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ABSTRACT 

Advances in artificial intelligence, sensors and big data man-

agement have far-reaching societal impacts. As these sys-

tems augment our everyday lives, it becomes increasingly 

important for people to understand them and remain in con-

trol. We investigate how HCI researchers can help to develop 

accountable systems by performing a literature analysis of 

289 core papers on explanations and explainable systems, as 

well as 12,412 citing papers. Using topic modeling, co-oc-

currence and network analysis, we mapped the research 

space from diverse domains, such as algorithmic accounta-

bility, interpretable machine learning, context-awareness, 

cognitive psychology, and software learnability. We reveal 

fading and burgeoning trends in explainable systems, and 

identify domains that are closely connected or mostly iso-

lated. The time is ripe for the HCI community to ensure that 

the powerful new autonomous systems have intelligible in-

terfaces built-in. From our results, we propose several impli-

cations and directions for future research towards this goal. 
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INTRODUCTION 
Artificial Intelligence (AI) and Machine Learning (ML) al-

gorithms process sensor data from our devices and support 

advanced features of various services that we use every day. 

With recent advances in machine learning, digital technology 

is increasingly integrating automation through algorithmic 

decision-making. Yet, there is a fundamental challenge in 

balancing these powerful capabilities provided by machine 

learning with designing technology that people feel empow-

ered by. To achieve this, people should be able to understand 

how the technology may affect them, trust it and feel in con-

trol. Indeed, prior work has identified issues people encoun-

ter when this is not the case (e.g., with smart thermostats 

[183] and smart homes [131, 184]). Algorithmic decision-

making can also affect people when they are not directly in-

teracting with an interface. Algorithms are used by stake-

holders to assist in decision-making in domains such as ur-

ban planning, disease diagnosis, predicting insurance risk or 

risk of committing future crimes, and may be biased (e.g., 

[167, 185]).  

To address these problems, machine learning algorithms 

need to be able to explain how they arrive at their decisions. 

There has been increased attention into interpretable, fair, ac-

countable and transparent algorithms [38, 146] in the AI and 

ML communities, with examples such as DARPA’s Explain-

able AI (XAI) initiative [74] and the “human-interpretable 

machine learning” community. Recently, the European Un-

ion approved a data protection law [57, 65] that includes a 

“right to explanation”, and USACM released a statement on 

algorithmic transparency and accountability [171]. The time 

is clearly ripe for researchers to confront the challenge of de-

signing transparent technology head on.  

However, much work in AI and ML communities tends to 

suffer from a lack of usability, practical interpretability and 

efficacy on real users [50, 100, 132]. Given HCI’s focus on 

technology that benefits people, we, as a community, should 

take the lead to ensure that new intelligent systems are trans-

parent from the ground up. This is echoed by Shneiderman 

et al. [158], who discussed the need for interfaces that allow 

users “to better understand underlying computational pro-

cesses” and give users “the potential to better control their 

(the algorithms’) actions” as one of the grand challenges for 

HCI researchers. Several researchers are already contrib-

uting towards this goal, e.g. with research on interacting with 

machine-learning systems [1, 90, 100, 101, 162, 183], algo-

rithmic fairness [107, 108] and accountability [43, 47].  

As a first step towards defining an HCI research agenda for 

explainable systems, this paper maps the broad landscape 

around explainable systems research and identifies opportu-

nities for HCI researchers to help develop autonomous and 

intelligent systems that are explainable by design. We make 

three contributions: 
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• Based on a literature analysis of 289 core papers and 

12,412 citing papers, we provide an overview of re-

search from diverse domains relevant to explainable sys-

tems, such as algorithmic accountability, interpretable 

machine learning, context-awareness, cognitive psy-

chology, and software learnability.  

• We reveal fading and burgeoning trends in explainable 

systems and identify domains that are closely connected 

or mostly isolated.  

• We propose several implications and directions for fu-

ture research in HCI towards achieving this goal. 

RELATED WORK 

We grouped prior work into three areas: related landscape 

articles relevant to explainable artificial intelligence, work 

on intelligibility and interpretability in HCI, and methods to 

analyze trends in a research topic. For brevity and to fore-

shadow the results of our literature analysis, we will high-

light only a few key research areas. 

Explainable Artificial Intelligence (XAI) Systems 

There has been a surge of interest in explainable artificial in-

telligence (XAI) in recent years driven by DARPA’s initia-

tive to fund XAI [74]. Historically, there has been occasional 

interest in explanations of intelligent systems over the past 

decades with expert systems in the 1970s [165, 172], Bayes-

ian networks (for a review, refer to [102]) and artificial neu-

ral networks [6] in the 1980s, and recommender systems in 

the 2000s [33, 81]. The recent successes of AI and machine 

learning for many highly visible applications and the use of 

increasingly complex and non-transparent algorithms, such 

as deep learning, calls for another wave of interest for the 

need to better understand these systems. 

The response from the AI and ML communities has been 

strong with a wide range of workshops: Explanation-aware 

Computing (ExaCt) [150] at ECAI 2008, 2010-2012 and 

AAAI Symposia 2005, 2007. Fairness, Accountability, and 

Transparency (FAT-ML) workshop at KDD 2014-2017 [9], 

ICML 2016 Workshop on Human Interpretability in Ma-

chine Learning (WHI) at [93], NIPS 2016 Interpretable ML 

for Complex Systems [181], IJCAI 2017 Workshop on Ex-

plainable AI [1]. Workshops have also been organized at 

HCI venues: CHI 2017 Designing for Uncertainty in HCI 

[69], CHI 2016 Human-Centred Machine Learning [61], and 

IUI 2018 Explainable Smart Systems [118]. 

This has produced a myriad of algorithmic and mathematical 

methods to explain the inner workings of machine learning 

models; see [15] for a survey. However, despite their mathe-

matical rigor, these works suffer from a lack of usability, 

practical interpretability and efficacy on real users. For in-

stance, Lipton [119] argues that there is no clear agreement 

on what interpretability means, and provides a taxonomy of 

both the reasons for interpretability and the methods to 

achieve interpretability. Doshi-Velez and Kim [50] at-

tempted to better define what interpretability means, and 

how one can measure whether a system is interpretable. They 

provide an overview of methods for interpretability evalua-

tion and discuss open challenges. Others have attempted to 

map research regarding intelligibility, explanations or inter-

pretable algorithms. For example, Miller [132] charts an 

overview of research in the social sciences (philosophy, psy-

chology, and cognitive science) regarding how people de-

fine, generate, select, evaluate, and present explanations. 

Intelligibility and Explainable Systems Research in HCI 

The challenges of interaction with intelligent and autono-

mous systems have been discussed in the HCI community 

for decades. Pioneering work includes Suchman’s Plans and 

Situated Actions [163], which critiqued AI’s rigid concepts 

of plans and goals and pointed out its incompatibility with 

how people behave in the real world. Further discussions in 

the 90s include, for example, Shneiderman and Maes’ CHI 

’97 panel on direct manipulation vs. interface agents [157].  

In the late 90s and early 2000s, low-cost sensors and mobile 

devices drove research in context-aware computing forward 

[40, 42, 152]. Echoing earlier arguments from Suchman 

[163], researchers critiqued simplistic representations of 

context [53, 56]. It also became clear that people needed to 

be able to understand what was being sensed and which ac-

tions were being taken based on that information. Research-

ers argued for systems to provide accounts of their behaviour 

[13, 51, 52]. Notably, Bellotti and Edwards proposed that 

context-aware systems should be made intelligible by in-

forming users about “what they know, how they know it, and 

what they are doing with that information” [13].  

This fuelled further work in supporting intelligibility (or 

scrutability [8, 89]). Researchers proposed tailored interfaces 

that explained underlying context-aware rules [41], or pro-

vided textual [110, 111, 113, 178, 179] and visual explana-

tions [177] for these rules. Other works explored how to de-

sign for implicit interaction with sensing-based systems [14, 

75, 86, 175], and help people predict what will happen 

through feedforward [12, 176]. Another relevant stream of 

work in the intelligent user interfaces community explored 

how end-users make sense of and control machine-learned 

programs, working towards intelligible and debuggable ma-

chine-learned programs [100, 101]. The importance of un-

derstandability and predictability has also been recognized in 

interaction with autonomous vehicles [137, 153]. 

We see several other recent pockets of work in this area. 

Given the increasing amount of algorithmic decision making 

in society, HCI researchers have studied algorithmic trans-

parency [26, 33], accountability [43] and fairness [108]. For 

instance, Diakopoulis looks at this from a computational 

journalism perspective [47] and curates a list of newsworthy 

algorithms used by the U.S. government [45]. Similarly, ef-

forts have been made in the information visualization and 

visual analytics communities to visualize ML algorithms [90, 

99, 109]. Unfortunately, the streams of research in explaina-

ble systems in the AI and ML communities and in the HCI 

community tend to be relatively isolated, which we demon-
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strate in our analysis. Therefore, this work lays out the rele-

vant domains involved in explanations and understanding 

and sets out an HCI research agenda for explainable systems. 

Analyses on Trends in Research Topics  

The traditional method to provide an overview of the state of 

the art and to assess a research topic is to perform a literature 

review. Examples in HCI are Jansen et al.’s research agenda 

for data physicalization [84], Chong et al.’s survey of device 

association [27], Pierce and Paulos’ review of energy-related 

HCI [143], Froehlich et al.’s eco-feedback technology sur-

vey [59], Grosse-Puppendahl et al.’s capacitive sensing re-

view [71] and Grossman’s software learnability survey [73]. 

In this paper, we seek to examine trends across multiple ac-

ademic domains, covering thousands of papers. Therefore, 

we use topic modelling, a semi-automated method to per-

form literature analysis. Bibliometric analysis has been used 

previously to characterize research areas. Most relevant to 

our work is Liu and colleagues’ co-word analysis to analyze 

trends and links between different concepts for the Ubicomp 

[120] and CHI communities [121].  Co-word analysis [20] is 

an established literature analysis method that has been used 

to survey psychology [105], software engineering [31] and 

stem cell research [3]. It identifies clusters of keywords that 

often appear together in papers. For example, Liu and col-

leagues [120, 121], automatically extract keywords from pa-

pers to perform a keyword analysis. In this work, we analyze 

a much larger dataset (> 12,000 research papers) from mul-

tiple domains covering about 100 publication venues, instead 

of one conference. We performed Latent Dirichlet Allocation 

(LDA) based topic modeling [16] along with co-occurrence 

analysis to map out the research space. In summary, while 

our survey is HCI-centric, it covers a larger number of papers 

and a wider range of research areas than conventional litera-

ture reviews. We perform a data-driven literature analysis 

and carry out further analysis through visualization. 

CITATION NETWORK 

To build the citation network, we follow a semi-automated 

approach that combines the benefits of traditional literature 

reviews driven by the researchers’ expertise with automated 

methods that help analyze a large body of literature. This also 

helps ameliorate concerns with keyword based search such 

as inconsistencies in keyword usage or missing entries [120, 

121]. The manually curated set consists of 104 formative pa-

pers relating to explainable systems and explanations theory 

that were included based on the authors’ expertise. Papers 

included based on keyword based search consists of 261 pa-

pers crawled from the Scopus [154] database by searching 

for the author or index keywords based on common varia-

tions in literature of the terms “intelligible”, “interpretable”, 

“transparency”, “glass box”, “black box”, “scrutable”, 

“counterfactuals” and “explainable”. The resulting set of 365 

papers was distilled down to 289 core papers by pruning 

those not relevant to our analysis. Specifically, we excluded 

papers about location transparency (networked resource ab-

straction), self-explanation (education), social transparency 

(translucence, awareness), context interpretation (inference 

from sensor data) and explanation based learning (machine 

learning), because they were not related to explaining or un-

derstanding systems and algorithms. Moreover, the core set 

of papers was revisited whenever expected topics based on 

the authors’ judgement were missing, e.g., causal explana-

tions, psychology of explanations.  For, the core papers thus 

gathered, we crawled the citations from Google Scholar [66] 

for relevant metadata such as title, year of publication, cita-

tion count and publicly accessible PDF link. The final cita-

tion network consists of 289 core and 12412 citing papers.  

Research Communities 

Visualizing this citation network using Gephi [11] reveals 

different research communities and how they relate to one 

another. We identify 28 significant clusters (marked with 

bold names in Figure 1) after excluding smaller ones  and 

summarize them in terms of 9 research communities. In the 

sections that follow, we bold-italicize the names of specific 

clusters represented in Figure 1 and describe smaller clusters 

within each community with italicized names. Two or more 

research clusters appear closer when many citing papers co-

cite core papers from both clusters. Cluster’s boundaries 

were determined visually from their separation in the visual-

ization, but they were combined if the roots are similar (e.g., 

Interpretable Machine Learning and Classifier Explainers 

both have roots in ML). To verify if we omitted any signifi-

cant clusters and to validate our labelling, we perform com-

munity extraction in Gephi based on modularity optimization 

[17] with resolution [104]. We set the resolution to 0.8, 

slightly favoring more albeit smaller clusters. We found that 

the resulting clusters are largely consistent with our labelling 

as shown in the figure included in the supplementary mate-

rial. The network has a modularity score of 0.707 and 33 

clusters. The 5 additional clusters are subsumed by our orig-

inal labelling and stem from a finer resolution parameter. 

Early Artificial Intelligence 

Since the early promises of computing and artificial intelli-

gence (AI), researchers have been concerned with under-

standing the systems’ inner workings. In the late 1970s and 

1980s, Expert Systems using knowledge bases [165] and 

Production Rules (e.g., [39]) were the first to add explana-

tion capabilities, especially for medical decisions. Similarly, 

exploiting the intuitiveness of rules, Rule Extraction was de-

veloped to interpret artificial neural networks (ANN) and 

support vector machines (SVM), with work spanning from 

the 1990s to 2000s (e.g., [6, 139]). Later research focused on 

explaining Bayesian Belief Networks [102, 126] and Case-

Base Reasoning systems [159], following the trends of re-

search interest in these AI paradigms.  

It is notable that while work on Rule Extraction remains ac-

tive, it remains isolated [79]. In contrast, explanations of Ex-

pert Systems, Bayesian Networks, and Case-Base Reasoning 

influenced later research on explaining intelligent systems.  

However, we found that the recent burgeoning interest in in-

terpretable ML is not well connected to this body of work. 
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Intelligent Systems, Agents, and User Interfaces 

The proliferation of personal computers and the Internet, 

from the mid-1990s drove the development of more applica-

tions for non-technical end-users and consumers. Given the 

broader user base, these systems would need to be under-

standable to non-technical and non-expert users to gain their 

Trust [55]. Hence, research on explainable systems focused 

on Intelligent Systems [68] and Intelligent Agents [62, 80] 

to help with decision making or task management.  

Some research focused on consumer-oriented applications, 

such as Recommender Systems [33, 81] and Adaptive User 

Interfaces of applications and for Software Engineering [95, 

96, 135]. With the increasing use of machine learning, Intel-

ligent User Interfaces began to focus on providing explana-

tions to debug learned models [100, 101, 162]. Explaining 

the increased level of complexity is also addressed in re-

search on ambient intelligent systems. 

Ambient Intelligence: Sensing and Context-Awareness 

The miniaturization of electronics drove the development of 

Sensors and Pervasive Systems using Context-Awareness to 

recognize user activity and intent. These systems bring addi-

tional challenges for user trust and understanding [13, 169] 

 

Figure 1. Citation network of 12,412 papers citing 289 core papers on explanations. This shows several communities of research domains, 

how they are closely related due to co-citations by citing papers and trends of research interest on explainable systems. Each node (circle) 

indicates a paper. Node size (of core papers) indicates the logarithm of the number of citing papers. Node color indicates the paper’s age; 

darker green for more recently published papers. The nodes and edges are clustered by a force-directed layout method (ForceAtlas2 in Gephi 

[83]). Nodes are closer if more citing papers co-cite the same core papers. For example, recommender systems, intelligent agents and context-

aware systems are closely related in terms of explainable systems, but the recent work on algorithmic fairness and interpretable classifiers 

are mostly developing independently. The size of the text roughly corresponds to the number of papers identified. 
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due to the Implicit Interaction nature of ubiquitous sensing, 

and increasingly complex reasoning mechanisms. 

The heterogeneity of ubiquitous computing and increasing 

complexity of systems poses several challenges for interac-

tion. Researchers have proposed conceptual frameworks to 

help address these challenges, such as seamful design [23], 

design questions to understand and control sensing systems 

drawn from the social sciences [14], and computational Re-

flection and abstraction [51]. 

To support these goals, several software toolkits have been 

proposed to aid the development of explainable ambient in-

telligence: PersonisAD for scrutable personalization [8], Per-

sonisLF for long-term user models with forgetting [10], En-

cators to explain context reasoning [41], and the Intelligibil-

ity Toolkit to explain question types [113]. 

Research explored the need for [111] and provision of expla-

nations in physical space, such as smart environments [177, 

178, 179], the office [26], smart homes [18, 30, 131, 183] 

and on the move [90, 116]. The fallibility of sensing and in-

ference systems presents challenges to understanding, that 

can be addressed by visualizing uncertainty [7, 90, 115, 151]. 

Interaction Design and Learnability 

Branching off from the work by Bellotti and colleagues to 

make sense of sensing systems [14], we find research clusters 

around explainable systems that can be categorized as Inter-

action Design. Many novel interaction techniques enabled 

by sensor-driven systems lacked discoverability (e.g., ges-

tural interaction on tabletops or cross-device interaction) and 

feedback (e.g., proactive displays). Additionally, researchers 

were building increasingly sophisticated ubicomp spaces, 

consisting of multiple communicating distributed compo-

nents such as sensors and devices. Researchers explored so-

lutions to these issues, e.g., by presenting what devices and 

services are available through spontaneous discovery [60], 

with the concept of meta-user interfaces to configure ambient 

spaces [32], by exploring ways to facilitate cross-device in-

teraction with gradual engagement [128] and with a concep-

tual model and interaction techniques for systems that in-

creasingly reside and act in the periphery (e.g., [86, 87]). This 

body of work also includes research on how feedforward can 

help people understand and predict what is going to happen, 

initially for tangible interaction from a product design angle 

[48, 49, 180], and later for gestural interaction (e.g., [12, 58]) 

and from a broader HCI perspective [176]. 

Another research cluster with a rich history since the 

70s is Software Learnability as a key component of usability 

[72, 73]. This body of work investigates solutions to aid 

learning how to use complex software applications (e.g., Au-

toCAD), with techniques such as in-context videos or 

demonstrations [72]. Note that the Software Learnability 

cluster and the clusters on the effectiveness of Animation 

(e.g., [140, 170]) and Projectors [145] stem from the manu-

ally curated core papers. We hypothesized that these could 

be relevant strategies to consider in XAI research. However, 

our analysis and the visualization in Figure 1 objectively 

show that these clusters (labelled in grey) are relatively dis-

tant to the central clusters, highlighting our method’s robust-

ness against work that turns out to be rather tangential. Nev-

ertheless, this may also suggest opportunities for cross-polli-

nation of ideas between these clusters and XAI research.  

Interpretable ML and Classifier Explainers 

Machine learning (ML) has had a long history spanning dec-

ades and there are many subareas in ML, but research on ex-

plaining ML has primarily focused on classification. Early 

work on machine learning classification from the mid-2000s 

explored explanations using Nomograms [133], visual addi-

tive classifiers [144], and explanations of instances [147].  

The recent strong interest in AI can be attributed to Deep 

Learning [64] which has made dramatic strides in areas such 

as computer vision and natural language. However, just as 

Artificial Neural Networks were previously criticized as be-

ing uninterpretable, so is Deep Learning. This has driven a 

lot of interest to explain various types of deep neural net-

works (DNNs). Some methods attempt to explain DNNs, 

such as attention-based models for visual Question-Answer-

ing (QA) [36] and Grad-CAM [155] for producing visual ex-

planations of convolutional neural network (CNN) based 

models by highlighting regions relevant to target tasks. 

While some methods seek to develop “glass box” models 

which are intrinsically interpretable (e.g., generalized addi-

tive models [22], Bayesian rule lists [110, 160]), other meth-

ods work as a proxy explainer over “black box” models (e.g., 

sparse linear model [146]). Kim identifies three main cate-

gories of interpretable models [91]: sparse linear classifiers 

[146, 160], discretization methods such as decision trees and 

association rule lists [103, 110], and instance- or case-based 

models [92, 94].  

Algorithmic Fairness, Accountability, Transparency, Policy, 
and Journalism 

The prevalence of algorithmic decision-making systems in 

society has spurred the need for Fairness in systems. Hajian 

called for data mining systems which are discrimination-con-

scious by-design [76]; such as fair systems for loan risk pre-

diction [141], and bail flight risk of violent crime suspects 

[29], as well as methods to detect bias in black box models, 

such as Quantitative Influence (QI) [38] and methods that 

guarantee fairness such as contextual bandits from game the-

ory [85]. Fairness is also important when algorithms are used 

in social settings to support group decision making [109], or 

the allocation of distributed work [107]. Lee et al. observed 

that notions of fairness vary for different stakeholders and do 

not always correspond to mathematical interpretations of al-

gorithmic fairness [108]. 

Other than being fair, algorithms also need to be Accounta-

ble and explain their decisions. This will soon become law in 

some countries, e.g., the EU “right to explanation” [65]. 

Shneiderman argues for an independent process, including 

planning oversight, continuous review and retrospective 
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analyses to hold algorithms accountable [156]. Other authors 

have also argued for the need to define policy [54]. Privacy 

issues due to the advent of big data analytics [147,166] and 

the contention between transparency and privacy is also an 

active area of investigation [38, 111]. 

Journalism can also play a role to hold algorithms accounta-

ble by reporting issues of bias and algorithmic power to the 

broader public [43]. Moreover, as news media becomes in-

creasingly automated, the use of algorithmic curation and au-

tomated writing leads to a greater need for transparency [46]. 

Causality  

While machine learning typically models correlations, Cau-

sality is concerned with establishing the cause-effect rela-

tionships. Causal discovery utilizes the theory of Bayesian 

networks to discover causal structures in data while causal 

explanations provide a reasoning for why the events oc-

curred. Pearl’s pioneering work on structural causal models 

[77, 78] provides a unifying computational framework for 

causal reasoning and explanations based on counterfactuals. 

A counterfactual is a conditional statement contrary to a fact. 

For example, if event A would not have happened then event 

B would not have happened. 

Psychological Theories of Explanations 

Researchers from Psychology have developed a rich theory 

of different types of explanations (functional,  mechanistic, 

causal [123, 124]) and explored their role in learning, reason-

ing, categorization of knowledge [122] and scientific under-

standing [168]. 

Education and Cognitive Tutors 

In the field of education, a lot of attention has been paid to 

how students learn by asking Questions and the question 

generation mechanisms [67]. Closely related to this, the field 

of Cognitive Tutoring from the 90’s based on the ACT [4] 

cognitive model has explored the role of explanations in how 

students learn in classrooms and applied it to the develop-

ment of computer based tutors [5]. 

TOPIC NETWORK 

With the citation network, we can identify which communi-

ties are connected or isolated and identify the trends over 

time. Next, we want to understand what the key topics in 

each community are, how closely coupled communities re-

late to each other and why citing papers cited the core papers. 

Therefore, we partition the network into four subnetworks 

containing communities that are close together and perform 

topic modeling on the abstracts of the core papers, the ab-

stracts of the citing papers, and the paragraphs of the citing 

papers where the core papers are cited. The intuition behind 

this is that topics in the abstract are about the paper in general 

whereas the citing paragraph would contain more contextual 

information that relates the core paper to the cited paper. 

Topic Modeling  

With the 289 core and 12,412 citing papers identified, we at-

tempted to download the openly accessible PDF where avail-

able. The downloaded PDFs were then processed using 

Grobid [125] to extract the abstract (both core and citing pa-

pers) and the citing paragraph (from the citing paper). The 

extracted text from the citing abstracts and citing paragraphs 

were further processed by removing non-alphanumeric char-

acters, stemming plural forms to make them singular and 

stop word removal. After preprocessing, we had 289 core ab-

stracts, 6597 cite abstracts and 10,891 cite paragraphs. Com-

pared to the citation network we have approximately 47% 

fewer citing papers since a) not all PDFs are publicly availa-

ble to be retrieved by the automated crawling process and b) 

we limit our analysis to English language texts. 

To focus the discussion on central research clusters, consol-

idate higher-level themes, and understand how proximate 

clusters relate to each other, we analyze four subnetworks 

from the citation network as shown in Figure 1. Starting from 

the bottom left quadrant and moving in a clockwise direction, 

we notice causality and psychology of explanations. The up-

per left quadrant consists of algorithmic fairness, transpar-

ency and interpretable machine learning. The central portion 

of the upper right quadrant consists of the densest of the sub-

networks, relating to intelligent and ambient systems. Fi-

nally, the central portion of the bottom right quadrant con-

sists of interactions and software learnability and is tightly 

connected to ambient and intelligent systems. For each of the 

subnetworks, we performed the following steps: 

1) Iterative Open Coding of Topics in Core Abstracts: 

The authors of this paper reviewed the core abstracts to label 

the core papers with the identified topics. Our labels were 

then combined with the author-provided keywords of the 

core papers. This final set of keywords were iteratively re-

fined until a concise set of topic keywords emerged. 

2) Topic Modelling of Citing Abstracts: We performed 

LDA based topic modelling utilizing Gibbs sampling [70] on 

the preprocessed text of citing abstracts. LDA is a generative 

probabilistic model. Given a bag of words representation of 

documents, LDA treats each document as a distribution over 

topics and each topic as a distribution over words. LDA re-

quires the number of topics as one of the inputs to learn the 

topic distributions. While there are metrics available to help 

with selection of number of topics, they are far from perfect 

beyond standard benchmark datasets. To determine the num-

ber of topics, we use the R package ldatuning [136], which 

implements various metrics, as a starting point and itera-

tively perform topic modelling until the number of topics 

provides a good tradeoff between too general and overtly 

specific. LDA generates unlabeled topics. To label them, we 

generate the top 30 words for each topic and manually la-

beled them. Multiple coauthors inspected the labels to con-

verge on the final agreed labels.  

3) Topic Modelling of Citing Paragraphs: This is the same 

as step 2, but for preprocessed texts from citing paragraphs. 

4) Topic Network Generation:  After the topic modelling 

and labelling is complete, we have a set of topics for each of  
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Interaction Design: Implicit Sensing, 
User Interfaces, and Guides 

Intelligent and Ambient Systems 

FAT and Interpretable ML 

Psychology of Explanations 

and Causality 

Figure 2. Topic networks of four key subnetworks of core and citing papers. Topics derived from LDA modelling, which were 

manually labeled by the authors. Nodes indicate topics of different types: red Core Abstract (A) topics, yellow Cite Abstract (a) topics, 

green Cite Paragraph (p) topics. Edges indicate inter-document (aA, pA, pa) connections or intra-document (aa, AA, pp) co-occurrences 

of topics. A document is a body of text either core abstract, citing abstract or citing paragraph. Thicker edges indicate more co-occur-

rences, which also causes nodes to be closer together. Edges have been filtered to balance between too many nodes/edges which produce 

a non-interpretable “hairball”, and sufficient nodes/edges to draw insights. 
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the three sources of texts: core abstracts, citing abstracts and 

citing paragraphs. We then use the respective trained LDA 

models for each text and predict up to five most likely topics 

that occur with a probability greater than a uniform distribu-

tion on the number of topics.  To understand the relationship 

between these topics, we create a topic network by construct-

ing an undirected graph as follows: 

• Nodes: Each unique topic from each of the sources of texts 

is treated as a node. We have three types of nodes, core 

abstract topics colored red, cite abstract topics colored yel-

low and cite paragraph topics colored green. 

• Edges: We have a total of six different types of edges 

weighted by the frequency of co-occurrence 

a. Co-occurrence edges:  There are three types of co-oc-

currence edges: core abstract to core abstract colored 

red, cite abstract to cite abstract colored yellow and cite 

paragraph to cite paragraph colored green. This encap-

sulates which topics within a set of texts co-occur. 

b. Network edges: There are three types of network 

edges. Cite abstract to core abstract, colored orange, 

which indicate the relationship between topics in the 

core and citing papers. Cite paragraph to core abstract 

colored brown and cite paragraph to cite abstract col-

ored light green, which provide context on why a citing 

paper cites a core paper. 

Topic Network Analysis: The resulting topic network was 

then visualized using the ForceAtlas2 algorithm [83] in 

Gephi [11]. The graphs generated are dense and contain rich 

contextual information. To ease interpretability, we filter the 

edges based on weights and present the most dominant pat-

terns in the various subnetworks as shown in Figure 2. The 

size of the nodes is proportional to the occurrence of topics. 

A bigger node indicates a more prevalent topic. 

Topic Groups: Sub-Networks 

We describe some insights from the topic modeling, and dis-

cuss how research topics relate within the subnetwork and 

how the subnetworks relate to one another. 

Intelligent and Ambient (I&A) Systems 

This is the biggest, most central, and mature subnetwork 

spanning many research areas of the Intelligent Systems and 

Ambient Intelligence communities. The proximity of these 

clusters to each other indicates the cross-pollination of ideas 

between the two research areas. For example, the use of Why 

questions for explanations originated in research in user-cen-

tered software engineering [95, 96] but is commonly used for 

explanations in both communities [101, 113, 117, 135, 179]. 

Their objectives were also similar – to improve the end-user 

trust and usability of these systems, whether as a desktop or 

pervasive interface. The subnetwork has its roots from Ex-

pert Systems to Recommender Systems, Context-Aware 

Systems, and Intelligent User Interfaces. Some recent devel-

opments include generating verbalization explanations for 

human-robot interaction [149] and interactive visualizations 

for iML models for data scientists [99].  

From the topic network (Figure 2) we notice that research in 

this space is concerned with building compelling smart ap-

plications with a strong emphasis on user validation and em-

pirical testing. Domains include recommenders [33], deci-

sion support [62], medical [19, 99], business processes [88, 

98], e-commerce [164, 186], social networks [63, 161], smart 

sensors [112, 113], smart homes [2, 30, 183], games [134, 

182], and public displays [179]. The user-centered objectives 

drive the need for control interfaces, user adaptation, and 

preference modeling. Specific concerns that require explana-

tions include usability, trust, reliability, and understanding 

system behavior.  

Explainable AI: Fair, Accountable, and Transparent (FAT) al-
gorithms and Interpretable Machine Learning (iML) 

For this topic subnetwork, we see that research on FAT is 

mainly driven by societal issues concerning black box sys-

tems, while iML is mainly interested in developing methods 

for interpretability in ML. Key issues for algorithmic fairness 

and accountability are: bias, discrimination in big data and 

algorithms, ethics, legal and policy implications, disparate 

impact, data privacy, and journalistic transparency. Key 

methods for interpretable machine learning are: Bayesian 

rules, explanations for deep learning, visual analytics and 

causal inference. 

While I&A Systems target many consumer applications, the 

applications considered for iML are usually from more criti-

cal domains, such as medical [22, 99, 160] or finance, and 

applications for FAT are more wide-reaching, such as judi-

ciary, policy and journalism. Unlike with I&A Systems, 

where there is a strong emphasis on validation with real users 

and scenarios, validation for FAT and iML appear to be pri-

marily performed on commonly available datasets. 

Theories of Explanations: Causality & Cognitive Psychology 

In stark contrast to the other research communities, Causality 

and Cognitive Psychology both focus on the theory of expla-

nations. While the work on causality and Bayesian networks 

spearheaded by Halpern and Pearl [77, 78] approaches the 

problem from a computational perspective, the work by 

Lombrozo [122, 123, 124] explores the cognitive aspects of 

explanations. Although seemingly disjoint, these communi-

ties two are strongly connected by counterfactual reasoning 

and causal explanations.  

Interactivity and Learnability 

We found a broad emphasis on interaction design (central 

topic in this subnetwork), design principles, interaction 

styles, and software learnability in this subnetwork. We can 

see three main trends from this topic network: software 

learnability (top right), design principles (bottom middle), 

and interface technology and interaction styles (left). 

The topics centered around interface technology and interac-

tion styles relate to exploring the design space of ubiquitous 

computing beyond the desktop, including mobile devices, 

tabletop surfaces, public displays, gestures, tangible, and 

physical interfaces. Sensor-driven interaction is an important 
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aspect of this (top left). As part of research into these new 

interface technologies, we see supporting research related to 

interaction design, such as design frameworks, implicit and 

explicit interaction (e.g., [86]).  

On the right, we see topics that mostly relate to software 

learnability, such as cues, hints, tutorials, on-demand, guid-

ance and visualizations. Much of this is motivated by novel 

interface technology with challenges in usage and under-

standing what is possible, i.e., gestural interaction and touch 

interfaces. There is also a strong link to evaluation, suggest-

ing that these tutorials, guides and visualizations tend to be 

empirically evaluated through user studies.  

Finally, we observe topics that deal with the design process 

and core design principles such as feedback (mechanisms), 

affordances, and feedforward [176]. Particularly feedback is 

a core concepts within HCI [138], that we can see as part of 

our vocabulary to discuss challenges in the use of interactive 

technology (i.e., the need for appropriate feedback [138]). 

This suggests that these principles are central HCI concepts 

in terms of challenges of understanding (e.g., see the framing 

in [14]), with feedforward [48, 176] becoming more relevant. 

In terms of vocabulary, the algorithmic fairness and account-

ability community and this subnetwork are quite different. 

Even though there are overlaps between venues between 

these subnetworks (e.g., CSCW work on algorithmic fairness 

in the sharing economy [108]), the fairness and accountabil-

ity community are shown to explore problems more from a 

big picture perspective and focus more on problems with a 

potential large societal impact. In contrast, the interaction de-

sign subnetwork appears to focus more on understanding and 

learnability of novel or complicated interfaces. This illus-

trates an opportunity to bridge this gap and cross-pollinate 

ideas from both communities.  

Finally, as a research domain, HCI research is interdiscipli-

nary and regularly draws insights and inspiration from other 

domains. However, rather curiously, Figure 1 shows that the 

research clusters on interaction design are quite distant from 

and appear to be less informed by relevant theoretical do-

mains in computer science and cognitive psychology. It 

could imply that there are knowledge gaps, or could point to 

the lack of practical applicability of relevant theoretical con-

cepts from these other domains. 

DISCUSSION AND IMPLICATIONS 

Based on our analysis of the citation and topic networks, we 

articulate trends, trajectories and research opportunities for 

HCI in explainable systems. We articulate insights based on: 

(i) reading and analyzing sample papers from different com-

munities; (ii) closeness of communities indicated by separa-

tion in Figure 1; (iii) separation over time indicated by color 

intensity of nodes in Figure 1; (iv) topic words discovered in 

sub communities in Figure 2; and, (v) the authors expertise. 

Trend: Production Rules to Machine Learning 

Interestingly, we found that the earlier methods to explain 

machine learning models (Classifier Explainers) were more 

strongly related to the Expert Systems and Bayesian Net-

works clusters, rather than the new cluster on Interpretable 

ML. This suggests that the new approaches could (i) be using 

different techniques and the older methods are obsolete, (ii) 

be targeting very different problems, or (iii) have neglected 

the past. Furthermore, while rule extraction is an old research 

area, and quite separated from the recent developments in 

iML and FAT, there have been new papers within the past 

few years, such as methods for rule extraction from deep neu-

ral networks [187, 75]. Therefore, we should reflect on the 

past research topics to rediscover methods that could be suit-

able for current use cases. 

Trend: Individual Trust to Systematic Accountability  

While research on explainable Intelligent and Ambient Sys-

tems (I&A) and Interpretable Machine Learning (iML) have 

focused on the need to explain to single end-users to gain 

their individual trust [13, 55, 68], research on fair and ac-

countable, and transparent (FAT) algorithms aims to address 

macroscopic societal accountability [44, 156]. There is a 

shift in perceived demand for intelligibility from the individ-

ual's need for understanding, to their need for institutional 

trust. This would require understanding requirements arising 

from social contexts other than just form usability or human 

cognitive psychology. Therefore, it is important to draw in-

sights from social science too [132]. 

Trajectory: Road to Rigorous and Usable Intelligibility 

Explainable AI (including FAT and Interpretable Machine 

Learning) focuses on the mathematics to transform a com-

plex or “black box” model into a simpler one, or create math-

ematically interpretable models. While these are significant 

contributions, they tend to neglect the human side of the ex-

planations and whether they are usable and practical in real-

world situations [50, 119, 132]. As shown in Figure 2, the 

research does not appear to be strongly informed by Cogni-

tive Psychology in terms of how humans can interpret the 

explanations, and does not deploy or evaluate the explana-

tions in interactive applications with real users. This presents 

an opportunity for HCI research to bridge this gap. 

Research in HCI on explainable interfaces has demonstrated 

the value of explanations to users with classical machine 

learning models (e.g., linear SVM, naïve Bayes) [101, 162]. 

These are good starting points to understanding how users 

use explanations. However, real world applications and da-

tasets have challenges which require more sophisticated 

models (e.g., missing data, high dimensionality, unstructured 

data). Furthermore, sometimes the reason the system does 

not work may lie outside the system, which may require the 

provision of additional information that is not related to the 

internal mechanics of the system.  

To improve rigor, as we test the effectiveness of explanation 

interfaces, we should use real-world data with functional 

complex models that deal with intricacies. We can draw from 

the diverse models and algorithms being developed by the 

FAT and iML research clusters. On the other hand, causal 
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explanations [77, 78] could provide a strong theoretical 

framework to reason about and generate explanations.  

To improve usability of intelligible or explainable inter-

faces, we can draw from the rich body of research in HCI on 

Interaction Design (e.g., [86]) and Software Learnability 

(e.g., [73]). Furthermore, we can draw from theoretical work 

on the Cognitive Psychology of explanations [124] to de-

velop explanations that are easier to interpret. Finally, HCI 

researchers can perform empirical studies to evaluate the ef-

ficacy of the novel explanation interfaces in various settings 

(e.g., [114, 116]). 

Trajectory: Interaction and Interfaces for Intelligibility  

An important area for future work is exploring interactive 

explanations and interfaces for intelligibility. Most expla-

nations resulting from research in the XAI community are 

static (e.g., [146]) and assume that there is a single message 

to convey through the explanation. An alternative approach 

would be to allow users to explore the system’s behaviour 

freely through interactive explanations.  

As shown in the visual analytics [28] and information visu-

alization communities [21], interaction can be a powerful 

means to enable people to iteratively explore and gather in-

sight from large amounts of complex information. This sug-

gests that allowing people to interactively explore explana-

tions for algorithmic decision-making is a promising direc-

tion. We already see some examples of research in this direc-

tion, such as studies on understanding how data scientists 

work [97], tools to support data scientists in using and under-

standing machine-learning algorithms [99, 130, 142, 141], 

visualization techniques for text analysis [34, 35], tools to 

support interactive data analysis [24, 25, 37] and interactive 

machine learning [82]. However, more work is needed to tai-

lor these interfaces to different audiences and exploit inter-

activity (e.g., while Kay et al.’s transit visualizations were 

aimed at non-experts, they were non-interactive [90]). 

To go beyond static explanations, researchers can draw from 

existing work on intelligibility for context-aware systems, in-

cluding design space explorations (e.g., [173, 174]), concep-

tual models for implicit interaction [86] and intelligible in-

terfaces for different scenarios and using various modalities 

(e.g., [111, 175, 177]).  

Finally, an interesting direction is work on effectively inter-

acting with AI augmentation tools. A recent example is a 

technique that provides interactive visualizations of a gesture 

recognizer’s recognition rate to let people design their own 

gestures that are also easy to recognize [127]. 

LIMITATIONS 

While we have made every effort to ensure a broad coverage 

of papers relevant to explainable systems, we had yet to an-

alyze other research domains which cover explanations, such 

as theories from philosophy and social sciences, Bayesian 

and constraint-based cognitive tutors, relevance feedback 

and personalization in information retrieval. 

It is possible that the process of manual curation of the initial 

set of core explanation papers may have introduced a bias. 

This could be improved by iterative citation tracing, where 

citing papers identified as central to explanation systems 

could be added to core explanation papers; and by backward 

reference searching (chain searching) to discover root expla-

nation papers of core explanation papers. Such an iterative 

process would provide further evidence for gaps or collabo-

rations between the various communities. 

Our topic modeling led to many nodes that we filtered out to 

improve readability and interpretability. However, this fil-

tered out interesting but less frequent topics, such as the need 

for intelligibility in energy-efficient smart homes to explain 

smart thermostats [183] or smart laundry agents [30]. Never-

theless, the semi-automated analysis methods allowed us to 

capture important trends and relationships across many pa-

pers and spanning many domains. 

We assume that the citing paragraph is relevant to the core 

paper that it cites. While this assumption could be questioned 

(e.g., Marshall reported on shallow citation practices in CHI 

papers [129]) the bibliometric analysis method that we em-

ployed, including the use of citation network visualizations, 

is well-established. Given the scale of our citation network 

spanning multiple domains, we also expect that our results 

will be less sensitive to noise. 

CONCLUSION 

Recent advances in machine learning and artificial intelli-

gence have far-reaching impacts on society at large. While 

researchers in the ML and AI communities are working on 

making their algorithms explainable, their focus is not on us-

able, practical and effective transparency that works for and 

benefits people. Given HCI’s core interest in technology that 

empowers people, this is a gap that we as a community can 

help to address, to ensure that these new and powerful tech-

nologies are designed with intelligibility from the ground up. 

From a literature analysis of 12,412 papers citing 289 core 

papers on explainable systems, we mapped the research 

space from diverse domains related to explainable systems. 

We revealed fading vs. burgeoning trends and connected vs. 

isolated domains, and from this, extracted several implica-

tions, future directions and opportunities for HCI research-

ers. While this is only a first step, we argue that true progress 

towards explainable systems can only be made through in-

terdisciplinary collaborations, where expertise from different 

fields (e.g., machine learning, cognitive psychology, human-

computer interaction) is combined and concepts and tech-

niques are further developed from multiple perspectives to 

move research forward. 
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