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Abstract. This paper examines the role of adaptive student modeling in cognitive tutor research
and dissemination. Cognitive tutorsTM are problem solving environments constructed around
cognitive models of the knowledge students are acquiring. Over the past decade we in the
Pittsburgh Advanced CognitiveTutor (PACT) Center at Carnegie Mellon have been employing
a cognitive programming tutor in university-based teaching and research, while simultaneously
developing cognitive mathematics tutors that are currently in use in about150 schools in14 states.
This paper examines adaptive student modeling issues in these two contexts.We examine the role
of student modeling in making the transition from the research lab to widespread classroom use,
describe our university-based efforts to empirically validate student modeling in the ACT Pro-
gramming Tutor, and conclude with a description of the key role that student modeling plays
in formative evaluations of the Cognitive Algebra II Tutor.
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Intelligent tutoring systems appeared on the scene as interesting arti¢cial intel-
ligence challenges and promising educational environments in the late 1970s
(Sleeman and Brown, 1982). Our research lab began developing a type of intel-
ligent tutor we call cognitive tutors for programming and mathematics in the early
1980s for use both as psychological research tools and as teaching tools. The
initial motivation was to evaluate and develop Anderson's (1983) ACT*1 cognitive
theory, a uni¢ed theory of the nature, acquisition and use of human knowledge.
Over the following decade this cognitive tutor research served both to validate
the ACT* production-rule model of problem solving knowledge (Anderson, Con-
rad and Corbett, 1989; Anderson, Corbett, Koedinger and Pelletier; 1995),
and to re¢ne the learning assumptions in the more recent ACT-R theory

1 As the theory has evolved over the past quarter century, ACT has variously expanded as the
Adaptive Control of Thought, the Adaptive Character of Thought and currently as the Atomic
Components of Thought.
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(Anderson, 1990; 1993; Anderson and Lebiere, 1998). At the same time cognitive
tutors proved to be effective learning environments. Students working with
cognitive tutors completed problem solving activities in as little as 1/3 the time
needed by students working in conventional problem solving environments
and performed as much as a letter grade better on post-tests than students
who completed standard problem solving activities (Anderson et al. 1995). Suc-
cessive generations of the ACT Programming Tutor have been used to teach
self-paced programming courses each semester at Carnegie Mellon since 1984
and successive generations of geometry proof tutors were successfully piloted
in closely monitored ¢eld studies in the Pittsburgh Public Schools (Anderson,
Boyle and Yost, 1986; Koedinger and Anderson, 1993).

Over the past decade, our programming and mathematics tutors have supported
divergent research agenda. The ACT Programming Tutor has served as the primary
vehicle in controlled laboratory research that investigates issues in feedback timing,
transfer and student modeling. In contrast, the mathematics tutors have served
as the vehicles to explore an important educational issue: What is required for a
complex educational technology to make the transition from closely-monitored uni-
versity research projects and in-house teaching to widespread use in real-world
classrooms? This dissemination effort has been bearing fruit and in the 1999^2000
academic year our Cognitive Tutor Algebra and Geometry courses are in use in
about 150 schools in 14 states.

This paper examines the relations between adaptive student modeling and the
transition from research lab to real-world deployment. The ¢rst two sections
of this paper introduce cognitive tutor technology. In Section 1 we brie£y describe
two tutors, the APT Lisp Tutor which has been employed extensively in university
research and teaching and the Cognitive Algebra II Tutor which was developed
for widespread classroom use. Section 2 describes the common architecture
and modeling assumptions that underlie these tutors. The two sections that follow
focus on the pragmatics of real-world deployment. Section 3 summarizes ¢ve
essential factors that enabled us to bring cognitive tutor technology out of
the research laboratory and into the classroom. Success in these dissemination
efforts depended on the learning and motivational bene¢ts of adaptive student
modeling, but depended equally on making the technology more ``useable'' by
embedding it in full courses that address important educational needs and by
providing professional development support for teachers. Section 4 summarizes
differences we observed between cognitive tutor use in the university and in high
schools and describes the relatively minor tuning of student modeling that
was needed to accommodate the high school setting. The ¢nal two sections
characterize the research role of student modeling in the differing settings. As
described in Section 5, our basic research in the university has largely focused
on validating our student modeling assumptions. In contrast, student modeling
has primarily served as a formative evaluation in our high school classroom
research, as described in Section 6.
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1. Cognitive Tutor Technology

Cognitive tutors are fundamentally problem solving environments. Figure 1 displays
the ACT Programming Tutor (APT) Lisp Module midway through a typical pro-
gramming problem. The student has previously read text presented in the window
at the lower right and is completing a sequence of corresponding programming
problems. The problem description appears in the upper left window and the
student's solution appears in the code window immediately below. The interface
is similar to a structure editor; the student selects Lisp operator templates and types
constants and identi¢ers in the user action window in the middle right. In this ¢gure
the student has encoded the operator defun used to de¢ne a new operator, has
entered the operator name, declared an input variable and begun coding the body
of the program de¢nition. The three angle-bracket symbols in the ¢gure,
< EXPRI >, < PROCESSI > and < EXPRO > serve as both syntax nodes and
potential subgoal reminders. The student will either replace each node with
additional Lisp code or delete it.

The APT Lisp Tutor, like all cognitive tutors, is built around a cognitive model of
the problem solving knowledge students are acquiring. This cognitive model is an
expert system that can solve the same problems students are asked to solve and

Figure 1. The APT Lisp Tutor interface.

MODELING STUDENT KNOWLEDGE 83



in the same ways that students solve them. The cognitive model enables the tutor to
trace each student's individual problem solving path in a process we call model
tracing, providing step-by-step help as needed. The tutor provides feedback on each
problem solving action, by accepting correct actions and £agging errors instead
of accepting them. The tutor also provides problem solving advice in the lower left
window upon request of the student. There are generally three levels of advice avail-
able for each problem solving action. The ¢rst level reminds or advises the student on
an appropriate goal. The second level provides general advice on solving the goal.
Finally, the third level provides concrete advice on solving the goal in the current
context.

As the student works, the tutor also models the student's knowledge of the
component rules in the underlying cognitive model and employs this model to
individualize the student's path through the course curriculum. This student model
is displayed in the Skill Meter in the upper right corner of Figure 1. Each bar in
this window represents a component rule in the cognitive model and the shading
represents the probability that the student knows the rule. The checkmarks indicate
rules that the student has ``mastered.'' (Linton et al. 2000, describe a related skill
meter that depicts student knowledge of text editing commands).

Figure 2 displays the interface for a vertical motion lesson in the Cognitive
Algebra II Tutor, near the conclusion of a problem. The problem statement
window in the upper left corner describes a problem situation, as in the program-

Figure 2. The Cognitive Algebra II Tutor interface near the end of a vertical motion problem.
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ming tutor, and in this example poses seven questions. Students answer the ques-
tions by ¢lling in the worksheet in the lower left corner. Students (1) identify rel-
evant quantities in the problem and label the columns accordingly; (2) enter
appropriate units in the ¢rst row of the worksheet; (3) enter a symbolic formula
for each quantity in the second row; and (4) answer the questions in the successive
table rows. Students graph the function with the graphing tool in the lower right
corner. The quadratic formula tool in the upper right is available for use in answer-
ing questions, and is one example of a suite of symbol manipulation tools in the
tutor. Again, this tutor is constructed around a cognitive model of algebra problem
solving knowledge and provides both feedback on problem solving actions and
problem solving advice upon request of the student. This tutor also displays its
model of the student's knowledge state in a Skill Meter (not visible in the Figure
2 screen con¢guration) and employs the model to tailor the problem sequence
for each student.

2. Student Modeling Assumptions

The cognitive model underlying each cognitive tutor re£ects the ACT-R theory of
skill knowledge (Anderson, 1993). This theory assumes a fundamental distinction
between declarative knowledge and procedural knowledge. Declarative knowledge
is factual or experiential. For example, the following sentence and example on
equation solving in an algebra text would be encoded declaratively:

When the quantities on both sides of an equation are divided by the same value, the
resulting quantities are equal.

For example, if we assume 2X � 12, then we can divide both sides of the equation
by 2, and the two resulting expressions will be equal, X � 6.

ACT-R assumes that skill knowledge is encoded initially in declarative form
through experiences such as reading and that early in practice the student solves
problems by applying general procedural rules to the domain-speci¢c knowledge.
As a consequence of this early activity, domain-speci¢c procedural knowledge is
acquired and with practice, both declarative and procedural knowledge are
strengthened so that performance grows more rapid and reliable. Like many
cognitive theories (cf. Kieras and Bovair, 1986; Newell, 1990; Reed et al., 1985)
ACT-R assumes that procedural knowledge can be represented as a set of indepen-
dent production rules that associate problem states and problem-solving goals with
actions and consequent state changes. The following goal-oriented production
can be derived from the declarative example above through practice in solving
equations:

IF the goal is to solve an equation for variable X and the equation is of the form
aX � b,

THEN divide both sides of the equation by a to isolate X .
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2.1. ADAPTIVITY: MODEL TRACING

Each cognitive tutor employs its embedded cognitive model for two purposes, which
we call model tracing and knowledge tracing. In model tracing the goal is to follow
each student's individual solution path through a complex problem space that
can contain many successful paths. In each problem solving cycle the student selects
an interface element to work on (e.g. a worksheet cell in the mathematics tutors or a
syntax node in the programming tutors), and performs a problem solving action (e.g.
typing a numeric expression or a programming operator name). Each interface
element is linked to an internal representation of a problem solving goal with further
links to relevant information in the current problem solving state. The tutor applies
its production rules to the goal the student implicitly selects and generates a set
of one or more applicable rules that satisfy the goal. The student's action is compared
to the actions this set of applicable rules would generate. If the student action
matches a production rule action it is assumed that the student has ¢red the same
cognitive rule and the actions are carried out. If not, the tutor reports that it does
not recognize the student's action.

Tracing the student's step-by-step solution enables the tutor to provide indi-
vidualized instruction in the problem solving context. Prototypically our tutors pro-
vide immediate feedback on each problem solving action: recognizably correct
actions are accepted and unrecognized actions are rejected. Our tutors do not gen-
erally try to diagnose student misconceptions and do not automatically give problem
solving advice. Instead, they allow the student maximum opportunity to reason
about the current problem state. The tutors do provide a feedback message if
the student appears confused about the nature of the current problem state or a
problem solving action. For example, the Cognitive Algebra II Tutor will alert a
student who enters the right answer for one worksheet cell in an adjacent cell.
The tutors provide goal-directed problem solving advice upon request. As described
earlier, the tutors provide three general levels of advice: a reminder of the current
goal, a general description of how to achieve the goal, and a description of exactly
what problem solving action to take. Each of these three levels may be represented
by multiple messages.

2.2. ADAPTIVITY: KNOWLEDGE TRACING

The goal in knowledge tracing is to draw inferences about the student's growing
knowledge of the component rules in the cognitive model. Our cognitive tutors
employ a simple learning model for this purpose, in which each production rule
can only be in one of two states; it has either been learned by the student or remains
unlearned. A rule can make the transition from the unlearned to the learned state
prior to problem solving in the tutor (e.g. through other classroom activities) or
at each opportunity to apply the rule in problem solving. The model does not incor-
porate forgetting; rules do not make the transition in the other direction. Perform-
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ance in applying a rule is governed by its learning state, but only probabilistically. If
a rule is in the learned state, there is some chance the student may nevertheless slip
and make a mistake. If the rule is in the unlearned state, there is some chance
the student will guess correctly. As the student practices, the tutor maintains an
estimate of p�L� for each rule, the probability that the rule is in the learned state.
At each opportunity to apply a rule in problem solving, the estimate of p�L� for
the rule is updated, contingent on whether the student's action is correct or not.

The Bayesian computational procedure employs two learning parameters and two
performance parameters, as displayed in Figure 3. At the nth opportunity to apply a
rule, the following equations are employed to update the probability that the rule is
in the learned state, contingent on whether the student performs a correct problem
solving action (C) or commits an error (E):

p�Ln j Cn� � p�Lnÿ1 j Cn� � �1ÿ p�Lnÿ1 j Cn�� � p�T � �1�

p�Ln j En� � p�Lnÿ1 j En� � �1ÿ p�Lnÿ1 j En�� � p�T � �2�
That is, the probability that a rule is in the learned state following the nth oppor-
tunity to apply the rule, p�Ln�, is the sum of two probabilities: (1) the posterior
probability that the rule was already in the learned state contingent on the evi-
dence (whether the nth action is correct or an error); and (2) the probability that
the rule will make the transition to the learned state if it is not already there.
The posterior probabilities p�Lnÿ1 j Cn� and p�Lnÿ1 j En� expand as Bayes theorem,
as shown here:

p�Lnÿ1 j Cn� � p�Lnÿ1� � p�C j L�=�p�Lnÿ1� � p�C j L� � p�Unÿ1� � p�C j U�� �3�

p�Lnÿ1 j En� � p�Lnÿ1� � p�E j L�=�p�Lnÿ1� � p�E j L� � p�Unÿ1� � p�E j U�� �4�
This computational scheme is a variation of one described by Atkinson (1972) and
following Atkinson, the probability p�T � of a transition from the unlearned to the

Figure 3. The learning and performance parameters in knowledge tracing.

p�L0� Initial
Learning

the probability a rule is in the learned state prior to
the ¢rst opportunity to apply the rule

p�T� Acquisition the probability a rule will move from the unlearned to
the learned state at each opportunity to apply the rule

p�G� Guess the probability a student will guess correctly if a rule
is in the unlearned state

p�S� Slip the probability a student will slip (make a mistake)
if a rule is in the learned state
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learned state during procedural practice is independent of whether the student
applies the rule correctly or incorrectly.

In knowledge tracing the tutor is seeded with a best ¢tting set of four parameter
estimates (two learning parameters and two performance parameters) for each
of the problem solving rules. These estimates are derived in advance by ¢tting
the knowledge tracing assumptions to a full set of tutor performance data for a
representative group of students. The model's learning and performance
assumptions enable us to predict the probability that a student will correctly apply
an appropriate rule at each step in problem solving with Equation 5:2

p�Cis� � p�Lrs� � �1ÿ p�Sr�� � �1ÿ p�Lrs�� � p�Gr� �5�
That is, the probability that a student swill perform a correct problem solving action
on step i, p�Cis�, is the sum of two products: (1) the probability that an appropriate
rule r is in the learned state for student s times the probability of a correct response
if the rule is in the learned state �p�Sr� is the slip parameter in Figure 3); and
(2) the probability that an appropriate rule r is not in the learned state for student
s times the probability of a correct guess if the rule is not in the learned state
�p�Gr� is the guess parameter in Figure 3). We derive best ¢tting parameter estimates
for each rule by ¢tting the model's learning and performance equations to the
sequence of correct and incorrect applications of the rule by each student in a rep-
resentative group that has worked through the tutor curriculum.

Individual differences among students are also dynamically incorporated into the
model in the form of four weights, one for each of the four parameter types,
wL0, wT , wG and wS. In adjusting the model for a student, each of the four prob-
ability parameters for each rule is converted to odds form �p=�1ÿ p��, multiplied
by the corresponding subject-speci¢c weight, and the resulting odds converted back
to a probability. These weights are re-estimated dynamically in each curriculum sec-
tion by means of regression equations that relate raw error rate to best-¢tting
weights for a representative group of students. Each section begins with a small
¢xed set of required problems. When the student completes the required problems
in each section, the regression equations are used to estimate the individual differ-
ence weights from the student's cumulative total errors across all required problem
sets in the lesson. These revised weights are employed to revise the learning par-
ameter estimates for all rules before remediation begins.

2.3. COGNITIVE MASTERY LEARNING

The goal of student modeling and adaptivity in cognitive tutors is to promote
ef¢cient learning and to foster change in the student's (knowledge) state, more than
to accommodate student preferences and promote ef¢cient performance relative
to the student's state. In this regard, our objectives are similar to OWL (Linton

2 This equation assumes the student is always on a recognizable solution path, which is essentially
true, since the model tracing process does not accept incorrect problem solving actions.
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et al., 2000) and P-TIMS (Strachan, Anderson, Sneesby and Evan, 2000) (and less
related to the efforts described in Billsus and Pazzani, 2000, and Fink and Kobsa,
2000). Unlike OWL and P-TIMS, however, cognitive tutors are primarily learning
environments constructed around de¢ned problem solving tasks and cognitive
models, so they can interpret each student action (model tracing) and draw
inferences about the student's knowledge state from each student action (knowledge
tracing). Model tracing promotes learning by providing problem solving advice
customized to the student's problem solving state. Knowledge tracing is employed
in the tutors to promote cognitive mastery learning. In cognitive mastery learning,
each tutor curriculum section introduces a set of cognitive rules and the tutor pro-
vides a set of problems that draw upon those rules. The sequence of problems in
each section is tailored to the student's needs and the student continues solving prob-
lems in a section until reaching a criterion probability of knowing each one of the
rules in the set. That mastery criterion in the tutor is a knowledge probability of
0.95. This procedure is similar to individualized student-paced mastery learning sys-
tems based on Keller's Personalized System of Instruction, which have been shown
to be effective in raising mean achievement scores (Block and Burns, 1977; Kulik,
Kulik and Bangert-Drowns, 1990; Kulik, Kulik and Cohen, 1979). In these systems,
however, practice and assessment are usually treated as distinct phases. Students
work through study/test cycles until obtaining a criterion test performance level.
In knowledge tracing, by contrast, assessment is continuously integrated with
practice; students simply continue problem solving until reaching a hypothetical
knowledge state. Tests can be used to validate the tutor's mastery decisions but
are not employed in the tutor to make mastery decisions.

3. Disseminating Cognitive Tutors in the Real World

We have developed three cognitive mathematics tutors that are currently in use in
real-world mathematics classrooms, beginning with a Cognitive Algebra I Tutor
(Koedinger, Anderson, Hadley and Mark, 1997), and more recently a Cognitive
Geometry Tutor (Koedinger and Cross, 1999) and the Cognitive Algebra II Tutor
(Corbett, Trask, Scarpinatto and Hadley, 1998). Cognitive Tutor Algebra and
Geometry courses that employ these tutors are being taught in about 150 schools
in 14 states this year, including public and private schools, middle and high schools
and urban, suburban and rural schools.

How did adaptive student modeling contribute to the success of this dissemination
effort? We have identi¢ed ¢ve factors that were critical in the successful transition
from the research lab to widespread mathematics classroom (Corbett, Koedinger
and Anderson, 1999; Corbett, Koedinger and Hadley, in press):

. Opportunity: Addressing an Important Need

. Usability: Integrated Courses and Technology
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. Usability: Professional Development and Support

. Effectiveness: Achievement Gains

. Effectiveness: Classroom Impact

Note that while ``scaling up'' issues can pose a formidable barrier in real-world
deployment of user modeling and user-adapted systems (Billsus and Pazzani, 2000;
Linton, et al., 2000), they did not pose a challenge in the transition of cognitive
tutors to real-world classrooms. This is largely because model tracing and knowledge
tracing computations are relatively fast on modern workstations and users are more
tolerant of any delays that do occur in a learning environment. In fact, the ¢rst three
factors in the list are not directly related to student modeling at all. Instead, they are
concerned with integrating cognitive tutor technology into an effective and useable
educational package that addresses an important educational goal. In contrast,
the last two issues concerning demonstrable effectiveness depend directly on model
tracing and knowledge tracing. In the remainder of this section, we expand brie£y
on each of these topics. In the following section, we discuss the relatively minor
tuning of adaptive student modeling that was prompted by this transition from
the lab to the classroom.

3.1. OPPORTUNITY: ADDRESSING AN IMPORTANT NEED

Teachers and administrators are actively looking for new solutions in K-12 math-
ematics for three related reasons: (a) American high school students lag behind
the rest of the developed world in high school mathematics achievement (U.S.
Department of Education, 1998); (b) the National Council of Teachers of Math-
ematics (NTCM, 1989) has recommended far-reaching reforms in high school math-
ematics curriculum, teaching and assessment; and (c) at least 49 states have or are
de¢ning statewide standards and assessments that increasingly are employed to
evaluate schools and govern student graduation.

3.2. USABILITY: INTEGRATED COURSES AND TECHNOLOGY

Rather than developing cognitive tutors as supplemental activities that teachers
need to integrate into their classes, we developed full Algebra and Geometry
courses with the respective cognitive tutors as essential components. These
courses provide a paper curriculum (combination text and workbook), a
teacher's edition of the curriculum, student (homework) assignments, assessments
and a cognitive tutor user's guide. Typically, three class periods per week employ
small-group problem solving activities and whole-class instruction to introduce
topics. Students spend the remaining two class periods a week working with
the cognitive tutors in applying these constructs in individual problem solving
activities.
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3.3. USABILITY: PROFESSIONAL DEVELOPMENT AND SUPPORT

All new teachers complete multi-day pre-service training sessions that cover (a)
NCTM curriculum, teaching, and assessment standards addressed by the courses;
(b) management of small group problem solving; (c) cognitive tutor technology;
and (d) effective teacher activities in the cognitive tutor lab. In addition, we install
the cognitive tutor software on-site, and provide both telephone and email hotline
support for both curriculum and technical questions.

3.4. EFFECTIVENESS: ACHIEVEMENT GAINS

Assessing the effectiveness of our cognitive tutor mathematics courses poses an
interesting challenge, because these courses have different objectives than traditional
academic mathematics courses. The cognitive tutor courses place a greater emphasis
on the application of algebra and geometry to authentic problem situations and
reasoning among multiple representations (tables, graphs, symbolic expressions,
natural language), while traditional courses place a greater emphasis on formal
computation. To evaluate the effectiveness of the cognitive tutor courses, we admin-
ister multiple tests that assess both the new curriculum standards targeted in our
cognitive tutor classes and traditional standards targeted in comparison academic
mathematics classes. In the ¢rst assessment of Cognitive Tutor Algebra I in
1993^1994 (Koedinger et al., 1997) Cognitive Tutor Algebra I students scored twice
as high on new-standards assessments of Algebra problem solving and reasoning
among multiple representations and 10% higher on standardized test assessments
of traditional Algebra goals. These results were subsequently replicated in Pittsburgh
and in Milwaukee.

Does adaptive student modeling contribute to this success? In these
quasi-experimental summative evaluations of full courses, several factors vary
between the cognitive tutor condition and the comparison condition, including
course objectives and classroom teaching style. We can only associate the relative
bene¢ts in the cognitive tutor condition with the full course package, rather than
with the technology speci¢cally. However, we can observe that the magnitude of
the relative achievement gains in the cognitive tutor courses is comparable with
results we have obtained in direct experimental evaluations of model tracing in
the programming and geometry proof tutors (Anderson et al., 1995) and of knowl-
edge tracing in the programming tutor (Corbett and Anderson, 1995).

3.5. EFFECTIVENESS: CLASSROOM IMPACT

Janet Scho¢eld (1995) conducted an extended ¢eld study evaluating the impact of
cognitive tutors in a Pittsburgh mathematics classroom. She documented a
transformation in the teacher^student relationship in which teachers serve more
as collaborators in learning. Teachers focus more attention on students who are
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having problems, compared to traditional whole-class instruction, and can engage in
prolonged interactions with individual students while the other students in the
classroom are making productive problem solving progress with the cognitive tutors.
Scho¢eld also documented enhanced student motivation. She observed that students
arrive in class on time or early, log-in and continue working through the period and
often after the bell.

These effects on the teacher^student relationship and on student motivation can
be directly related to adaptive student modeling. Students can take more control
of their own learning and teachers can focus on extended interactions with students
who are struggling primarily because model tracing is giving most students just
the help they need to make productive progress. Scho¢eld notes that one source
of student motivation in the cognitive tutor lab classroom is the competition to drive
up the learning probability shadings in the Skill Meter and to be the ¢rst to have the
skills checked off. We also believe that students are motivated because model tracing
provides just the support they need to successfully complete challenging mathemat-
ics problems.

In summary, the successful transition of cognitive tutor technology from the
research laboratory to widespread classroom use depended in part on the success
of adaptive student modeling and in part on embedding the technology in a complete
educational package that addresses an important need. This transition did not
require any substantial revisions of student modeling nor of cognitive tutor tech-
nology more generally. In the following section we examine differences between
the university research environment and high school classroom environment and
the relatively minor tuning of student modeling that accompanied widespread dis-
semination.

4. Comparing Programming Tutor Research in the University and
Mathematics Tutor Research in the Real-World

While the cognitive tutor architecture is robust across settings, a variety of differ-
ences can be identi¢ed between the use of the APT Lisp Tutor in research and
teaching at Carnegie Mellon and the use of the Cognitive Mathematics Tutors
in middle and high schools. Some of these differences have an impact on our
use of student modeling in the two domains.

4.1. STUDENT POPULATIONS

The college students who enroll in our self-paced programming course and partici-
pate in cognitive tutor research studies at Carnegie Mellon are academically very
successful. For example, their average score on the Mathematics SAT I, a popular
U.S. standardized college admission test, is 650, or about 1.5 standard deviations
above the national mean. In contrast, the Algebra and Geometry cognitive tutor
mathematics courses are employed with a wide range of mainstream and high-risk
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student populations. The majority of students in our principal Pittsburgh high school
research and development site do not attend four-year colleges and most do not take
the Math SAT I. When we administer Mathematics SAT I questions, average scores
are equivalent to about 400, or about 1 standard deviation below the national mean.

This difference in student populations does not affect research design. While test
performance levels are lower in absolute terms in the high school mathematics
research than in the college-level programming research, it is worth noting that
the learning gains supported by cognitive tutors technology are similar in both
domains (Anderson et al., 1995; Koedinger et al., 1997).

4.2. TIME ON TASK IN THE COGNITIVE TUTOR CLASSROOM

One important difference in the way cognitive tutors are deployed at the college and
high school levels concerns time on task. The APT Programming Tutor is employed
in self-paced introductory programming courses. Students come in on their own
schedule to read on-line text and complete programming problems. Students spend
as much time as is required to reach cognitive mastery in completing the tutor
lessons. Students in the Cognitive Tutor mathematics courses work with the
cognitive tutors during their regular mathematics periods, typically two class periods
out of ¢ve periods per week. Over the entire academic year students spend only about
25^45 hr total in cognitive computer activities.

Given the ¢xed time on task available in the cognitive tutor mathematics
classrooms and the need for students to complete the majority of the curriculum,
we employ a modi¢ed version of cognitive mastery in the mathematics tutors.
The tutors do monitor students' growing knowledge of the component rules in
the cognitive model and tailor the sequence of problems to each student's
weaknesses. However, a maximum number of problems is set in each curriculum
section. A student ``graduates'' from each section if he or she has mastered every
one of the component skills, but is ``promoted'' after completing the maximum
number of problems, even if all of the component skills have not been ``mastered''.
For example, last year in our Pittsburgh High School research site, the graduation
rate averaged 18% across sections. That is, an average of 18% of students mastered
all the skills and ``graduated'' in each curriculum section.

4.3. TEACHER SUPPORT AND HELP MESSAGE CONTENT

Students working with the APT Programming Tutor at Carnegie Mellon work in an
unsupervised laboratory. Under these circumstances, it is essential that the
bottom-level help message for each problem solving step advise the student on
an exact problem solving action that will succeed. In contrast, there is always a
teacher present in the high school cognitive mathematics tutor labs and the help
messages are designed to encourage effective teacher interactions with students.
Multiple levels of help are available that advise the student on an appropriate goal
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and provide progressively more speci¢c advice on achieving the goal. However, the
bottom-level help message often stops short of providing a concrete acceptable prob-
lem solving action, so that the student will ask the teacher for help instead of simply
copying a literal action offered by the tutor. One of the main goals in pre-service
teacher training is to encourage the teacher not to simply provide an answer in
response to a student's help request but to engage the student in a discussion of
the problem solving situation.

4.4. ASSESSMENTS

There are several differences in achievement testing in the university-based research
and high school mathematics projects concerning (a) experimental control; (b) com-
parison groups; and (c) test structure. In our university-based research, students
work entirely independently. In our high school deployments, in contrast, students
in each class are all in the computer lab simultaneously and students at adjacent
workstations help each other to varying degrees. This help can be educationally
effective, but can reduce the validity of knowledge tracing. In the university research
we have tight control over comparison conditions. Generally we hold curriculum
content constant and manipulate tutorial variables. For example, we may vary
the content or timing of help messages for different groups of students working
through the same sequence of programming problems. In our high school mathemat-
ics dissemination project, course content and cognitive tutor technology are typically
confounded, since the comparison students are in traditional mathematics courses
which are not using the tutor and do not have the same course objectives. As
mentioned above, we can compare courses as a whole, by developing summative
evaluations that target both cognitive tutor course objectives and traditional
objectives, but cannot assess the effectiveness of the technology speci¢cally, as
we have in the university setting. Finally, achievement tests in the APT Lisp Tutor
research are typically conducted on-line, either in the same interface as the tutor
(but without tutorial support) or in conventional programming environments.
The programming exercises themselves are just like the tutoring exercises. Our high
school mathematics assessments, in contrast, emphasize transfer, both to paper
and pencil and to problem structures that vary from the tutor interface. Con-
sequently, research on the validity of student modeling, as described in the next
section, has focused on the programming tutor.

4.5. DOMAIN AND INTERFACE DIFFERENCES ^ ADAPTING TO STUDENT HISTORY

Differences in the problem domains and interfaces have led us to introduce a
modeling feature to the Cognitive Algebra II Tutor that is not present in the
APT Lisp Tutor. In the Algebra II Tutor we have incorporated a minimal model
of problem solving history. The APT Lisp Tutor fosters top-down program
decomposition. For example, only when the student selects the defun operator in
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the Lisp module, do editor nodes for the function name, parameters and body
appear. Similarly, in the function body, editor nodes for arguments only appear
after the function has been encoded. Each student action and help request can
be related to an explicit superordinate goal in the existing problem state and the
order of previous student actions has been relatively unimportant.

Cognitive Algebra II Tutor problems have a contrasting structure, as displayed in
Figure 4. In this general linear form problem students answer ¢ve questions. They
answer these questions by ¢lling in a blank worksheet with ¢ve columns and seven
rows. The end product of this problem solving activity is displayed in Figure 5.
Students are required to label a column before ¢lling in any cells in the column,
but there are no other constraints on the order in which the student can ¢ll in cells,

Figure 4. A general linear form problem situation and questions.

PROBLEM SITUATION

We own a company that makes and sells two di¡erent models of televisions.We need to decide
how many Optimas and how many Futuras to make. The Optima sells for $250 and the Futura
sells for $500. Our goal is to reach $750,000 in total income.

QUESTIONS

(1) If the company makes $300,000 from selling Optimas, how much income do we need from
selling Futuras?

(2) If the company sells 500 Futuras, how much income do we need from selling Optimas?
(3) If the company makes $600,000 from Futuras, how many Optimas do we need to sell?
(4) If the company sells no Futuras, how many Optimas do we need to sell?
(5) If the company sells 1000 Optimas, how many Futuras do we need to sell?

Figure 5.Worksheet solution to questions displayed in Figure 4.

Number of Number of Optima Futura Total
Optimas Futuras Income Income Income

Units tvs tvs $ $ $

Formulas x y 250x 500y 250x� 500y

1 1200 900 300,000 450,000 750,000

2 2000 500 500,000 250,000 750,000

3 600 1200 150,000 600,000 750,000

4 3000 0 750,000 0 750,000

5 1000 1000 250,000 500,000 750,000
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and the tutor can evaluate any problem solving action. A challenge arises in adapting
to the student's cognitive state when the student asks for help. Help messages are
organized around the questions asked in the problem and to adapt to the temporal
sequence in which the student is answering questions, the tutor maintains a record
of which question the student addressed in his or her immediately prior problem
solving action. For example, if the student has just typed 5000 in the lower left cell
of the table, the tutor records that the student was most recently working on Ques-
tion 5. This enables the tutor to adapt help responses in three ways:

. If the student asks for help without selecting a cell in the worksheet, the tutor
will look for the last question the student worked on and provide help on
the next suitable step in that question.

. If the student asks for help in labeling a blank column, the tutor will check the
last question the student was working on and and current state of that question
in providing help.

. Finally, if the student asks for help in any cell corresponding to a question
value, the message is couched in a phrase that is aligned with the student's
most recent action (e.g. ``Yes, let's start a new question'' or ``To continue with
Question 2'' or ``Let's go back to Question 4'').

5. Basic Student Modeling Research ^ Validating Knowledge Tracing in the
APT Programming Tutor

In the ¢nal sections of the paper, we contrast the role of adaptive student modeling in
our university basic research and in formative evaluations of the cognitive tutors in
high school classrooms. In this section we review basic research that employed
the APT Lisp Tutor to empirically validate knowledge tracing and cognitive mastery
learning. In the following section we examine the formative use of knowledge tracing
to re¢ne the cognitive model in the Cognitive Algebra II Tutor.

5.1. VALIDATING KNOWLEDGE TRACING

As described in Section 2.2, the learning and performance assumptions that underlie
knowledge tracing can be used to predict student problem solving performance both
in the tutor and in a post-test environment. A sequence of studies demonstrated that
when four individual difference weights, one for each of the two learning and two
performance parameters, are introduced for each student (as described in Section
2.2), the knowledge tracing model that guides cognitive mastery learning predicts
student test performance quite accurately (Corbett and Anderson, 1995). Table 1
displays the results from the ¢nal study in this sequence. In this study 25 students
worked through ¢ve sections in the APT Lisp Tutor curriculum, and completed
cumulative tests following the ¢rst, fourth and ¢fth sections. In each section students
completed a small set of required problems, then completed additional remedial
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problems until reaching the cognitive mastery criterion for every cognitive rule in the
section. Across all ¢ve sections, students completed 38 required problems and an
average of 29 remedial problems.

The students' average actual performance level (percent correct) on each of the
three tests is displayed in the ¢rst column of Table 1. Overall accuracy is high
(averaging 83% correct) as is expected since students have worked to reach cognitive
mastery in the tutor. The knowledge tracing model's average predictions of student
performance for the three tests is displayed in the second column. As can be seen,
the model predicts students' average accuracy quite well for the three tests, although
it consistently overestimates student performance by about 8%. The third column in
the table presents a measure of how well the model predicts each individual student's
performance. It displays the correlation of actual test performance and predicted test
performance across the twenty-¢ve students. The ¢rst test is fairly easy with rela-
tively little variation in actual performance among students and the correlation
coef¢cient, r � 0:24 is not signi¢cant. The following tests are more challenging with
a greater range in actual performance across students. The correlation of actual
and expected performance on the second test is marginally reliable
(r � 0:36; p < 0:10) and the correlation on the third test is reliable and quite strong
(r � 0:66; p < 0:01).

In addition to predicting student performance well, the knowledge tracing process
was quite successful in guiding students to mastery. Fifty-six percent of students in
this cognitive mastery learning condition achieved ``A'' level performance (90%
correct) in this study. A second group of 21 students completed just the 38 required
problems in the ¢ve curriculum sections without any remediation and only 24%
of students in this comparison group reached ``A'' level performance.

5.2. LIMITATIONS OF COGNITIVE MASTERY LEARNING

While the knowledge tracing model is quite accurate, it consistently overestimates
test performance accuracy by almost 10%, as in Table 1. Two follow-up studies
examined the nature of this consistent overestimation (Corbett and Knapp, 1996;
Corbett and Bhatnagar, 1997). These studies explored three possible sources of

Table1. Actual and expected proportion of exercises completed correctly across students in each of the
three tests (Corbett and Anderson, 1995).

Mean proportion correct

Actual Expected Correlationa

Test 1 0.88 0.94 0.24
Test 2 0.81 0.89 0.36
Test 3 0.81 0.86 0.66
a the correlation coe¤cient, r, of actual and expected accuracy across students
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the model's consistent over-prediction, (a) a decrease in student motivation between
tutor problem solving and testing; (b) forgetting between tutor problem solving and
testing; and (c) incomplete transfer of knowledge between the tutor environment
and the test environment. These studies argued against a motivational explanation,
since the students who fell short of predicted test performance actually worked
harder on the test than the more successful students, as measured by time to complete
the test. Similarly, the forgetting hypothesis was rejected because the order in which
material was presented across successive tutor curriculum sections (hence the reten-
tion intervals), was unrelated to the magnitude of the model's overprediction of
performance on the cumulative tests.

Instead, it was argued that the model's systematic tendency to overestimate per-
formance arose because some students were learning suboptimal productions that
were suf¢cient to complete the tutor problems, but did not transfer to immediate
tests. To take a simple example, students may acquire rules that hinge on speci¢cs
of the tutor interface, e.g. use an operator that is not yet checked off in the skill
meter. Students who have not adequately learned prerequisite declarative knowl-
edge will be most vulnerable to forming such suboptimal rules and to performing
below expectations in testing. We assessed students' factual knowledge and found
a strong, statistically signi¢cant inverse correlation between each student's factual
knowledge score and the extent to which the tutor's knowledge tracing model over-
estimated the student's test performance, r � ÿ0:63. That is, the weaker the
student's factual knowledge, the more the model overestimates the student's test
performance. When we developed a revised knowledge tracing model that incor-
porates students' declarative knowledge scores to estimate the probability that
students learn productions that transfer to the tests, we obtained a better ¢t to
a set of test data displayed in Table 2. In this study sixteen students worked
to cognitive mastery in the ¢rst ¢ve sections of the APT Lisp Tutor curriculum
and completed three cumulative tests as in the previous experiment. The left side
of Table 2 presents the ¢t of the standard knowledge tracing model and the results
replicate the pattern in Table 1. Again, average actual test performance in the ¢rst
column is high, averaging 91% correct. The second column displays the model's
average performance predictions. Again these average predictions are quite

Table 2. Actual and expected proportion of exercises completed correctly across students in three tests.

Standard knowledge tracing ¢t Revised ¢t with factual knowledge

Mean proportion correct Mean proportion correct

Actual Expected Correlationa Actual Expected Correlationa

Test 1 0.98 0.97 ÿ0.28
Test 2 0.90 0.93 0.34 0.90 0.91 0.55
Test 3 0.85 0.90 0.57 0.85 0.85 0.81
a correlation of actual and expected test accuracy across students.
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accurate, although they slightly overestimate student performance. The cor-
relations of actual student performance and the model's performance predictions
across the sixteen students are displayed in the third column. The pattern of cor-
relations largely replicates the pattern in Table 1, although only the correlation
for Test 3 is reliable (r � 0:57; p < 0:05). The right side of Table 2 displays the
¢t of the revised model to the results of the second and third tests. This model
employs a measure of each student's factual knowledge to estimate the probability
that the students are learning rules that will transfer to test. As can be seen
the model predicts average test performance almost perfectly and the correlation
of actual and predicted performance across students increases by more than 20
points for each test.

While cognitive mastery learning, as guided by knowledge tracing, is effective in
raising student test scores, this analysis of student factual knowledge indicates that
the bene¢ts of providing additional remedial problems of the same type is ultimately
limited by the quality of the student's declarative knowledge. Consequently, in a
subsequent study we modi¢ed the APT Lisp Tutor interface to provide augmented
feedback during problem solving on factual knowledge about data structures
and operator functionality (Corbett and Trask, 2000). This factual knowledge
was speci¢cally relevant to the problem solving tasks that are assessed in the second
test in Tables 1 and 2. To assess this augmented feedback two groups of students
worked to cognitive mastery in the study. One group of eighteen students employed
the standard programming tutor interface and the other group of 21 students
employed the augmented feedback interface. The impact of this manipulation on
Test 2 is displayed in Table 3.

The number of tutor problems required to reach cognitive mastery learning is
displayed in the ¢rst column for each interface in the table. As can be seen, these
numbers are almost identical, 39.8 vs. 38.7. However, subsequent test accuracy
is higher in the augmented feedback condition. Mean test accuracy is reliably
higher, 0.96 vs. 0.86, F �1; 37� � 8:7; p < 0:01. Even more impressively, the
proportion of students who reach ``A'' level performance (probability correct
greater than or equal to 0.90) is substantially, and reliably higher in the augmented
feedback condition than in the standard feedback condition, 0.90 vs. 0.50,
(z � 2:8; p < 0:01).

Table 3. The number of tutor problems required to reach cognitive mastery in the standard and
augmented feedback APT Lisp Tutor interfaces and subsequent test performance

Standard interface Augmented feedback interface

Tutor
problems

Test
p(correct)

Test
p > 0:9

Tutor
problems

Test
p(correct)

Test
p > 0:9

Test 2 39.8 0.86 0.50 38.7 0.96 0.90
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To summarize, this sequence of knowledge tracing studies indicates that when (a)
individualized curriculum sequencing is guided by the tutor's knowledge tracing
model; and (b) augmented feedback is employed to support the optimal encoding
of conceptually dif¢cult rules in the cognitive model, a cognitive tutor can realize
the previously unful¢lled promise of mastery learning in helping almost all students
become ``A'' students.

Figure 6. Problem statement for a vertical motion quadratics problem.

PROBLEM SITUATION: A cannon shoots a cannon ball directly up into the air with an initial
velocity of 640 ft/s. De¢ne a variable for the time in seconds and use this variable to write the
expression for the height of the cannonball.

QUESTIONS

(1) How high will the cannonball be in 5 s?
(2) How high will the cannonball be in 7 s?
(3) How many seconds after it was shot will the cannonball ¢rst be 1000 ft high?
(4) How many seconds after it was shot will the cannonball next be 1000 ft high?
(5) What is the maximum height that the cannonball will reach?

PLEASE GRAPH THE HEIGHT OF THE CANNONBALL AS A FUNCTION OF THE
TIME SINCE IT WAS SHOT.

(6) How many seconds after it was shot will the cannonball be 2500 ft high?
(7) How many seconds after it was shot will the cannonball be back on the ground?

Figure 7. A partially completed worksheet for the problem situation displayed in Figure 6.

Time Height

Units Seconds Feet

formula x ÿ16x2 � 640x

1 5 2,800

2 7 3,696

3 1.6288 1,000

4 38.3712 1,000

5 20 6,400

6 2,500

7
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6. Student Modeling and Formative Evaluations of the Cognitive Algebra II
Tutor

In the Cognitive Algebra II Tutor knowledge tracing and detailed analyses of the
production rule learning curves have been employed principally for formative
evaluations. For example, consider the lesson on the quadratic formula and ver-
tical motion, from which the problem in Figure 2 is drawn. Summative evalu-
ations of learning gains indicate that this is a very successful lesson. In the
1997^1998 academic year, cognitive Algebra II students scored 2% correct on
a pre-test that preceded the cognitive tutor lesson and scored 52% correct on
the post-test that followed the lesson. Similarly, in a 1998^1999 assessment,
cognitive Algebra II students scored 54% correct in a year-end assessment, while
comparable students in a traditional Algebra II course scored 8% correct.
Nevertheless, careful examination of student learning curves in the vertical motion
lesson provides guidance for improving tutor effectiveness, as described in the
following sections.

Figure 8. The learning curve for a hypothetical cognitive rule that generates a quadratic expression for a
vertical motion problem. Error rate is plotted for successive opportunities to apply the rule.
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6.1. DETECTING OVERGENERAL PRODUCTION RULES

Figure 6 enlarges the problem description for the vertical motion problem in Figure
2, and Figure 7 enlarges a partial worksheet solution. Consider the cognitive pro-
duction rule that generates the quadratic expression in the formula row of the tutor
worksheet, i.e. the production that generates the expression ÿ16x2 � 640x in Figure
7. This production needs to ¢re once in each vertical motion problem, when the
student types in the expression with the appropriate problem-speci¢c constant terms.
Figure 8 displays the learning curve for this production rule for a group of 34
students. The x-axis in this graph represents successive opportunities to apply this
production rule in problem solving. Since the rule is only applied once in each tutor
problem, each successive point in this graph is drawn from a successive problem
in the curriculum. The y-axis represents error rate across students for their ¢rst

Figure 9. The learning curve for a hypothetical cognitive rule that substitutes a given time into a quadratic
expression to ¢nd projectile height in a vertical motion problem. Error rate is plotted for successive
opportunities to apply the rule. Odd-numbered points represent the ¢rst opportunity to apply the rule in
successive problems and even-numbered points represent the second opportunity to apply a rule in each
problem.
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attempt to apply this production at each successive opportunity. We expect error
rate to decrease monotonically across opportunities and it does across the ¢rst three
points, but then rises abruptly at the fourth point. This is an indicator of an
over-general rule in the cognitive model. Inspecting the problem sequence reveals
the overgeneralization. In the ¢rst three problems of the sequence, the constant term
c in the quadratic formula ax2 � bx� c is 0, yielding an expression of the form
ax2 � bx. In the next three problems the constant c is a positive integer. While
the original cognitive model coded formula knowledge as a single rule, a psycho-
logically valid model needs to represent this knowledge as two separate rules.

Figure 9 depicts an empirical learning curve that displays a different form of over-
generalization. This production employs a quadratic expression to answer questions
such as Questions 1 and 2 in Figure 7. In these questions elapsed time is given and the
student must compute the corresponding vertical height. For example, to answer
Question 1, the student needs to substitute the given time 5 for x in the quadratic
expression ÿ16x2 � 640x to compute the answer 2800. To answer Question 2,
the student substitutes 7 into the same expression to compute the answer 3696. While
error rate in this learning curve is gradually falling, it has a jagged pro¢le in which
each odd-numbered point tends to have a higher error rate than the preceding even
numbered point. This is a pattern that rarely appears in the programming tutor data,
but frequently turns up in the mathematics tutors, when students are asked to per-
form essentially the same task more than once in a problem. Each odd-numbered
point in the graph represents the ¢rst opportunity in successive problems to apply
the rule that substitutes a given time into a quadratic expression to compute a cor-
responding height. Each even-numbered point represents the second opportunity
to apply this same rule within a problem. At the ¢rst opportunity, the student must
recognize the question type, retrieve the appropriate production rule from long-term
memory and apply it correctly. At the second opportunity, the student need only
recognize the similarity to the ¢rst question; it is not necessary to retrieve the appro-
priate rule from long-term memory. Instead, the student can simply ``do the same

Table 4. Best ¢tting learning parameters for two production rule models of the learning curve data in Figure
9.

Action: Substitute a given time into a quadratic expression to compute
projectile height

p�L0� p�T� r

All opportunities (overgeneralized production rule) 0.83 0.44 0.37

First opportunity in successive problems (retrieving an appropriate
rule from long term memory)

0.89 0.22 0.53

Second opportunity in successive problems (`̀do the same thing'':
reapplication of a rule in a problem)

0.75 0.94 0.44

p�L0� � probability the student has learned a rule prior to its first application:
p�T� � probability of learning a rule at each opportunity to apply it.
r � correlation of the actual and predicted error rates across learning curve points:
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thing'' as on the prior question. When it is necessary to retrieve the rule from long
term memory again in the following problem, accuracy declines. Note that this ``do
the same thing'' production that ¢res for even number points in Figure 9 is an
example of the type of suboptimal production rule that will not transfer to a test
environment and can lead to overestimates of test performance.

Table 4 displays the hazard to knowledge tracing of overgeneralizing a rule. This
table displays best ¢tting parameter estimates of the two learning parameters
and goodness of ¢t for the learning curve data in Figure 9. The ¢rst row in the table
displays the parameter estimates when all the points in Figure 9 are ¢t as the learning
curve for a single overgeneralized production rule. The second row shows the par-
ameter estimates in ¢tting just the odd-numbered points which represent the ¢rst
opportunity to ¢re this hypothetical production in each problem. The third row
shows the parameter estimates for just the even-numbered points, which represent
the second opportunity in each problem to ¢re this hypothetical production. Note
that the estimated probability that students already know these alternative pro-
duction rules at the ¢rst opportunity to apply them, p�L0�, is reasonably similar
across the three rules, but the estimated probability that the students will learn
the productions at each opportunity to apply them in problem solving, p�T �, varies
substantially. When we ¢t the full empirical learning curve with a single
overgeneralized production, as in the original model, we estimate that the probabil-
ity of learning the production at each opportunity to apply it is 0.44. This is double
the true learning rate in the second row of Table 4, 0.22, that is obtained when
we ¢t only the odd number points in Figure 9 in which the student is required
to retrieve the appropriate rule from long-term memory. The overgeneralized rule
has a larger estimated learning rate because it con£ates a second less useful rule
(``do the same substitution I did on the last question'') which ¢res for the even
numbered points in Figure 9. As displayed in third row of Table 4, students readily
learn this less useful rule; the best ¢tting estimate of p�T � is 0.94. In summary, when
we decompose the overly general rule, we get both true parameter estimates and
better ¢ts for the two distinguishable rules.

Finally, knowledge tracing parameter estimates enable us more generally to evalu-
ate cognitive tutor effectiveness at the grain size of underlying production rules. For

Table 5. Best ¢tting learning probabilities for students' vertical motion problem solving.

Production Rule p�L0� p�T �
Table Header (Labels and Units) 0.92 0.84
Symbolic Formulas 0.34 0.47
Code Given Time 0.82 1.0
Compute Height Given Time 0.78 0.39
Code Given Height 0.79 0.78
Compute Time Given Heights 0.49 0.32

p�L0� � probability the student has learned a rule prior to its first application.
p�T� � probability of learning a rule at each opportunity to apply it.
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example, Table 5 displays average best ¢tting learning parameters for six categories
of productions in the vertical motion lesson. The learning rate in the lesson
p�T �, is generally quite strong. This is consistent with the large gains observed
in the summative evaluations described earlier and tends to be characteristic of
the worksheet activities in the Cognitive Algebra II Tutor (cf. Corbettet al., 1998).
Note that the best ¢tting p�T � estimates are extremely high for the relatively routine
problem solving actions such as typing column labels, which are always the same
in the vertical motion lesson (time and height), and entering the given value in each
question (i.e. given time in Questions 1 and 2, and given height in Questions 3
and 4). The more challenging activities are (a) typing an appropriate symbolic
expression to represent each problem situation; (b) computing the height when given
a time (by substituting the given time into the quadratic formula) and especially,
computing the time when given a height (either with the quadratic formula or
by reading it off the graph). The learning parameters for these productions (rows
2, 4 and 6 in the table) are also satisfactorily high.

7. Conclusion

Our university-based deployment of the APT Lisp Tutor in research and teaching
and our outreach effort to achieve broad-based deployment of the Cognitive Math-
ematics Tutors have been conducted under very different circumstances and have
achieved different, yet mutually reinforcing, results. Our programming tutor
research has focused in large part on the validity and potential of model-based
adaptivity to student learning needs. Our mathematics tutor research has demon-
strated that advanced educational technology can be successfully deployed outside
the university research environment and has helped identify conditions that make
that deployment successful. The concluding sections of this paper have highlighted
the different functional roles that student modeling has played in these two research
strands. Student modeling is a principal research topic in our basic research, while
serving primarily as a formative evaluation tool in the mathematics ¢eld research.
Despite these important differences, we should not lose sight of an equally compel-
ling conclusion that emerges from these research efforts. Adaptive student modeling
in cognitive tutors has proven remarkably robust across both university and high
school deployments and has contributed to important learning gains in both
environments.
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