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Introduction

Digital games are one of the most promising media for the development of 
innovative educational content (e.g., de Castell & Jenson, 2007; Gee, 2003). They 
integrate game design concepts with instructional design techniques in order to 
better address the learning needs of this generation, which highly regards interac-
tive, experiential learning. While there is ample evidence that educational games 
(edu-games from now on) are more appealing than traditional learning environ-
ments, there is still limited empirical research that supports evidentiary claims 
about what is learned through play, what are the pedagogical and new media con-
structs required to have games that teach, and what is the interplay between enter-
tainment and learning.

In our research, we have addressed this problem by hypothesizing that a key role 
in edu-game effectiveness is played by learners’ individual differences, both long-
term (e.g., preexisting knowledge, personality traits) and short-term (e.g., interac-
tion goals, emotional state, learning state). The more the edu-game understands 
about its current learner, the better it can adapt the interaction to fit the learner’s 
needs. In particular, by monitoring both the learner’s affective states and his or her 
learning trajectory, a user-adaptive edu-game should be better able to strike the 
right balance between instruction and entertainment, leveraging the latter when 
there is need to revive the learner’s motivation and engagement.

In the context of this research, we have been investigating how to build user mod-
els that can help an educational game understand how to best support a profitable 
interaction with the learners. We then use these models to experiment on how to 
provide user-adaptive interventions that address the interplay of affect and learning.
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A distinguishing feature of our research is that we are looking at affective user 
models that rely on an explicit representation of both the potential causes of a user 
affective reaction, as well as the behavioral effects of that reaction. The advantage 
of such a model is twofold. First, by relying on both causes and effects as sources of 
information, the model is more resilient to limitations of each individual source and 
thus it can more accurately assess which affective state the user is in. Second, by 
having an explicit representation of why the student is in a given emotional state, the 
model provides the game with valuable additional information to decide how to 
react to that state, if necessary.

Most existing efforts to recognize user affect have either relied solely on detec-
tion of behavioral reactions (e.g., Healey & Picard, 2005; Prendinger, Mori, & 
Ishizuka, 2005), or have blended context and effect information as features to build 
classifiers that predict the user emotion but cannot tell why they occur (e.g., Cooper, 
Muldner, Arroyo, Park Woolf, & Burleson, 2010; D’Mello & Graesser, 2010).

In the rest of this chapter, we first describe the general approach and its theoretical 
underpinnings. Next, we describe the Prime Climb game, the testbed we have been 
using to apply the framework in practice. We then introduce the general steps needed 
to build an affective user model following our approach, and discuss how these 
steps were implemented to build the affective model for Prime Climb. We conclude 
by reporting results on the model’s performance, followed by a discussion of future 
work.

The Affect-Modeling Framework

Our approach relies on Dynamic Decision Networks (DDN) to leverage information 
on both the possible causes and the observable effects of the user’s affective 
reaction. Figure  1 shows a high-level representation of two time-slices in our 
DDN-based framework for modeling user affect (Conati, 2002). Each time-slice 
represents the system belief over relevant elements of the world after an interaction 
event of interest, such as a user’s action (left slice) or an action from an interface 
agent (right slice). As the figure shows, the network can combine evidence on both 
the causes and effects of emotional reactions to assess the user’s emotional state 
after each event. Links between variables in different time-slices represent relevant 
temporal dependencies, such as permanence or decay.

The subnetwork above the nodes Emotional States is the predictive component 
of the framework, representing the relations between emotional states and their 
possible causes as described in the OCC cognitive theory of emotions (Ortony, 
Clore, & Collins, 1988). According to this theory, emotions derive from one’s 
appraisal of the current situation (consisting of events, agents, and objects) with 
respect to one’s goals, preferences, and attitudes. For instance, depending on 
whether an event (e.g., the outcome of an interface agent’s action) fits or does not 
fit with one’s goals, one will feel either joy or distress in relation to the event. If the 
current event is caused by a third-party agent, one will feel admiration or reproach 
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toward the agent; if that agent is oneself, one will feel either pride or shame. Based 
on this structure, the OCC theory defines 22 different emotions, which are inher-
ently linked to context, and modulated both by factors more cognitive in nature 
(e.g., goals) as well as by affective elements such as attitudes and dispositions (e.g., 
liking/disliking not necessarily justified by objective reasons).

We based our model on the OCC theory because its intuitive representation of 
the causal nature of emotions lends itself well to devising computational models 
that can assess not only which emotions a user feels, but also why. Our OCC-based 
DDN includes variables for goals that a user may have during the interaction with a 
system that includes an interface agent (nodes Goals in Fig. 1). The events subject 
to the user’s appraisal are the outcomes of the user’s or the agent’s actions (nodes 
User Action Outcome and Agent Action Outcome in Fig. 1). Agent actions are rep-
resented as decision variables in the framework, indicating points where the agent 
decides how to intervene. The fit of events with user’s goals is modeled by the nodes 
class Goals Satisfied, which in turn influences the user’s Emotional States (we call 
this part of the model the appraisal-subnetwork). Assessing user goals is not trivial, 
especially if asking the user about them during interaction is too intrusive, as is the 
case during game playing. Thus, our DDN also includes nodes (the goal-assessment 
subnetwork) to infer user goals from their interaction patterns and relevant traits 
(e.g., personality).

The subnetwork below the nodes Emotional States is the model’s diagnostic part, 
representing the interaction between emotional states and their observable effects. 
Emotional States directly influence user Bodily Expressions, which in turn affect the 
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output of Sensors that can detect them. Our framework is designed to modularly 
combine data from any available sensor, and gracefully degrade in the presence of 
partial or noisy information. It should be noted that the only temporal dependencies 
explicitly represented in Fig. 1 are between emotion variables, to account for the 
impact of the emotional state at time t on the emotional state at time t + 1 (represent-
ing, for instance, the fact that the negative impact of a mismatched goal on one’s 
emotion also depends on the preexisting emotional state). Other temporal depen-
dencies may be relevant (e.g., between goals, as we discuss in Conati & Maclaren, 
2009a), but require extra complexity to be captured reliably. Their absence in Fig. 1 
should be seen as simplifying assumptions to be revised if empirical evaluations 
show a need for it.

Going from the high-level framework described here to concrete user models 
obviously requires filling in a large amount of often nontrivial details. In the rest of 
the chapter, we illustrate the process in the context of building an affective user 
model for an edu-game on number factorization, described next.

The Prime Climb Educational Game

In Prime Climb, students in sixth and seventh grade practice number factorization 
by pairing up to climb a series of mountains. Each mountain is divided into num-
bered sectors (see Fig. 2), and players must try to move to numbers that do not 

Fig. 2  The Prime Climb interface
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share common factors with their partner’s number, otherwise they fall. To help 
students, Prime Climb includes the Magnifying Glass, a tool that allows players 
to view the factorization for any number on a mountain in the PDA device dis-
played at the top-right corner on the game interface (see Fig. 2). Each student also 
has a pedagogical agent (Fig.  2) that provides individualized support, both on 
demand and unsolicited, when the student does not seem to be learning from the 
game.

When providing unsolicited hints, the agent currently decides when and how to 
intervene based solely on a probabilistic model that assesses how the player’s fac-
torization knowledge evolves during game playing (learning model from now on, 
described in (Manske & Conati, 2005)). The agent’s interventions are structured as 
hints given at incremental levels, with the goal of triggering student reasoning about 
number factorization as they play (Conati & Manske, 2009).

The first (•	 focus) level aims to channel the student’s attention on the skill that 
requires help. For instance, the agent says “Think about how to factorize the 
number you clicked on” if the student model predicts that the student does not 
know how to factorize that number.
The second (•	 tool) level is a hint that encourages the student to use the magnify-
ing glass to see relevant factorizations.
The third (•	 bottom-out) level gives either the factorization of a number or which 
factors are in common between two numbers.

Students can choose to progress through the various levels by asking for further 
help. Otherwise, the agent goes through the progression when it needs to intervene 
on the same skill more than once. The above hints are provided regardless of the 
correctness of the student’s move, if the learning model assesses that the student 
needs help with the relevant number factorization skills.

The affective user model described in the next section is designed to capture the 
affective reactions elicited in the student by his or her interaction with the game and 
the agent. It will eventually be integrated with the learning model to make agent 
interventions and game dynamics sensitive to both cognitive and affective states of 
the user.

Building the Affective Model

In this section, we illustrate the general steps needed to apply the framework 
described in the previous section to a specific learning environment (LE). For each 
step, we also discuss how the framework was applied to build the affective model 
for the Prime Climb game. We divide the description in two subsections, one for the 
causal and one for the diagnostic part of the model, since these two components are 
conceptually separate and could be adopted in isolation if desired, as it was done, 
for instance, in Conati and Maclaren (2009a).
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Defining the Causal Component of the Affective Model

Define which emotions should be modeled.  The OCC theory defines 22 emotions 
starting from the appraisal mechanism described in the previous section. These 
emotions include:

Reactions related to how an occurring event impacts one’s goals (•	 joy/distress 
toward the event, admiration/reproach if the event was generated by a third party, 
pride/shame if was generated by oneself)
Reactions about how an event impacts others that one may •	 like/dislike (happy-
for/resentment if the impact is positive, pity/gloating if the impact is negative)
Emotions related to the prospective effects of an event (e.g., •	 hope/fear, relief/
disappointment)

Clearly, not all 22 emotions are always relevant for specific LEs. For instance, 
a one-user LE cannot elicit emotions related to other users. Even when a specific 
emotion is potentially relevant, inclusion in the model is a tradeoff between its 
impact on the interaction and the cost of modeling the dynamics that bring that emo-
tion to bear. For instance, in Prime Climb we currently model 6 of the 22 OCC 
emotions: emotions toward game states (joy/regret), and related emotions toward 
the agent (admiration/reproach in the OCC theory) or toward oneself (pride/shame). 
The first four emotions were often informally observed during interaction with 
Prime Climb, and have been consistently self-reported by students during a variety 
of studies (Conati & Maclaren, 2009a). The pride/shame pair is clearly relevant to 
any kind of reward-based interaction, however, we have no formal evidence on the 
extent of its occurrence because of difficulties in obtaining reliable self-reports 
‘more on this in a later section’. Still, once the model is set up to capture admira-
tion/reproach, adding pride/shame has little overhead because the only additional 
factor that needs to be tracked to distinguish between these two emotion pairs is 
whether the Prime Climb state currently appraised has been generated by the Prime 
Climb agent or by the student. In contrast, while we have substantial evidence that 
emotions toward the climbing partner (i.e., another student) arise frequently during 
game play, they are currently not included in the model because of the added com-
plexity involved in modeling a two-player interaction. Because of this complexity, 
we decided to first evaluate the feasibility of the approach with the simpler model 
described here.

Define student goals.  This step requires us to define the set of goals that students 
may have when using the target LE. These goals can either be well-defined objec-
tives set by the game itself (fixed goals from now on) or more subjective goals still 
influenced by the type of interaction that the LE supports but not as obviously 
related to it as fixed goals are. While fixed goals can be easily defined from an 
analysis of the LE, the relevant set of subjective goals must be derived empirically 
by observing actual student interactions. For instance, observations and interviews 
of students playing Prime Climb uncovered six high-level non-mutually exclusive 
goals (Have Fun, Avoid Falling, Beat Partner, Learn Math, Succeed By Myself and 
Wanting Help). While some of these goals naturally derive from to the structure of 
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Prime Climb (Have Fun, Avoid Falling, Learn Math) others are more arbitrary. For 
instance, the goal Beat Partner is actually in contrast to the nature of Prime Climb, 
since the two players are supposed to collaborate, when climbing. The goals Succeed 
By Myself and Wanting Help intuitively seem mutually exclusive; however, we 
observed that they can in fact co-exist for students who express a general preference 
to succeed by themselves but end up wanting help during especially challenging 
episodes. We have collected the data to instantiate goal-related variables and their 
prior probabilities in the Prime Climb model via user studies in which students were 
given a post-game questionnaire to assess which of the above goals they experi-
enced during game playing. The post-questionnaire includes goal-related statements 
to be ranked on a Likert scale (1–5), and there are multiple statements per goal, to 
increase the reliability of the students’ answers (e.g., “I wanted to learn math by 
playing the game,” “I didn’t want to think about math when I was playing the 
game”). The questionnaire also includes an open-ended question gauging the pres-
ence of any additional goal, but none were found.

Define means for goal assessment.  The goal set defined in the previous step speci-
fies the range of goals each student may have while interacting with the target LE, 
not which goals the student actually pursues at any given point in time. So, unless 
goals are specifically set by the LE during interaction, they need to be inferred. One 
option is to endow the interface with an unobtrusive way for students to specify their 
goals while playing. Alternatively, the system needs to perform goal recognition, 
i.e., infer the goals dynamically as the student interacts with the system. In Prime 
Climb, we adopted the second approach, as eliciting student goals explicitly during 
game playing was deemed too intrusive. In particular, we leverage the fact that user 
goals are influenced by user personality (Costa & McCrae, 1992) and affect user 
interaction patterns, which in turn can be inferred by observing the outcomes of 
individual user actions. Thus, observations of both the relevant user traits and action 
outcomes can provide the DDN with indirect evidence for assessing user goals.

We derived the data to build the portion of the DDN that exploits this evidence 
for goal assessment via a series of Wizard of Oz studies where pairs of students 
interacted with the game while an experimenter controlled the pedagogical agent 
(Zhou & Conati, 2003). Students reported their goals via the questionnaire described 
above. Information on student personality is included in the model based on the 
Five-Factor Model (Costa & McCrae, 1992), which represents personality as five 
domains – neuroticism, extraversion, openness, agreeableness and conscientiousness. 
Data to instantiate the prior and conditional probabilities for the variables that rep-
resent these domains in the model was collected through a standard personality test 
(Graziano, Jensen-Campbell, & Finch, 1997). Interaction logs were mined to define 
the relationships between student goals (assessed via the goal post-questionnaire) and 
interaction behaviors. This process resulted in the goal assessment subnetwork 
shown in Fig. 3, where all nodes are binary variables. More details on the construc-
tion of this part of the model can be found in Zhou and Conati (2003).

Define appraisal relationships.  Following the OCC appraisal model, a student’s 
emotional state depends on whether his or her goals are satisfied or not during the 
interaction with a LE. Modeling this process in a DDN requires identifying how 
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each relevant game state relates to the set of possible student goals in terms of 
appraisal. Some of these relations can be defined intuitively. In Prime Climb, for 
instance, if the student has the goal Avoid Falling, a successful move likely satisfies 
it, while a fall likely does not. If the student has the goal Beat Partner, only a move 
that brings the player ahead of the partner on the mountain is likely to satisfy this 
goal. Other appraisal relationships must be derived empirically. For instance, we 
could not define a priori which events satisfy student goals Have Fun or Learn 
Math. Similarly, although an unsolicited hint from the Prime Climb agent intui-
tively violates the goal Succeed-by-myself and satisfies Want-Help, it is unclear how 
the various types of hints are appraised with respect to these goals given that they 
vary substantially in the amount of help that they provide. We defined the appraisal 
relationships in the Prime Climb affective model through a user study in which 
students, after game playing, were asked to rate propositions of the type “I <goal-
related action> when <game event>.” In each proposition, <goal-related action> is 
a statement related to one of target appraisal goals (e.g., “learnt math,” “had fun”) 
and <game event> is a relevant event in the Prime Climb interaction (e.g., “I fell,” 
“the agent suggested to use the magnifying glass”). Figure 4 shows the appraisal 
relations derived from this process with respect to the outcome of student actions. 
More details about the process and the resulting model can be found in (Conati & 
Maclaren, 2009a).

Defining the Diagnostic Component of the Affective Model

Define sensors for the diagnostic part of the model.  The choice of sensors to be 
included in the model largely depends upon the type of emotional states that the 
model must capture. There has been considerable success in linking individual 

Fig. 3  Goal assessment portion of the model
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bodily/physiological expressions to the affective dimensions of valence and arousal, 
such as heart beat and measures of skin conductance (e.g., Prendinger et al., 2005), 
various facial expressions (e.g., Lang, Greenwald, Bradley, & Hamm, 1993), 
acoustic–prosodic and lexical speech features (Litman & Forbes-Riley, 2004). There 
have also been results on combinations of sensors as detectors of specific emotions. 
For instance, Healey and Picard (2005) report 89% accuracy in recognizing four 
levels of driver anxiety by integrating measurements from five physiological sensors, 
three video-cameras and a microphone. Cooper et al. (2010) linked measurements 
from a mouse that captures pressure placed on its various points, as well as camera-
detected facial expressions with high student interest during interaction with an intel-
ligent LE for math. They also linked facial expressions with high levels of student 
excitement. D’Mello and Graesser (2010) found that facial expressions as coded by 
external judges can discriminate among student states of confusion, boredom, frustra-
tion, and neutral. Although existing results can help guide the choice of sensors, the 
final selection should always be empirically validated, as sensors performance highly 
depends upon a variety of factors such as whether the emotions are spontaneous or 
artificially elicited, age of participants, and the interaction context.

In our research, empirical evaluations of the causal part of the Prime Climb model 
(Conati & Maclaren, 2009a) suggested that its performance could be improved by 
including information on the valence of the student affective states, leading us to 
experimenting with a sensor that would serve this purpose. More specifically, the 
causal model proved to be unable to reliably capture regret toward the agent because 
it could not capture the shifts that some students experience between the goals 
Succeed-by-myself and Wanting Help at critical times of game playing. This confu-
sion causes the model to misjudge how students react to the agent’s interventions  

After student’s action

Move
Successful

Ahead of
Partner

Big
Number

Learn
Math

Have
Fun

Beat
PartnerAvoid Falling

Avoid
Falling
Satisfied

Succeed By
Myself

Satisfied

Beat Partner
Satisfied

Have Fun
Satisfied

Learn math
Satisfied

Admiration/
Reproach

Pride/Shame
Joy/Distress

Emotions

Student’s Goals

Goals
Satisfaction

Succeed by
Myself

Fig. 4  Sample excerpt from the Prime Climb appraisal network



80 C. Conati

(or lack thereof) at those times. Accurate goal recognition can be extremely 
challenging, but this particular problem could be alleviated if the Prime Climb model 
can detect when the student moves to a state of negative valence after an agent 
action. A sensor that has shown to be a good detector of negative affect is the elec-
tromyography (EMG) placed on the corrugators muscle on the forehead (Lang, 
Greenwald, Bradley, & Hamm, 1993). EMG sensors measure muscle activity by 
detecting surface voltages that occur when a muscle is contracted. When placed on 
the corrugator muscle on the forehead, the signal gets excited by this muscle’s 
movements, and previous studies linked greater EMG activity in this area with 
expressions of negative affect.

Adding sensors to the model.  The bottom part of Fig. 1 shows the most complete 
incarnation of this step, where the connection between affective states and sensors 
predictions is defined through the bodily expression that each sensor captures. 
Having the connection between affective states and sensors go through bodily 
expressions is advisable when using multiple sensors to detect a specific bodily 
expression (e.g., a videocamera and an EMG to detect eyebrow movements). This 
configuration requires the specification of both the conditional probabilities that 
express each sensor’s reliability in detecting the target bodily expression, as well the 
conditional probabilities that encode the reliability of that bodily expression as an 
indicator of the target emotional state. Alternatively, sensor measurements can be 
directly linked to the target emotional state, as we did in our first exploration of the 
EMG sensor for the Prime Climb model.

Since we wanted the EMG sensor to provide information on affective valence, 
two new nodes were added to each time slice of the affective model: Valence and 
Signal Prediction (see Fig. 5, left), both binary. The Valence node represents the 
model’s overall prediction for the student’s affective valence the Signal Prediction 
node encodes whether the EMG signal predicts positive/negative valence at a time 
of interest. The conditional probability table (CPT) for Valence given Emotional 
States is defined so that the probability that valence is positive/negative is propor-
tional to the number of positive/negative emotion nodes. The CPT for Signal 
Prediction given Valence represents the probability of observing an EMG prediction 
of positive or negative valence, given the student’s actual affective valence. To 
instantiate this CPT, we ran a user study to collect both EMG evidence and accom-
panying affective labels.

Fig. 5  Adding electromyography (EMG) data to the model (left); emotion self-report box (right)
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The study involved 41 students (sixth and seventh grade) and its design was simi-
lar to the studies we used to instantiate other parts of the model. Here, however, each 
student had an EMG sensor placed on the forehead. During game play, students 
periodically self-reported their emotions via the dialog box shown in Fig. 5, a self-
reporting mechanism that we have extensively validated and used throughout this 
research (Conati, 2004; Conati & Maclaren, 2009a).1

The log files from the study include all relevant game events (e.g., a student’s 
successful climbs and falls, agent interventions), the student’s reported emotions 
and the EMG signals sampled at 32 Hz. These log files were analyzed to generate a 
set of datapoints of the form <affective valence, signal prediction>, where a data-
point is created for each logged event that can be associated with an emotion self-
report. The value for affective valence (positive or negative) is derived from that 
self-report; the value for signal prediction (also positive or negative) is computed by 
analyzing the EMG signal in the 4 seconds following the event. The analysis yielded 
196 datapoints, which were used to instantiate the CPT for the Signal Prediction 
node in Fig. 5 by calculating the frequencies of the various combinations of signal 
prediction/affective valence value pairs in the data set. More details on this process 
can be found in (Conati & Maclaren, 2009b).

Model Evaluation

The data from the study described in the previous section was used to evaluate the 
resulting Prime Climb affective model with respect to two main questions

	1.	 Is the goal assessment mechanism sufficiently accurate to support our appraisal-
based modeling approach?

	2.	 How does the model using only causal information compare to the model that 
includes diagnostic information from the EMG sensor?

The general evaluation methodology is to compare various versions of the model 
by using a Prime Climb simulator. The simulator is used to feed log files from the 
study to each model that is to be evaluated. Model predictions of affect are collected 
at points in which students generated their emotion self-reports, and compared with 
the reported emotions (in this study, 170 reports of Joy, 14 reports of Distress, 127 
reports of Admiration, and 28 reports of Distress).

To answer question 1, we compared the performance of the causal model with 
the goals assessed via the mechanism described earlier against a model where goals 
were set based on student post-questionnaire responses from the study. The model’s 
performance when using goal assessment increased significantly for Distress and 

1 Currently, the dialog box only elicits information on emotions towards the game and the agent 
because dealing with three pairs of emotions turned out to be too overwhelming for students.
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for Reproach, mostly because dynamic goal assessment can capture to some extent 
the changes in student goals during interaction, which the alternative model cannot do 
since goal values as set up-front. The performance of the model with goal assessment 
for Joy and Admiration decreased slightly (from 69.6 to 68.7% for Joy, from 67.2 to 
66% for Admiration) but the decrease is not statistically significant. Thus, from a 
practical standpoint, the model using the probabilistic goal assessment performs 
better than the model using explicit evidence on student’s goals. The only way to 
further improve goal information in the model would be to obtain self-reports on 
students’ goals periodically during interaction.

To answer question 2, we compared the performance of the causal model against 
the performance of the model that includes EMG. We found that, for datapoints 
corresponding to strong, consistent emotional states (e.g., when students reported 
emotions with the same valence toward the game and the agent) the complete model 
performs significantly better than the predictive model. Accuracy for reproach went 
from 39 to 63%, bringing overall accuracy on emotions toward the agent to 73% 
(against 61% for the causal mode). Accuracy for emotions toward the game went 
from 72.6 to 76.9%, also a statistically significant increase. In contrast, the addition 
of the EMG sensor made no difference for data points corresponding to weaker or 
conflicting emotional states (e.g., states in which students reported at least one 
emotion to be neutral, or emotions with opposite valence toward game and agent). 
In the presence of weak emotions, likely the affective reaction is not strong enough 
to generate movements of the corrugators muscle that are detectable by the EMG 
sensor. Thus, adding to the model more sensitive sensors for valence detection may 
alleviate this problem. In the case of conflicting emotions, the addition of the EMG 
brings no value because it captures overall valence but does not help discriminate 
valence at the level of the individual emotion pairs. This problem calls for refine-
ment in the goal assessment process, to better capture shifts between goals or goal 
priority during interaction.

Conclusions

We have presented an approach to modeling user affect that combines explicit 
information on both causes and effects of emotional reaction. One advantage of this 
approach is that using both ‘of these’ sources  increases model accuracy. A second 
advantage is that, by assessing not only which emotions the student is feeling but 
also why they arise, this model enhances a LE’s ability to adequately respond to 
these emotions. For instance, if the LE can recognize that the user feels a negative 
emotion because of something wrong the user has done (shame in our models) it 
may provide hints aimed at making the user feel better toward herself. If the LE 
recognizes that the user is upset because of its own behavior (reproach in our mod-
els), it may take actions to make amends. These specific interventions are more 
difficult to identify with approaches that do not have such an explicit representation 
of the reasons underlying user emotions (e.g., Cooper et  al., 2010; D’Mello & 
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Graesser, 2010). This added value, however, comes with increased model complex-
ity. Implementing the appraisal mechanism that enables causal assessment requires 
defining relationships between student traits, goals, and events. This process often 
involves laborious data collection, as we illustrated in this chapter, with our experi-
ence in building the affective model for the Prime Climb edu-game. It is our long-
term objective to compare the approach presented here with lighter-weight models, 
to better understand if and when the added cost is worth the effort.

A more immediate goal is to integrate the predictions of the Prime Climb affec-
tive model with the existing model of student learning, so that game dynamics and 
agent interventions can be tailored to both. Toward this end, we are conducting user 
studies to understand specific limitations of agent hints based solely on the learning 
model, and how affect-sensitive responses may overcome these limitations. We are 
also exploring ways to elicit explicit information on student goals at selected times 
during interaction in order to better cope with situations in which the model cannot 
reliably assess these goals. The objective here is to maximize the value of this infor-
mation for the model, without excessive disruption to game play. Similarly, we want 
to investigate if and when it is appropriate to explicitly ask students about their emo-
tions, to cope with situations in which the model does not have sufficient informa-
tion to generate a confident assessment.
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