de-
fine a multi-dimensional distance metric which quantifies
the shift in variable distributions between any pair of steps
in our context model. The metric is recomputed automat-
ically as the model changes in response to additional user
activity.

• Visual representations and interaction techniques. We
describe an interactive visual representation for the results
produced by the algorithms outlined above. The visualiza-
tion is updated automatically as users explore a dataset, and
provides interactive tools that allow users to investigate the
bias metrics and revise their data selection process.

• An evaluation of AC’s effectiveness. We include results
and analysis from a 18-person study evaluating AC as ap-
plied to a medical domain problem. The results show that a
data selection tool with AC (when compared to a baseline
version without AC) improves awareness of variable dis-
tribution changes within a dataset during selection and re-
duces the time required to estimate levels of selection bias.

BACKGROUND AND RELATED WORK
The context-aware visualization methods proposed in this pa-
per are related to several different areas of research including
high-dimensional visualization methods, provenance model-
ing, and previous approaches to intelligent visualization.

High-Dimensional Visualization
The application of interactive data visualization techniques to
high-dimensional datasets has been a focus and challenge for
the research community for at least twenty years [5]. The
challenge is rooted in constraints that derive from the very
fundamentals of the data visualization concept. Visualization
uses a relatively small number of visual variables (position,
shape, size, brightness, color, orientation, texture, and mo-
tion) [36] to encode complex information; and relies upon
humans’ visual perception to interpret the resulting graphics
to derive insight.

Using clever graphical arrangements (e.g., parallel coordi-
nates [17] and scatterplot-matrices [7]) as well as multiple co-
ordinated views [35], a single variable can be leveraged to en-
code more than one variable at the same time. However, even
advanced applications of these techniques, as shown in the
a recent survey of state-of-the-art parallel coordinates tech-
niques [15] are able to concurrently visualize only a relatively
small number of dimensions (most often less than 20).

Given this restriction on the dimensionality of visual repre-
sentations, research in this area often focuses on data sum-
marization, projection, or ranking. This includes traditional
projection methods like principle component analysis (PCA)
and multi-dimensional scaling (MDS), visual clustering (e.g.,
[2, 6, 8, 27]), and a variety of hierarchical summarization
methods [9]. Optimization-based techniques can then sup-
port algorithmic configuration of these approaches based on
specific quality criteria [4]. However, summarization meth-
ods result in loss of information due to the reduction in di-
mensionality. Ranking-based methods, meanwhile, can pri-
oritize dimensions for viewing but do not overcome the lim-
ited number of visualized dimensions. As a result, a majority
of dimensions can remain invisible.

Provenance Modeling
Visual queries are a key benefit of many interactive visual-
ization systems [28]. User interface controls allow users to
change query constraints, while visualization is used to in-
teractively depict the updated dataset. Visual queries can
be combined with direct manipulation of the visualization’s
graphical objects [16] to make exploratory data selection fast
and intuitive. Together, these methods can support an ex-
ploratory selection process through which users can quickly
and interactively focus a visual analysis upon a data subset of
interest (e.g., healthcare domain examples [12, 26, 37]).

In recognition of the exploratory and ad hoc nature of these
tools, researchers have developed a variety of visual prove-
nance models. These models are designed to capture and
record the often complex chain of visual data transformations
that users can apply as they explore a dataset [14, 19, 22, 24,
32]. In these most basic form, these models capture trails of
user activity to document the origin of a dataset [20] or to
allow re-use of a previously saved sequence of analysis oper-
ations [3]. This paper adopts a similar approach to monitoring
and capturing user activity, but uses this data interactively to
actively contextualize a user’s ongoing exploratory data se-
lection process.
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Intelligent Visualization
The provenance models described above are often captured as
evidence documenting how specific visualizations were con-
structed or how insights were discovered. However, the same
models capture detailed information about a user’s analytic
activity which can support a wide range of intelligent visu-
alization algorithms. For example, algorithms have been de-
signed to compare a user’s currently visualized dataset with
a representation of his/her visualization history. These have
enabled, for example, user interfaces that recommend past
visualizations that are most relevant to a user’s current ac-
tivity [30]. A similar approach has allowed for the ranking
and recommendation of relevant notes captured by a user in a
visualization notebook [31].

Using sequences of steps along a provenance model can also
support intelligent visualization applications. For example,
behavior-driven visualization recommendation [13] is a tech-
nique that analyzes user activity as it is performed to detect
patterns that suggest user intent. Alternative visualizations
are then recommended with the aim of better supporting a
user’s analytic needs. In addition, models can be collected
and indexed for subsequent searching, supporting collabora-
tion and re-use of visualization-based data selection proce-
dures [22]. At a high level, the AC approach outlined in this
paper is perhaps most similar to these intelligent visualization
techniques. However, the goal is quite distinct given AC’s
focus on data quality and bias as introduced during high-
dimensional data selection.

MOTIVATING SCENARIO AND BASELINE SYSTEM
As a motivating example for the challenges of high-
dimensional data selection, consider the Integrated Cancer In-
formation and Surveillance System (ICISS) managed by the
UNC Lineberger Comprehensive Cancer Hospital [21]. Like
similar “Big Data” resources in other domains, ICISS gath-
ers large volumes of complex real-world data from multiple
sources to build a detailed repository for retrospective analy-
sis. In particular, ICISS integrates the North Carolina Central
Cancer Registry (containing a nearly complete sample of all
cancer cases in the state) with administrative and claims data
for roughly 60% of “general population” patients from across
the state. In total, ICISS contains electronic health data for
more than six million patients.

ICISS contains a wide variety of data about these patients
including demographic data, insurance information, and lon-
gitudinal medical data (including diagnoses, lab tests, medi-
cations, and procedures). Other variables include census and
environmental data, behavioral data, and economic data. All
together, this results in a very high dimensional dataset, with
the number of distinct variables easily exceeding 100,000.

Researchers hoping to use this data resource to retrospec-
tively study the impact of various cancer treatments or in-
terventions must begin with a critical but challenging first
step: they must select—from this complex pool of over six
million patients—a representative cohort of patients to study.
This is generally accomplished by specifying a series of in-
clusion/exclusion criteria to whittle the population down to a
group that is (1) a manageable size, (2) appropriate for given

(a)

(b)

(c) (d)

Figure 1. The baseline visualization-based data selection system with
four panels: (a) a query/constraint panel; (b) a visual breadcrumb show-
ing steps in the data selection process; (c) an interactive visualization
panel allowing user-driven patient subgrouping and inclusion/exclusion
constraint definition; and (d) a panel visualizing demographic and clin-
ical event statistics for the selected cohort.

clinical question, (3) representative of the larger population
being studied.

For example, to support one recent study at ICISS, re-
searchers studying breast cancer narrowed in on a study co-
hort by along 12 dimensions, resulting in a study cohort of
just 2,640 patients (from the over six million overall). Us-
ing traditional methods, this type of iterative selection process
can take months of effort, require high levels of technical staff
support, and result in a large number of complex custom-built
SQL queries and statistical analyses.

Baseline Visual Data Selection System
To support the scenario above, a visualization-based data
selection system was developed with a design similar to
the recently introduced DecisionFlow system from Gotz and
Stavropoulos [12]. Both DecisionFlow and our prototype
adopt a design specifically created to allow ad hoc explo-
ration of high-dimensional temporal event data, making it a
good match for the electronic health data. Our baseline sys-
tem, however, provides more capabilities than DecisionFlow.
In particular, our baseline system allows users to iteratively
apply inclusion/exclusion criteria, more closely matching the
workflow outlined in the motivating scenario. We then extend
this baseline design by adding the AC methods described in
the next section of this paper.

The baseline visualization system, shown in Figure 1, com-
bines (a) a visual query panel for retrieving an initial cohort
of patients from a large-scale database; (b) a visual bread-
crumb showing the sequence of inclusion/exclusion con-
straints added during the selection process; (c) an interactive
temporal event visualization panel that supports direct ma-
nipulation for defining new constraints, and (d) an interac-
tive patient event/demographic panel that visualizes a variety
of basic statistics to help users identify interesting variables
within the high-dimensional data.

The baseline visualization design allows users to quickly
and intuitively select focused cohorts for subsequent analy-
sis. However, the presence of correlations between variables
means that selection bias is likely to occur. For example,
filtering to include only patients with emergency admissions
will skew data toward certain diseases with acute manifesta-
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tions, while filtering to include patients with certain medica-
tions can result in a strong age bias. These changes are often
hidden from user’s view, however, because—due to the high
dimensionality—they are not included in the visualization. In
this way, the iterative application of multiple filters, as is typ-
ical in the motivating scenario, can produce a final cohort that
is dramatically—and invisibly—different than the original.

ADAPTIVE CONTEXTUALIZATION METHODS
This section provides a detailed description of Adaptive Con-
textualization (AC). This includes a provenance model de-
signed to model user’s behavior and the evolving chain of
datasets that are defined during interaction. A metric is then
defined over this model to quantify differences in variable
distributions across the high-dimensional space. Intelligent
user interaction capabilities are then adopted automatically
update the model, recompute the metrics, and surface the re-
sults for visual inspection and manipulation. Together, this
AC approach provides users with clear and actionable feed-
back about the location and degree of bias introduced in re-
sponse to their interactive data selection activity.

Provenance model
At the core of the AC method is a data structure designed
to capture the provenance behind the dataset currently be-
ing visualized by the user. This provenance model must cap-
ture each of the datasets visited by a user over the course of
the data selection process with sufficient detail to support the
metric defined later in this section.

As shown in Figure 2, the provenance model is represented
as a sequential chain of datasets di linked by filters fi. Each
filter includes one or more constraints defined by users’ inter-
action with the visualization. The very first dataset visualized
by a user, d0, is the dataset returned by the user’s initial query.
The final dataset in the chain, noted as dactive, corresponds to
the user’s currently visualized dataset. All other di represent
datasets created as intermediate steps by the user as part of the
interactive data selection process. We note that this structure
represents the minimally required provenance model for AC.
This representation can be extended as required to support
additional provenance-based user interaction capabilities.

Given this basic representation, a visualization system can be
instrumented to build and maintain the provenance model in
response to user interaction. As new constraints are applied
via direct manipulation with the visualization, new datasets
are defined and added to the end of the chain. The model
supports reversion, allowing users to undo one or more filters
from the end of the chain. In response to a reversion, the chain
of datasets is first pruned back to the selected point while new
filters are extended along a new branch within the model. See
Figure 2.

Except for small datasets, it can be impractical to store a
complete copy of each dataset along the chain. Therefore,
AC only requires that two datasets be stored in full: d0 and
dactive. Intermediate datasets, if required, can be reproduced
by applying the corresponding chain of filters to d0. AC does
require, however, a detailed characterization of the distribu-
tion for each variable in each dataset di as these are needed by

d1 d2 d4d3d0

d6d5

f1 f2 f4f3

f5 f6

Figure 2. The provenance model captures the sequence of user activity
that led to the current dataset. It captures both the datasets at each step
(di) as well as the filters (fi) used to arrive at those datasets. When users
revert to earlier steps to undo filters, the model pruned (gray circles). A
new branch is then created to reflect any subsequent filters. The dataset
at the end of the model (in this case, d6) is the active dataset, dactive.

the metric defined in the next section. Therefore, each time
dactive is updated in response to user interaction, a process
runs to compute a detailed high-dimensional variable distri-
bution vector, which we note as ~vi = {v1i , v2i , ..., vni }. This
vector contains a discrete probability distribution vji for each
individual variable j in the n dimensional dataset di.

Pairwise Dataset Comparison Metric
The provenance model documents each of the steps in the
data selection process by which a user transforms d0 to
dactive. To quantify the amount of selection bias introduced,
we construct a pairwise dataset comparison metric, δ(dj , dk),
which varies from zero (to indicate that two datasets have
identical variable distributions) to one (indicting maximally
different variable distributions between datasets).

The δ metric builds upon the Hellinger distance [25, 33],
a statistical measure designed to quantify the similarity be-
tween two probability distributions. For discrete datasets,
such as those found in typical visualization applications, a
discreet probability version of the Hellinger distance can be
computed as follows. For two discrete probability distribu-
tions A = (a1, ..., an) and B = (b1, ..., bn):

H(A,B) =

√√√√1

2

n∑
i=1

(
√
ai −

√
bi)2 (1)

where n is the number of discrete values for A and B.

Conceptually, this measure will be used in our algorithm to
quantify the difference between the distribution of values ob-
served for the same variable in one dataset versus another
dataset (e.g., gender distribution in d0 versus dactive). The
uni-variate H evaluates to zero when A and B are identical,
and produces a value of one when A and B are maximally
different. We choose the Hellinger distance as the basis for
our approach because it is both (1) an established measure
for comparing distributions, and (2) it can be computed effi-
ciently for discrete probability distributions.

Within our AC algorithm, this discrete form of the Hellinger
distance can be applied directly to categorical and ordinal val-
ues. Ratio variables, meanwhile, should typically be binned
to convert them to ordinal measures before computing the dis-
crete probability distribution. This binning step can prevent
n values that are relatively large in comparison to the dataset
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(a) (b)

Figure 3. The user interface for our AC-based visualization system extends the baseline interface of Figure 1 in two key ways. First, (a) the breadcrumb
panel showing the user’s history of datasets includes a visualization of the δ metric and supports new interactions to support dataset comparisons.
Second, (b) a new Balance Panel has been added to visualize detailed ranked lists of univariate differences between datasets.

size. As n grows larger, there is risk of over-sensitivity to
small changes in variable distributions.

While H provides a uni-variate measure of similarity, the
datasets in our work are high-dimensional in nature, often
containing tens of thousands of unique dimensions. We
therefore define the multi-variate distance measure δ using a
weighted average of the uni-variate Hellinger distances across
all dimensions m in our dataset:

δ(dj , dk) =

∑m
i=1 wi ∗H(vij , v

i
k)∑m

i=1 wi
(2)

where vij and vik are the discrete probability distributions for
the ith variable datasets dj and dk; and wi ∈ {0, 1} is the
weight for the ith variable. This produces a measure which,
like the traditional uni-variate Hellinger distance, ranges from
zero (for datasets with identical variable distributions) to one
(for datasets whose variable distributions are maximally dif-
ferent).

The weights in this measure are used to ignore distances con-
tributed by dimensions that have been explicitly filtered by
the user. More specifically, variables that have been explic-
itly constrained within of filters fi found prior to the datasets
dj and dk within the provenance model are assigned weights
of zero. All other variables are assigned weights of one. In
this way, the δ measure only considers differences in vari-
able distributions that occur implicitly as a confounding side
effect.

For example, consider the motivating medical scenario. If a
dataset containing patient medical data was filtered by a user
to contain only men, the gender variable would be assigned
a weight of zero when comparing the two datasets (all pa-
tients vs. men only). This would ensure that the expected

differences in gender distribution would not contribute to the
result of the distance measure. However, hidden differences
in correlated variables (e.g., differences in the prevalence of
maternity-related procedures) would be detected.

Metric Visualization and Interaction
As users go about the data selection process using an AC-
enabled visualization system, the AC algorithm monitors
user interaction and dynamically updates the data provenance
model after each filter. As dactive changes, new δ values
(Equation 2) are computed for each new pair of datasets in
the model. The δ values, along with the individual H val-
ues computed for each variable (Equation 1) are then made
available via the user interface to highlight for users where
the largest biases have been introduced.

The δ and H metrics are then used highlight and prioritize
areas of emerging selection bias for the user. To present this
information, the baseline user interface shown in Figure 1 is
expanded to include two new intelligent visualization capa-
bilities. First, highlighted in Figure 3(a), a Contextualized
Breadcrumb view provides additional contextual information
compared to the baseline breadcrumb design and supports a
new set of user interaction capabilities. Second, highlighted
in Figure 3(b), a new Balance Panel supports detailed uni-
variate comparisons for selected pairs of datasets.

The Contextualized Breadcrumb
The contextualized breadcrumb panel is designed help users
understand (1) the filters that have been applied at each step
of the data selection process, and (2) how the dataset dactive
compares to those previously visualized datasets in terms of
underlying variable distributions. To achieve this goal, a
glyph-based design has been developed as illustrated in Fig-
ure 4. In this design, each dataset in the provenance model,
starting with d0 and continuing to dactive, is represented by
its own glyph. The glyphs are positioned from left to right,
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1,277 436 256

First dataset returned
by original query, d0

Active dataset dactive
highlighted in gold

The number represents the
size of the dataset

Dotted line and black border show
the selected baseline dataset

Height of blue area shows size
as fraction of �rst dataset’s size

Distance indicator uses
color to represent the
δ(di,dactive) measure
for each dataset di

Figure 4. The contextualized breadcrumb view uses color-coded bars
at the bottom of each glyph to encode the δ measures. Interaction ca-
pabilities revert to prior datasets or select a prior dataset for detailed
comparison in the Balance Panel.

(a)

(b)

(c)

(d)

(e)

(f )

Figure 5. The contextualized breadcrumb view grows the right as users
apply new filters. (a-d) The color-coded δ bars are updated in response
to these new datasets, providing up-to-date representation of the mea-
sured bias. (e) Mousing over the main glyph area shows the filters ap-
plied at that step, while (f) hovering over the δ bar.

with d0 appearing first. As new datasets are visited, the chain
of glyphs is extended to the right as shown in Figure 5.

Each glyph shows the size of the dataset with both a num-
ber and a blue indicator whose height is proportional to the
size of the dataset. This provides a simple bar-chart view of
the changing dataset size as filters are applied. In addition, a
color-coded rectangle, which we call a δ bar, is positioned at
the bottom of each dataset’s glyph. For each dataset di, the
color of the bar is determined by the value of δ(di, dactive).
This value is then mapped to a green-to-yellow-to-red color
scale. A red δ bar represents a dataset that has major differ-
ences in variable distributions compared to the active dataset.
A green bar, meanwhile, represents a dataset that is very sim-
ilar to the active dataset. This explains, for example, why
the active dataset (highlighted with the gold border) has a
pure green δ: it shows no bias when compared to itself (i.e.,
δ(dactive, dactive) = 0).

Users can access additional information via interaction.
Mousing over the portion of the glyph containing the blue

size indicator shows the specific filter applied to arrive at the
corresponding dataset. Meanwhile, mousing over the δ bar
provides a high-level summary of the bias detected between
the dataset and dactcive. In particular, as shown in Figure 5(f),
users can see the actual δ score as well as a list of the three
variables with the largest difference in distributions as mea-
sured by Equation 1.

Finally, users can click on any glyph in the breadcrumb to
select the corresponding dataset. If the selected dataset is
not dactive, then the breadcrumb view is updated with a dot-
ted black selection line (see Figure 4) which connects the se-
lected dataset with dactive. Coordinated with this selection,
the user interface displays the Balance Panel described below
to support detailed investigation of the differences between
the datasets. Clicking on the active dataset returns the visual-
ization to its normal exploratory data selection model. Right-
clicking on a dataset brings up a context menu that allows
users to “go back” to an earlier dataset to explore alternative
selections.

The Balance Panel
When a dataset di (other than dactive) is selected in the con-
textualized breadcrumb view, the Balance Panel (Figure 3b)
is presented to the user with the aim of supporting detailed
comparisons between the selected dataset and the user’s cur-
rently active dataset. This panel, in essence, provides users
with a prioritized visualization of the individual univariate H
scores (Equation 1) that contribute to the overall δ value.

The top of the balance panel provides a list of constrained di-
mensions. While a detailed list of active constraints are also
included in the leftmost sidebar of the user interface (where
the query is performed), this section of the panel provides
users with a reminder that the listed variables have been ex-
plicitly constrained and are therefore omitted from the data
that is displayed below it. In particular, these are the dimen-
sions for which wi is set to zero in Equation 2.

The remainder of the balance panel provides a ranked list uni-
variate visualizations. The visualizations are sorted by H
score, placing at the top of the list the variables whose dis-
tributions have been changed the most given the filters that
created dactive from di.

The balance panel is critical for users because it allows them
to understand why a large δ has developed during the data se-
lection process. An example workflow from our motivating
scenario is illustrated in Figure 6. First, a user is shown itera-
tively applying multiple filters (Figure 6(a-c)) before clicking
on the contextual breadcrumb to learn which variables have
been most biased (Figure 6(d)). The balance view tells the
user that the age variable is most biased variable. Using the
balance view to look at other datasets in the breadcrumb, the
user learns that this bias introduced by a filter to a specific
type of hospital admission.

EVALUATION
To evaluate the benefits of AC to users during high-
dimensional data selection, we conducted a user study com-
paring our AC-based visual data selection prototype to a base-
line system in which AC features were disabled. The study
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(c) (d)

(a) (b)

Figure 6. A sample interaction sequence showing a user applying multiple filters to narrow down to a narrow cohort of patients. The breadcrumb at
the top shows the growing provenance model as it expands from (a) one step to (d) four steps. In (d), the user has switched to the Balance view to inspect
the differences between two datasets as represented by the dotted black line in the breadcrumb view.

required users to perform tasks related to the selection of a
patient cohort from a database containing electronic medical
record data for approximately 30,000 patients with over 3,000
variables.1 We note that while the data was medical in nature,
the study tasks were designed to require no medical knowl-
edge or background.

Participants and Testing Environment
A total of 18 users (12 female, 6 male) were recruited to par-
ticipate in the study. All participants were college educated
and had ages within the range of 21–50. The participants
were randomly assigned into two groups of nine: a Base-
line group and an AC group. None of the participants had
any prior experience with any of the software evaluated in the
study. The study tasks were performed on a 13.3-inch laptop
computer with a display resolution of 1280 × 800 pixels and
a 60 Hz refresh rate.

Procedure
Each user took part in single study session lasting roughly one
hour. Each session began with a brief introduction to the data
that would be used during the study, followed by a tutorial
during which the moderator described the various features of
1Variables include demographics, thousands of distinct medical pro-
cedures, and other medical events (e.g., admission and discharge).

the software that would be used to complete the study tasks.
Users in the AC group were given access to the advanced AC
features described in this paper. Users in the Baseline group
were given access to a version of the same software but with
the AC-related features disabled (see Figure 1). Regardless
of group, participants were then instructed to practice with
their assigned software tool and asked to perform six specific
practice tasks. The moderator provided additional help and
instruction when needed during these practice tasks.

Once a user was comfortable using the software assigned to
her/his group, the experimental portion of the study began.
The participant was asked to perform six formal study tasks
that were very similar to the six practice tasks, but focused on
different subsets of the study dataset. Both groups of users
performed identical tasks with identical data, but with differ-
ent versions of the software.

While the formal study tasks were performed, the modera-
tor did not provide any assistance or instruction. The mod-
erator recorded both accuracy and time-to-completion for
Tasks T1–T4. Tasks T5 and T6 focused on the more sub-
jective tasks of bias assessment and confidence, respectively.
Once finished with the study tasks, users completed a post-
session questionnaire with nine 5-point Likert scale questions
(Q1–Q9) and two free-response questions that asked users to
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Figure 7. Mean time-to-completion (in seconds) for the four timed tasks
in our study (T1–T4). Error bars show the standard error. * Tasks T3
and T4 were performed significant faster by the AC group (p < 0.01).

comment regarding the most and least helpful aspects of the
software they were given to perform the tasks.

Finally, after the questionnaire, participants in both groups
were debriefed by the moderator to gather additional quali-
tative feedback. Moreover, users in the Baseline group were
given a demonstration of the full AC prototype and asked to
comment regarding the additional features.

Results and Discussion
The results from our study show that AC can help contextu-
alize the visual data selection process, and help users more
effectively detect and characterize emerging selection bias.
This section presents the results obtained from our study and
discusses the implications of those results for AC-based visu-
alization systems.

Study Tasks
Overall, users from both the AC and Baseline groups com-
pleted all tasks (T1–T6) with high accuracy. However, there
were statistically significant2 differences observed in task
completion time for two of the four timed tasks as illustrated
in Figure 7.

T1: Users were asked to compare the mortality rate for across
different patient subgroups within the same dataset. This is a
task for which AC was not expected to provide any meaning-
ful benefit, and therefore similar performance was expected
across groups. Indeed, both groups answered accurately well
with only one incorrect answer. A user in the AC group ar-
rived at the wrong answer after confusing the variable “Ad-
mission Type” with “Admission Source” and therefore select
the wrong variable for comparison. However, the user did
perform the task correctly even if the final response did not
provide the correct answer.

T2: Users were asked to apply a filter to create a new dataset,
then compare the values observed for a single variable across
the “before” and “after” datasets. Users in all groups arrived
at the correct answer, while AC user performed the task more
quickly. The difference in timing, however, was not statisti-
cally significant given our sample size. We hypothesize that
the Balance Panel proved useful for those that completed this
task in the least amount of time, but more study is required to
reach a stronger conclusion.

2Statistical significance for T1–T6 was determined using a standard
t-test comparing results between AC and Baseline.

T3: Users were next asked to compare more broadly the two
datasets produced after T2, comparing all variables rather
than a single specific dimension. All users were again able
to provide accurate answers. However, the AC arrived at their
answers in significantly less time (p < 0.01). This result sug-
gests that the Balance Panel was highly beneficial in helping
users characterize differences between datasets.

T4: Users were asked to apply an additional filter, resulting in
three datasets in the breadcrumb panel. Users were then asked
to identify which of the first two datasets was most similar to
the new active dataset that was just created. AC proved most
useful in this case. Participants in the AC group performed
the task significantly faster and provided accurate answers.
Meanwhile, participants in the Baseline group faced far more
difficulty resulting in significantly slower times (p < 0.01).
Moreover, one user in the Baseline group simply abandoned
the task claiming it was not possible to answer. The task com-
pletion time for this user were therefore omitted from the re-
sults shown in Figure 7 and our statistical analysis. The user
did remain to complete the study session, but including his
results for T4 would have produced an even stronger effect.
Moreover, we believe that this user’s behavior is emblematic
of the much more difficult cognitive work required by partic-
ipants in the Baseline group to complete this task.

T5 and T6: Unlike the previous tasks, T5 and T6 asked par-
ticipants for subjective assessments. Users asked (T5) to state
how representative the final dataset was with respect to the
original query result; and (T6) state how confident they were
in their assessment. Interestingly, both responded similarly
that the final dataset was quite biased (AC: mean of 1.89;
Baseline: mean of 1.69; on a 5 point scale with 1=“very bi-
ased”, 5=“highly representative”) and had similar levels of
confidence in their assessments (AC: mean of 3.44; Base-
line: mean of 3.88; on a 5 point scale with 1=“very unsure”,
5=“highly confident”). The differences were not statistically
significant, making it impossible to draw any firm conclu-
sions. However, we do note that the AC user were less ex-
treme, reporting in answers for both questions which, on av-
erage, were closer to the midpoint of the scale. The subjec-
tive feedback reported in the next section provides a more
nuanced view of the participants’ opinions.

Questionnaire and Moderator Debriefing
Users’ feedback gathered via the questionnaire (see Figure 8)
suggests that users clearly recognized certain benefits of us-
ing an AC-enabled visualization system for data selection3

Moreover, these benefits appear to come without any penalty
in terms of ease-of-use.

Q1–Q4: Q1 asked users how easy or hard it was to “learn
how to interpret” the visualization, while Q2 as how easy or
hard it was to “learn how to interact with” the visualization
tool. Q3 asked users to score how easy the system was to use
after the initial learning curve. The responses were similar
for both the AC and Baseline groups for all three questions,
falling in the middle of the range. This suggests the inclusion

3Statistical significance for Q1–Q9 was deterined using a Mann-
Whitney U test comparing results between AC and Baseline.
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of AC capabilities does not have any meaningful impact on
either the learning-curve of ease-of-use for the system.

From the moderator debriefings, it was observed that users
with prior experience with other data visualization tools
found the interface very easy and convenient to use, while
others took more time to become comfortable. However, even
the participants with a steeper learning curve were able to
complete the study session within the expected time.

Q5-Q7: The next three questions all suggested that the AC
group felt more empowered for key selection bias assessment
tasks. Q5 asked if it was easy to compare a dataset from
one step to a dataset from another step in the selection pro-
cess. Users in the AC group were far more likely to agree,
and the difference was statistically significant (p < 0.05).
Similarly, participants from the AC group were in stronger
agreement with Q6, which asked users if the system made
it easy to detect when a filter produce datasets that exhib-
ited large amounts of selection bias. The difference for Q6,
however, was not statistically significant given our relatively
small sample size. Finally, the AC group was significantly
(p < 0.10) more likely to agree with Q7, which asked if the
visualization made it easy to learn which dimensions were
most biased from the original dataset after applying multiple
filters.

Q8: Participants responded similarly across groups to Q8,
which asked about comparing variable distributions across
any arbitrary pair of datasets rather limiting the comparisons
to dactive. In both the Baseline and AC software prototypes,
users would need to revert to a prior dataset using the bread-
crumb view, which made this task harder to perform than
other comparisons.

Q9: Perhaps surprisingly, users from the Baseline group
agreed more strongly that the system they used in their study
session provided sufficient information to properly assess the
validity of the dataset they selected. The differences were
not statistically different. However, we believe that the users
with AC were provided with a more nuanced view that high-
lighted areas of bias. This in turn fosters deeper suspicion—
and rightly so—within the user population about the quality
of their data selection.

These results show that users in the Baseline group were
equally or more confident in their final data selection. How-
ever, this confidence is misplaced as Baseline users also found
it harder to compare datasets, harder to assess differences in
individual dimensions across steps of a data selection process,
and performed tasks more slowly and with more cognitive ef-
fort. We believe that this highlights the critical benefits AC,
without which users may dangerously proceed with an anal-
ysis of a dataset both confident of its quality and ignorant of
any underlying bias which may threaten then validity of sub-
sequent analysis results.

These conclusions were further supported by the feedback
in the open-ended questions at the end of the questionnaire.
Users in the AC group said the color-mapped indicators for
the δ measure of each dataset “useful”/“very helpful” for
dataset comparison. Meanwhile, five of the eight users in
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Figure 8. Average responses for each of the nine 5-point Likert scale
questions (Q1–Q9). Error bars show the standard error. * Questions Q5
(p < 0.05) and Q7 (p < 0.1) show statistically significant differences
between groups.

the Baseline group expressed a wish for more straightforward
ways to compare the datasets rather than manually going back
and manually comparing variable by variable.

Finally, at the very end of the study session for members of
the Baseline group, the moderator revealed the AC features
that were made available to users in the AC group. Every
Baseline user said the study tasks would have been much eas-
ier with these new features. Comments from these users af-
ter the reveal included ”nice!”, ”that’s cool”, and ”a signifi-
cant improvement if you want to compare between cohorts.”
Meanwhile, users in the AC group felt the tasks would have
been impossible without the added features, or at least would
have been much harder and taken much longer.

Interestingly, one user in the AC group brought up in the dis-
cussion that he would have had less confidence in his assess-
ments (e.g., T6, Q9) if he had been in the Baseline group
without access to the AC-based features. However, as already
discussed, the study results don’t support his assertion. In-
stead, we believe that users without AC—rather than wishing
for features such as those that AC provide—simply proceed
with false confidence because the bias being introduced dur-
ing selection is often hidden within the many variables that
have been omitted from the visualization.

CONCLUSION
Large scale datasets are being gathered in many domains with
the goal of supporting data-driven decision making. While in-
teractive data visualization can play a critical role in this pro-
cess, there is a critical mismatch between (1) the very large
number of dimensions in many complex real-world datasets,
and (2) the much smaller number of dimensions that can be
concurrently visualized using modern techniques. This gap in
dimensionality can place a user at high risk of hidden selec-
tion bias during exploratory data selection tasks. This paper
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described Adaptive Contextualization (AC), a novel approach
to interactive visual data selection that is specifically designed
to combat this challenge. The AC approach (1) captures a
model of users’ visual data selection activity, (2) computes
metrics over that model to quantify the amount of selection
bias after each step, (3) visualizes the metric results, and (4)
provides interactive tools that help users detect and assess the
sources of bias as they emerge.

The results from our formal user study provide evidence for
the benefits of our approach. However, there remain many
avenues for future work. In particular, we plan to examine
intelligent ways to help users minimize the impact of bias
through the use of intelligent data transformation operations.
In addition, we plan to explore other data quality measures
which can be computed in similar ways to address challenges
beyond selection bias. Finally, we plan to conduct more thor-
ough, longitudinal evaluations of our approach through a se-
ries of multi-dimensional long-term case studies [29].
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