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We could optimize this by optimizing each variable separately, except for
the fact that the parent relation is constrained by the acyclic condition of the be-
lief network. However, given a total ordering of the variables, we have a clas-
sification problem in which we want to predict the probability of each variable
given the predecessors in the total ordering. To represent P(Xi|par(Xi, model))
we could use, for example, a decision tree with probabilities of the leaves [as
described in Section 7.5.1 (page 322)] or learn a squashed linear function. Given
the preceding score, we can search over total orderings of the variables to max-
imize this score.

11.2.5 General Case of Belief Network Learning

The general case is with unknown structure, hidden variables, and missing
data; we do not even know what variables exist. Two main problems exist. The
first is the problem of missing data discussed earlier. The second problem is
computational; although there is a well-defined search space, it is prohibitively
large to try all combinations of variable ordering and hidden variables. If one
only considers hidden variables that simplify the model (as seems reasonable),
the search space is finite, but enormous.

One can either select the best model (e.g, the model with the highest a pos-
teriori probability) or average over all models. Averaging over all models gives
better predictions, but it is difficult to explain to a person who may have to un-
derstand or justify the model.

The problem with combining this approach with missing data seems to be
much more difficult and requires more knowledge of the domain.

11.3 Reinforcement Learning

Imagine a robot that can act in a world, receiving rewards and punishments
and determining from these what it should do. This is the problem of rein-
forcement learning. This chapter only considers fully observable, single-agent
reinforcement learning [although Section 10.4.2 (page 441) considered a simple
form of multiagent reinforcement learning].

We can formalize reinforcement learning in terms of Markov decision pro-
cesses (page 400), but in which the agent, initially, only knows the set of possi-
ble states and the set of possible actions. Thus, the dynamics, P(s′|a, s), and the
reward function, R(s, a, s′), are initially unknown. An agent can act in a world
and, after each step, it can observe the state of the world and observe what
reward it obtained. Assume the agent acts to achieve the optimal discounted
reward (page 403) with a discount factor γ.

Example 11.7 Consider the tiny reinforcement learning problem shown in
Figure 11.8 (on the next page). There are six states the agent could be in, labeled
as s0, . . . , s5. The agent has four actions: UpC, Up, Left, Right. That is all the
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Figure 11.8: The environment of a tiny reinforcement learning problem
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Figure 11.9: The environment of a grid game

agent knows before it starts. It does not know how the states are configured,
what the actions do, or how rewards are earned.

Figure 11.8 shows the configuration of the six states. Suppose the actions
work as follows:

upC (for “up carefully”) The agent goes up, except in states s4 and s5, where
the agent stays still, and has a reward of −1.

right The agent moves to the right in states s0, s2, s4 with a reward of 0 and
stays still in the other states, with a reward of −1.

left The agent moves one state to the left in states s1, s3, s5. In state s0, it stays
in state s0 and has a reward of −1. In state s2, it has a reward of −100 and
stays in state s2. In state s4, it gets a reward of 10 and moves to state s0.

up With a probability of 0.8 it acts like upC, except the reward is 0. With prob-
ability 0.1 it acts as a left, and with probability 0.1 it acts as right.

Suppose there is a discounted reward (page 403) with a discount of 0.9. This can
be translated as having a 0.1 chance of the agent leaving the game at any step,
or as a way to encode that the agent prefers immediate rewards over future
rewards.

Example 11.8 Figure 11.9 shows the domain of a more complex game. There
are 25 grid locations the agent could be in. A prize could be on one of the cor-
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ners, or there could be no prize. When the agent lands on a prize, it receives a
reward of 10 and the prize disappears. When there is no prize, for each time
step there is a probability that a prize appears on one of the corners. Monsters
can appear at any time on one of the locations marked M. The agent gets dam-
aged if a monster appears on the square the agent is on. If the agent is already
damaged, it receives a reward of −10. The agent can get repaired (i.e., so it is
no longer damaged) by visiting the repair station marked R.

In this example, the state consists of four components: 〈X, Y, P, D〉, where
X is the X-coordinate of the agent, Y is the Y-coordinate of the agent, P is the
position of the prize (P = 0 if there is a prize on P0, P = 1 if there is a prize on
P1, similarly for 2 and 3, and P = 4 if there is no prize), and D is Boolean and
is true when the agent is damaged. Because the monsters are transient, it is not
necessary to include them as part of the state. There are thus 5× 5× 5× 2 = 250
states. The environment is fully observable, so the agent knows what state it
is in. But the agent does not know the meaning of the states; it has no idea
initially about being damaged or what a prize is.

The agent has four actions: up, down, left, and right. These move the agent
one step – usually one step in the direction indicated by the name, but some-
times in one of the other directions. If the agent crashes into an outside wall or
one of the interior walls (the thick lines near the location R), it remains where
is was and receives a reward of −1.

The agent does not know any of the story given here. It just knows there
are 250 states and 4 actions, which state it is in at every time, and what reward
was received each time.

This game is simple, but it is surprisingly difficult to write a good controller
for it. There is a Java applet available on the book web site that you can play
with and modify. Try to write a controller by hand for it; it is possible to write
a controller that averages about 500 rewards for each 1,000 steps. This game is
also difficult to learn, because visiting R is seemingly innocuous until the agent
has determined that being damaged is bad, and that visiting R makes it not
damaged. It must stumble on this while trying to collect the prizes. The states
where there is no prize available do not last very long. Moreover, it has to learn
this without being given the concept of damaged; all it knows, initially, is that
there are 250 states and 4 actions.

Reinforcement learning is difficult for a number of reasons:

• The blame attribution problem is the problem of determining which action
was responsible for a reward or punishment. The responsible action may
have occurred a long time before the reward was received. Moreover, not
a single action but rather a combination of actions carried out in the appro-
priate circumstances may be responsible for the reward. For example, you
could teach an agent to play a game by rewarding it when it wins or loses; it
must determine the brilliant moves that were needed to win. You may try to
train a dog by saying “bad dog” when you come home and find a mess. The
dog has to determine, out of all of the actions it did, which of them were the
actions that were responsible for the reprimand.
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• Even if the dynamics of the world does not change, the effect of an action of
the agent depends on what the agent will do in the future. What may ini-
tially seem like a bad thing for the agent to do may end up being an optimal
action because of what the agent does in the future. This is common among
planning problems, but it is complicated in the reinforcement learning con-
text because the agent does not know, a priori, the effects of its actions.

• The explore–exploit dilemma: if the agent has worked out a good course
of actions, should it continue to follow these actions (exploiting what it has
determined) or should it explore to find better actions? An agent that never
explores may act forever in a way that could have been much better if it had
explored earlier. An agent that always explores will never use what it has
learned. This dilemma is discussed further in Section 11.3.4 (page 471).

11.3.1 Evolutionary Algorithms

One way to solve reinforcement algorithms is to treat this as an optimization
problem (page 145), with the aim of selecting a policy that maximizes the ex-
pected reward collected. One way to do this via policy search. The aim is to
search through the space of all policies to find the best policy. A policy is a
controller (page 48) that can be evaluated by running it in the agent acting in
the environment.

Policy search is often solved as a stochastic local search algorithm (page 134)
by searching in the space of policies. A policy can be evaluated by running it
in the environment a number of times.

One of the difficulties is in choosing a representation of the policy. Starting
from an initial policy, the policy can be repeatedly evaluated in the environ-
ment and iteratively improved. This process is called an evolutionary algo-
rithm because the agent, as a whole, is evaluated on how well it survives. This
is often combined with genetic algorithms (page 142), which take us one step
closer to the biological analogy of competing agents mutating genes. The idea
is that crossover provides a way to combine the best features of policies.

Evolutionary algorithms have a number of issues. The first is the size of
the state space. If there are n states and m actions, there are mn policies. For
example, for the game described in Example 11.7 (page 463), there are 46 =
4, 096 different policies. For the game of Example 11.8 (page 464), there are 250
states, and so 4250 ≈ 10150 policies. This is a very small game, but it has more
policies than there are particles in the universe.

Second, evolutionary algorithms use experiences very wastefully. If an
agent was in state s2 of Example 11.7 (page 463) and it moved left, you would
like it to learn that it is bad to go left from state s2. But evolutionary algorithms
wait until the agent has finished and judge the policy as a whole. Stochas-
tic local search will randomly try doing something else in state s2 and so may
eventually determine that that action was not good, but it is very indirect. Ge-
netic algorithms are slightly better in that the policies that have the agent going
left in state s2 will die off, but again this is very indirect.
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Third, the performance of evolutionary algorithms can be very sensitive
to the representation of the policy. The representation for a genetic algorithm
should be such that crossover preserves the good parts of the policy. The rep-
resentations are often tuned for the particular domain.

An alternative pursued in the rest of this chapter is to learn after every
action. The components of the policy are learned, rather than the policy as a
whole. By learning what do in each state, we can make the problem linear in
the number of states rather than exponential in the number of states.

11.3.2 Temporal Differences

To understand how reinforcement learning works, first consider how to aver-
age experiences that arrive to an agent sequentially.

Suppose there is a sequence of numerical values, v1, v2, v3, . . . , and the goal
is to predict the next value, given all of the previous values. One way to do
this is to have a running approximation of the expected value of the v’s. For
example, given a sequence of students’ grades and the aim of predicting the
next grade, a reasonable prediction is to predict the average grade.

Let Ak be an estimate of the expected value based on the first k data points
v1, . . . , vk. A reasonable estimate is the sample average:

Ak =
v1 + · · ·+ vk

k
.

Thus,

kAk = v1 + · · ·+ vk−1 + vk

= (k− 1)Ak−1 + vk.

Dividing by k gives

Ak =

(
1− 1

k

)
Ak−1 +

vk

k
.

Let αk =
1
k ; then

Ak = (1− αk)Ak−1 + αkvk

= Ak−1 + αk(vk −Ak−1). (11.1)

The difference, vk−Ak−1, is called the temporal difference error or TD error; it
specifies how different the new value, vk, is from the old prediction, Ak−1. The
old estimate, Ak−1, is updated by αk times the TD error to get the new estimate,
Ak. The qualitative interpretation of the temporal difference formula is that if
the new value is higher than the old prediction, increase the predicted value;
if the new value is less than the old prediction, decrease the predicted value.
The change is proportional to the difference between the new value and the old
prediction. Note that this equation is still valid for the first value, k = 1.
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This analysis assumes that all of the values have an equal weight. How-
ever, suppose you are keeping an estimate of the expected value of students’
grades. If schools start giving higher grades, the newer values are more useful
for the estimate of the current situation than older grades, and so they should
be weighted more in predicting new grades.

In reinforcement learning, the latter values of vi (i.e., the more recent values)
are more accurate than the earlier values and should be weighted more. One
way to weight later examples more is to use Equation (11.1), but with α as a
constant (0 < α ≤ 1) that does not depend on k. Unfortunately, this does
not converge to the average value when variability exists in the values in the
sequence, but it can track changes when the underlying process generating the
values changes.

You could reduce α more slowly and potentially have the benefits of both
approaches: weighting recent observations more and still converging to the
average. You can guarantee convergence if

∞

∑
k=1

αk = ∞ and
∞

∑
k=1

α2
k < ∞.

The first condition is to ensure that random fluctuations and initial conditions
get averaged out, and the second condition guarantees convergence.

Note that guaranteeing convergence to the average is not compatible with
being able to adapt to make better predictions when the underlying process
generating the values keeps changing.

For the rest of this chapter, α without a subscript is assumed to be a con-
stant. With a subscript it is a function of the number of cases that have been
combined for the particular estimate.

11.3.3 Q-learning

In Q-learning and related algorithms, an agent tries to learn the optimal policy
from its history of interaction with the environment. A history of an agent is a
sequence of state-action-rewards:

〈s0, a0, r1, s1, a1, r2, s2, a2, r3, s3, a3, r4, s4 . . . 〉 ,

which means that the agent was in state s0 and did action a0, which resulted
in it receiving reward r1 and being in state s1; then it did action a1, received
reward r2, and ended up in state s2; then it did action a2, received reward r3,
and ended up in state s3; and so on.

We treat this history of interaction as a sequence of experiences, where an
experience is a tuple

〈
s, a, r, s′

〉
,

which means that the agent was in state s, it did action a, it received reward
r, and it went into state s′. These experiences will be the data from which the
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agent can learn what to do. As in decision-theoretic planning, the aim is for the
agent to maximize its value, which is usually the discounted reward (page 403).

Recall (page 404) that Q∗(s, a), where a is an action and s is a state, is the
expected value (cumulative discounted reward) of doing a in state s and then
following the optimal policy.

Q-learning uses temporal differences to estimate the value of Q∗(s, a). In
Q-learning, the agent maintains a table of Q[S, A], where S is the set of states
and A is the set of actions. Q[s, a] represents its current estimate of Q∗(s, a).

An experience 〈s, a, r, s′〉 provides one data point for the value of Q(s, a).
The data point is that the agent received the future value of r + γV(s′), where
V(s′) = maxa′ Q(s′, a′); this is the actual current reward plus the discounted
estimated future value. This new data point is called a return. The agent can
use the temporal difference equation (11.1) to update its estimate for Q(s, a):

Q[s, a]← Q[s, a] + α

(
r + γ max

a′
Q[s′, a′]−Q[s, a]

)

or, equivalently,

Q[s, a]← (1− α)Q[s, a] + α

(
r + γ max

a′
Q[s′, a′]

)
.

Figure 11.10 shows the Q-learning controller. This assumes that α is fixed;
if α is varying, there will be a different count for each state–action pair and the
algorithm would also have to keep track of this count.

Q-learning learns an optimal policy no matter which policy the agent is ac-
tually following (i.e., which action a it selects for any state s) as long as there
is no bound on the number of times it tries an action in any state (i.e., it does
not always do the same subset of actions in a state). Because it learns an opti-
mal policy no matter which policy it is carrying out, it is called an off-policy
method.

Example 11.9 Consider the domain Example 11.7 (page 463), shown in Figure
11.8 (page 464). Here is a sequence of 〈s, a, r, s′〉 experiences, and the update,
where γ = 0.9 and α = 0.2, and all of the Q-values are initialized to 0 (to two
decimal points):

s a r s′ Update
s0 upC −1 s2 Q[s0, upC] = −0.2
s2 up 0 s4 Q[s2, up] = 0
s4 left 10 s0 Q[s4, left] = 2.0
s0 upC −1 s2 Q[s0, upC] = −0.36
s2 up 0 s4 Q[s2, up] = 0.36
s4 left 10 s0 Q[s4, left] = 3.6
s0 up 0 s2 Q[s0, upC] = 0.06
s2 up −100 s2 Q[s2, up] = −19.65
s2 up 0 s4 Q[s2, up] = −15.07
s4 left 10 s0 Q[s4, left] = 4.89
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1: controller Q-learning(S, A, γ, α)
2: Inputs
3: S is a set of states
4: A is a set of actions
5: γ the discount
6: α is the step size
7: Local
8: real array Q[S, A]
9: previous state s

10: previous action a
11: initialize Q[S, A] arbitrarily
12: observe current state s
13: repeat
14: select and carry out an action a
15: observe reward r and state s′
16: Q[s, a]← Q[s, a] + α (r + γ maxa′ Q[s′, a′]−Q[s, a])
17: s ← s′
18: until termination

Figure 11.10: Q-learning controller

Notice how the reward of −100 is averaged in with the other rewards. After
the experience of receiving the −100 reward, Q[s2, up] gets the value

0.8× 0.36 + 0.2× (−100 + 0.9× 0.36) = −19.65

At the next step, the same action is carried out with a different outcome, and
Q[s2, up] gets the value

0.8×−19.65 + 0.2× (0 + 0.9× 3.6) = −15.07

After more experiences going up from s2 and not receiving the reward of −100,
the large negative reward will eventually be averaged in with the positive re-
wards and eventually have less influence on the value of Q[s2, up], until going
up in state s2 once again receives a reward of −100.

It is instructive to consider how using αk to average the rewards works
when the earlier estimates are much worse than more recent estimates. The
following example shows the effect of a sequence of deterministic actions. Note
that when an action is deterministic we can use α = 1.

Example 11.10 Consider the domain Example 11.7 (page 463), shown in Fig-
ure 11.8 (page 464). Suppose that the agent has the experience

〈s0, right, 0, s1, upC,−1, s3, upC,−1, s5, left, 0, s4, left, 10, s0〉
c©Poole and Mackworth, 2009
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and repeats this sequence of actions a number of times. (Note that a real Q-
learning agent would not keep repeating the same actions, particularly when
some of them look bad, but we will assume this to let us understand how Q-
learning works.)

Figure 11.11 (on the next page) shows how the Q-values are updated though
a repeated execution of this action sequence. In both of these tables, the Q-
values are initialized to 0.

(a) In the top run there is a separate αk-value for each state–action pair. Notice
how, in iteration 1, only the immediate rewards are updated. In iteration
2, there is a one-step backup from the positive rewards. Note that the −1
is not backed up because another action is available that has a Q-value of
0. In the third iteration, there is a two-step backup. Q[s3, upC] is updated
because of the reward of 10, two steps ahead; its value is the average of its
experiences: (−1 +−1 + (−1 + 0.9× 6))/3.

(b) The second run is where α = 1; thus, it only takes into account the current
estimate. Again, the reward is backed up one step in each iteration. In the
third iteration, Q[s3, upC] is updated because of the reward of 10 two steps
ahead, but with α = 1, the algorithm ignores its previous estimates and
uses its new experience, −1 + 0.9× 0.9. Having α = 1 converges much
faster than when αk = 1/k, but α = 1 only converges when the actions are
deterministic because α = 1 implicitly assumes that the last reward and
resulting state are representative of future ones.

(c) If the algorithm is run allowing the agent to explore, as is normal, some of
the Q-values after convergence are shown in part (c). Note that, because
there are stochastic actions, α cannot be 1 for the algorithm to converge.
Note that the Q-values are larger than for the deterministic sequence of
actions because these actions do not form an optimal policy.

The final policy after convergence is to do up in state s0, upC in state s2, up
in states s1 and s3, and left in states s4 and s5.

You can run the applet for this example that is available on the book web
site. Try different initializations, and try varying α.

11.3.4 Exploration and Exploitation

The Q-learning algorithm does not specify what the agent should actually do.
The agent learns a Q-function that can be used to determine an optimal action.
There are two things that are useful for the agent to do:

• exploit the knowledge that it has found for the current state s by doing one
of the actions a that maximizes Q[s, a].

• explore in order to build a better estimate of the optimal Q-function. That is,
it should select a different action from the one that it currently thinks is best.

There have been a number of suggested ways to trade off exploration and
exploitation:
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This is a trace of Q-learning described in Example 11.10 (page 470).
(a) Q-learning for a deterministic sequence of actions with a separate αk-value
for each state–action pair, αk = 1/k.

Iteration Q[s0, right] Q[s1, upC] Q[s3, upC] Q[s5, left] Q[s4, left]
1 0 −1 −1 0 10
2 0 −1 −1 4.5 10
3 0 −1 0.35 6.0 10
4 0 −0.92 1.36 6.75 10
10 0.03 0.51 4 8.1 10
100 2.54 4.12 6.82 9.5 11.34
1000 4.63 5.93 8.46 11.3 13.4
10,000 6.08 7.39 9.97 12.83 14.9
100,000 7.27 8.58 11.16 14.02 16.08
1,000,000 8.21 9.52 12.1 14.96 17.02
10,000,000 8.96 10.27 12.85 15.71 17.77
∞ 11.85 13.16 15.74 18.6 20.66

(b) Q-learning for a deterministic sequence of actions with α = 1:

Iteration Q[s0, right] Q[s1, upC] Q[s3, upC] Q[s5, left] Q[s4, left]
1 0 −1 −1 0 10
2 0 −1 −1 9 10
3 0 −1 7.1 9 10
4 0 5.39 7.1 9 10
5 4.85 5.39 7.1 9 14.37
6 4.85 5.39 7.1 12.93 14.37
10 7.72 8.57 10.64 15.25 16.94
20 10.41 12.22 14.69 17.43 19.37
30 11.55 12.83 15.37 18.35 20.39
40 11.74 13.09 15.66 18.51 20.57
∞ 11.85 13.16 15.74 18.6 20.66

(c) Q-values after full exploration and convergence:

Iteration Q[s0, right] Q[s1, upC] Q[s3, upC] Q[s5, left] Q[s4, left]
∞ 19.5 21.14 24.08 27.87 30.97

Figure 11.11: Updates for a particular run of Q-learning
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11.3. Reinforcement Learning 473

• The ε-greedy strategy is to select the greedy action (one that maximizes
Q[s, a]) all but ε of the time and to select a random action ε of the time, where
0 ≤ ε ≤ 1. It is possible to change ε through time. Intuitively, early in the
life of the agent it should select a more random strategy to encourage initial
exploration and, as time progresses, it should act more greedily.

• One problem with an ε-greedy strategy is that it treats all of the actions,
apart from the best action, equivalently. If there are two seemingly good
actions and more actions that look less promising, it may be more sensible
to select among the good actions: putting more effort toward determining
which of these promising actions is best, rather than putting in effort to ex-
plore the actions that look bad. One way to do that is to select action a with
a probability depending on the value of Q[s, a]. This is known as a soft-max
action selection. A common method is to use a Gibbs or Boltzmann distri-
bution, where the probability of selecting action a in state s is proportional
to eQ[s,a]/τ . That is, in state s, the agent selects action a with probability

eQ[s,a]/τ

∑a eQ[s,a]/τ

where τ > 0 is the temperature specifying how randomly values should be
chosen. When τ is high, the actions are chosen in almost equal amounts. As
the temperature is reduced, the highest-valued actions are more likely to be
chosen and, in the limit as τ → 0, the best action is always chosen.

• An alternative is “optimism in the face of uncertainty”: initialize the Q-
function to values that encourage exploration. If the Q-values are initialized
to high values, the unexplored areas will look good, so that a greedy search
will tend to explore. This does encourage exploration; however, the agent
can hallucinate that some state–action pairs are good for a long time, even
though there is no real evidence for it. A state only gets to look bad when
all its actions look bad; but when all of these actions lead to states that look
good, it takes a long time to get a realistic view of the actual values. This is
a case where old estimates of the Q-values can be quite bad estimates of the
actual Q-value, and these can remain bad estimates for a long time. To get
fast convergence, the initial values should be as close as possible to the final
values; trying to make them an overestimate will make convergence slower.
Relying only on optimism in the face if uncertainty is not useful if the dy-
namics can change, because it is treating the initial time period as the time
to explore and, after this initial exploration, there is no more exploration.

It is interesting to compare the interaction of the exploration strategies with
different choices for how α is updated. See Exercise 11.8 (page 488).

11.3.5 Evaluating Reinforcement Learning Algorithms

We can judge a reinforcement learning algorithm by how good a policy it finds
and how much reward it receives while acting in the world. Which is more
important depends on how the agent will be deployed. If there is sufficient

Artificial Intelligence draft of February 6, 2010



474 11. Beyond Supervised Learning

0 50 100 150 200

Number of steps (thousands)

-10000

0

10000

20000

30000

40000

50000
A

cc
um

ul
at

ed
 r

ew
ar

d

Figure 11.12: Cumulative reward as a function of the number of steps

time for the agent to learn safely before it is deployed, the final policy may
be the most important. If the agent has to learn while being deployed, it may
never get to the stage where it has learned the optimal policy, and the reward
it receives while learning may be what the agent wants to maximize.

One way to show the performance of a reinforcement learning algorithm
is to plot the cumulative reward (the sum of all rewards received so far) as a
function of the number of steps. One algorithm dominates another if its plot is
consistently above the other.

Example 11.11 Figure 11.12 compares four runs of Q-learning on the game
of Example 11.8 (page 464). These plots were generated using the “trace on
console” of the applet available on the course web site and then plotting the
resulting data.

The plots are for different runs that varied according to whether α was fixed,
according to the initial values of the Q-function, and according to the random-
ness in the action selection. They all used greedy exploit of 80% (i.e., ε = 0.2)
for the first 100,000 steps, and 100% (i.e., ε = 0.0) for the next 100,000 steps. The
top plot dominated the others.

There is a great deal variability of each algorithm on different runs, so to
actually compare these algorithms one must run the same algorithm multiple
times. For this domain, the cumulative rewards depend on whether the agent
learns to visit the repair station, which it does not always learn. The cumula-
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tive reward therefore tends to be bimodal for this example. See Exercise 11.8
(page 488).

There are three statistics of this plot that are important:

• The asymptotic slope shows how good the policy is after the algorithm has
stabilized.

• The minimum of the curve shows how much reward must be sacrificed be-
fore it starts to improve.

• The zero crossing shows how long it takes until the algorithm has recouped
its cost of learning.

The last two statistics are applicable when both positive and negative rewards
are available and having these balanced is reasonable behavior. For other cases,
the cumulative reward should be compared with reasonable behavior that is
appropriate for the domain; see Exercise 11.7 (page 488).

One thing that should be noted about the cumulative reward plot is that it
measures total reward, yet the algorithms optimize discounted reward at each
step. In general, you should optimize for, and evaluate your algorithm using,
the optimality criterion that is most appropriate for the domain.

11.3.6 On-Policy Learning

Q-learning learns an optimal policy no matter what the agent does, as long as
it explores enough. There may be cases where ignoring what the agent actually
does is dangerous (there will be large negative rewards). An alternative is to
learn the value of the policy the agent is actually carrying out so that it can be
iteratively improved. As a result, the learner can take into account the costs
associated with exploration.

An off-policy learner learns the value of the optimal policy independently
of the agent’s actions. Q-learning is an off-policy learner. An on-policy learner
learns the value of the policy being carried out by the agent, including the
exploration steps.

SARSA (so called because it uses state-action-reward-state-action experi-
ences to update the Q-values) is an on-policy reinforcement learning algorithm
that estimates the value of the policy being followed. An experience in SARSA
is of the form 〈s, a, r, s′, a′〉, which means that the agent was in state s, did action
a, received reward r, and ended up in state s′, from which it decided to do ac-
tion a′. This provides a new experience to update Q(s, a). The new value that
this experience provides is r + γQ(s′, a′).

Figure 11.13 gives the SARSA algorithm.
SARSA takes into account the current exploration policy which, for exam-

ple, may be greedy with random steps. It can find a different policy than Q-
learning in situations when exploring may incur large penalties. For example,
when a robot goes near the top of stairs, even if this is an optimal policy, it
may be dangerous for exploration steps. SARSA will discover this and adopt
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controller SARSA(S, A, γ, α)
inputs:

S is a set of states
A is a set of actions
γ the discount
α is the step size

internal state:
real array Q[S, A]
previous state s
previous action a

begin
initialize Q[S, A] arbitrarily
observe current state s
select action a using a policy based on Q
repeat forever:

carry out an action a
observe reward r and state s′
select action a′ using a policy based on Q
Q[s, a]← Q[s, a] + α (r + γQ[s′, a′]−Q[s, a])
s ← s′
a ← a′

end-repeat
end

Figure 11.13: SARSA: on-policy reinforcement learning

a policy that keeps the robot away from the stairs. It will find a policy that is
optimal, taking into account the exploration inherent in the policy.

Example 11.12 In Example 11.10 (page 470), the optimal policy is to go up
from state s0 in Figure 11.8 (page 464). However, if the agent is exploring, this
may not be a good thing to do because exploring from state s2 is very danger-
ous.

If the agent is carrying out the policy that includes exploration, “when in
state s, 80% of the time select the action a that maximizes Q[s, a], and 20% of the
time select an action at random,” going up from s0 is not optimal. An on-policy
learner will try to optimize the policy the agent is following, not the optimal
policy that does not include exploration.

If you were to repeat the experiment of Figure 11.11 (page 472), SARSA
would back up the−1 values, whereas Q-learning did not because actions with
an estimated value of 0 were available. The Q-values in parts (a) and (b) of that
figure would converge to the same values, because they both converge to the
value of that policy.

The Q-values of the optimal policy are less in SARSA than in Q-learning.
The values for SARSA corresponding to part (c) of Figure 11.11 (page 472), are
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as follows:

Iteration Q[s0, right] Q[s1, upC] Q[s3, upC] Q[s5, left] Q[s4, left]
∞ 9.2 10.1 12.7 15.7 18.0

The optimal policy using SARSA is to go right at state s0. This is the optimal
policy for an agent that does 20% exploration, because exploration is danger-
ous. If the rate of exploration were reduced, the optimal policy found would
change. However, with less exploration, it would take longer to find an optimal
policy.

SARSA is useful when you want to optimize the value of an agent that is
exploring. If you want to do offline learning, and then use that policy in an
agent that does not explore, Q-learning may be more appropriate.

11.3.7 Assigning Credit and Blame to Paths

In Q-learning and SARSA, only the previous state–action pair has its value
revised when a reward is received. Intuitively, when an agent takes a number
of steps that lead to a reward, all of the steps along the way could be held
responsible and so receive some of the credit or the blame for a reward. This
section gives an algorithm that assigns the credit and blame for all of the steps
that lead to a reward.

Example 11.13 Suppose there is an action right that visits the states s1, s2, s3,
and s4 in this order and a reward is only given when the agent enters s4 from
s3, and any action from s4 returns to state s1. There is also an action left that
moves to the left except in state s4. In Q-learning and SARSA, after traversing
right through the states s1, s2, s3, and s4 and receiving the reward, only the
value of Q[s3, right] is updated. If the same sequence of states is visited again,
the value of Q[s2, right] will be updated when it transitions into s3. The value
of Q[s1, right] is only updated after the next transition from state s1 to s2. In this
sense, we say that Q-learning does a one-step backup.

Consider updating the value of Q[s3, right] based on the reward for entering
state s4. From the perspective of state s4, the algorithm is doing a one-step
backup. From the perspective of state s3, it is doing a one-step look-ahead.
To make the algorithm allow the blame to be associated with more than the
previous step, the reward from entering step s4 could do a two-step backup to
update s2 or, equivalently, a two-step look-ahead from s2 and update s2’s value
when the reward from entering s4 is received. We will describe the algorithm
in terms of a look-ahead but implement it using a backup.

With a two-step look-ahead, suppose the agent is in state st, does action at,
ends up in state st+1, and receives reward rt+1, then does action at+1, resulting
in state st+2 and receiving reward rt+2. A two-step look-ahead at time t gives
the return R(2)

t = rt+1 + γrt+2 + γ2V(st+2), thus giving the TD error

δt = rt+1 + γrt+2 + γ2V(st+2)−Q[st, at],
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where V(st+2) is an estimate of the value of st+2. The two-step update is

Q[st, at]← Q[st, at] + αδt.

Unfortunately, this is not a good estimate of the optimal Q-value, Q∗, be-
cause action at+1 may not be an optimal action. For example, if action at+1
was the action that takes the agent into a position with a reward of −10, and
better actions were available, the agent should not update Q[s0, a0]. However,
this multiple-step backup provides an improved estimate of the policy that the
agent is actually following. If the agent is following policy π, this backup gives
an improved estimate of Qπ. Thus multiple-step backup can be used in an
on-policy method such as SARSA.

Suppose the agent is in state st, and it performs action at resulting in reward
rt+1 and state st+1. It then does action at+1, resulting in reward rt+2 and state
st+2, and so forth. An n-step return at time t, where n ≥ 1, written R(n)

r , is a data
point for the estimated future value of the action at time t, given by looking n
steps ahead, is

R(n)
t = rt+1 + γrt+2 + γ2rt+3 + · · ·+ γn−1rt+n + γnV(st+n).

This could be used to update Q[st, at] using the TD error R(n)
t −Q[st, at]. How-

ever, it is difficult to know which n to use. Instead of selecting one particular
n and looking forward n steps, it is possible to have an average of a number of
n-step returns. One way to do this is to have a weighted average of all n-step
returns, in which the returns in the future are exponentially decayed, with a
decay of λ. This is the intuition behind the method called SARSA(λ); when
a reward is received, the values of all of the visited states are updated. Those
states farther in the past receive less of the credit or blame for the reward.

Let

Rλ
t = (1− λ)

∞

∑
n=1

λn−1R(n)
t ,

where (1− λ) is a normalizing constant to ensure we are getting an average.
The following table gives the details of the sum:

look-ahead Weight Return
1 step 1− λ rt+1 + γV(st+1)
2 step (1− λ)λ rt+1 + γrt+2 + γ2V(st+2)
3 step (1− λ)λ2 rt+1 + γrt+2 + γ2rt+3 + γ3V(st+3)
4 step (1− λ)λ3 rt+1 + γrt+2 + γ2rt+3 + γ3rt+4 + γ4V(st+3)
· · · · · · · · ·
n step (1− λ)λn−1 rt+1 + γrt+2 + γ2rt+3 + · · ·+ γnV(st+n)
· · · · · · · · ·
total 1
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Collecting together the common rt+i terms gives

Rλ
t = rt+1 + γV(st+1)− λγV(st+1)

+ λγrt+2 + λγ2V(st+2)− λ2γ2V(st+2)

+ λ2γ2rt+3 + λ2γ3V(st+3)− λ3γ3V(st+3)

+ λ3γ3rt+4 + λ3γ4V(st+4)− λ4γ4V(st+4)

+ . . . .

This will be used in a version of SARSA in which the future estimate of V(st+i)
is the value of Q[st+i, at+i]. The TD error – the return minus the state estimate –
is

Rλ
t −Q[st, at] = rt+1 + γQ[st+1, at+1]−Q[st, at]

+λγ(rt+2 + γQ[st+2, at+2]−Q[st+1, at+1])

+λ2γ2(rt+3 + γQ[st+3, at+3]−Q[st+2, at+2])

+λ3γ3(rt+4 + γQ[st+4, at+4]−Q[st+3, at+3])

+ . . . .

Instead of waiting until the end, which may never occur, SARSA(λ) updates
the value of Q[st, at] at every time in the future. When the agent receives re-
ward rt+i, it can use the appropriate sum in the preceding equation to update
Q[st, at]. The preceding description refers to all times; therefore, the update
rt+3 + γQ[st+3, at+3] − Q[st+2, at+2] can be used to update all previous states.
An agent can do this by keeping an eligibility trace that specifies how much
a state–action pair should be updated at each time step. When a state–action
pair is first visited, its eligibility is set to 1. At each subsequent time step its eli-
gibility is reduced by a factor of λγ. When the state–action pair is subsequently
visited, 1 is added to its eligibility.

The eligibility trace is implemented by an array e[S, A], where S is the set
of all states and A is the set of all actions. After every action is carried out, the
Q-value for every state–action pair is updated.

The algorithm, known as SARSA(λ), is given in Figure 11.14 (on the next
page).

Although this algorithm specifies that Q[s, a] is updated for every state s
and action a whenever a new reward is received, it may be much more efficient
and only slightly less accurate to only update those values with an eligibility
over some threshold.

11.3.8 Model-Based Methods

In many applications of reinforcement learning, plenty of time is available for
computation between each action. For example, a physical robot may have
many seconds between each action. Q-learning, which only does one backup
per action, will not make full use of the available computation time.

An alternative to just learning the Q-values is to use the data to learn the
model. That is, an agent uses its experience to explicitly learn P(s′|s, a) and
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controller SARSA(λ, S, A, γ, α)
inputs:

S is a set of states
A is a set of actions
γ the discount
α is the step size
λ is the decay rate

internal state:
real array Q[S, A]
real array e[S, A]
previous state s
previous action a

begin
initialize Q[S, A] arbitrarily
initialize e[s, a] = 0 for all s, a
observe current state s
select action a using a policy based on Q
repeat forever:

carry out an action a
observe reward r and state s′
select action a′ using a policy based on Q
δ ← r + γQ[s′, a′]−Q[s, a]
e[s, a]← e[s, a] + 1
for all s′′, a′′ :

Q[s′′, a′′]← Q[s′′, a′′] + αδe[s′′, a′′]
e[s′′, a′′]← γλe[s′′, a′′]

s ← s′
a ← a′

end-repeat
end

Figure 11.14: SARSA(λ)
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R(s, a, s′). For each action that the agent carries out in the environment, the
agent can then do a number of steps of asynchronous value iteration (page 407)
to give a better estimate of the Q-function.

Figure 11.15 (on the next page) shows a generic model-based reinforce-
ment learner. As with other reinforcement learning programs, it keeps track
of Q[S, A], but it also maintains a model of the dynamics, represented here as
T, where T[s, a, s′] is the count of the number of times that the agent has done a
in state s and ended up in state s′. The counts are added to prior counts, as in
a Dirichlet distribution (page 338), to compute probabilities. The algorithm as-
sumes a common prior count. The R[s, a, s′] array maintains the average reward
for transitioning from state s, doing action a, and ending up in state s′.

After each action, the agent observes the reward r and the resulting state s′.
It then updates the transition-count matrix T and the average reward R. It then
does a number of steps of asynchronous value iteration, using the updated
probability model derived from T and the updated reward model. There are
three main undefined parts to this algorithm:

• Which Q-values should be updated? It seems reasonable that the algorithm
should at least update Q[s, a], because more data have been received on the
transition probability and reward. From there it can either do random up-
dates or determine which Q-values would change the most. The elements
that potentially have their values changed the most are the Q[s1, a1] with the
highest probability of ending up at a Q-value that has changed the most (i.e.,
where Q[s1, a2] has changed the most). This can be implemented by keeping
a priority queue of Q-values to consider.

• How many steps of asynchronous value iteration should be done between
actions? An agent should continue doing steps of value iteration until it has
to act or until it gets new information. Figure 11.15 (on the next page) as-
sumes that the agent acts and then waits for an observation to arrive. When
an observation arrives, the agent acts as soon as possible. There are may
variants, including a more relaxed agent that runs the repeat loop in parallel
with observing and acting. Such an agent acts when it must, and it updates
the transition and reward model when it observes.

• What should be the initial values for R[S, A, S] and Q[S, A]? Once the agent
has observed a reward for a particular 〈s, a, s′〉 transition, it will use the av-
erage of all of the rewards received for that transition. However, it requires
some value for the transitions it has never experienced when updating Q. If
it is using the exploration strategy of optimism in the face of uncertainty, it
can use Rmax, the maximum reward possible, as the initial value for R, to
encourage exploration. As in value iteration (page 405), it is best to initialize
Q to be as close as possible to the final Q-value.

The algorithm in Figure 11.15 (on the next page) assumes that the prior
count is the same for all 〈s, a, s′〉 transitions. If some prior knowledge exists
that some transitions are impossible or some are more likely, the prior count
should not be uniform.
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controller ModelBasedReinforementLearner(S, A, γ, c)
inputs:

S is a set of states
A is a set of actions
γ the discount
c is prior count

internal state:
real array Q[S, A]
real array R[S, A, S]
integer array T[S, A, S]
state s, s′
action a

initialize Q[S, A] arbitrarily
initialize R[S, A, S] arbitrarily
initialize T[S, A, S] to zero
observe current state s
select and carry out action a
repeat forever:

observe reward r and state s′
select and carry out action a
T[s, a, s′]← T[s, a, s′] + 1

R[s, a, s′]← R[s, a, s′] +
r− R[s, a, s′]

T[s, a, s′]
s ← s′
repeat

select state s1, action a1
let P = ∑

s2

(T[s1, a1, s2] + c)

Q[s1, a1]← ∑
s2

T[s1, a1, s2] + c
P

(
R[s1, a1, s2] + γ max

a2
Q[s2, a2]

)

until an observation arrives

Figure 11.15: Model-based reinforcement learner
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This algorithm assumes that the rewards depend on the initial state, the
action, and the final state. Moreover, it assumes that the reward for a 〈s, a, s′〉
transition is unknown until that exact transition has been observed. If the re-
ward only depends on the initial state and the action, it is more efficient to have
an R[S, A]. If there are separate action costs and rewards for entering a state,
and the agent can separately observe the costs and rewards, the reward func-
tion can be decomposed into C[A] and R[S], leading to more efficient learning.

It is difficult to directly compare the model-based and model-free rein-
forcement learners. Typically, model-based learners are much more efficient in
terms of experience; many fewer experiences are needed to learn well. How-
ever, the model-free methods often use less computation time. If experience
was cheap, a different comparison would be needed than if experience was
expensive.

11.3.9 Reinforcement Learning with Features

Usually, there are too many states to reason about explicitly. The alternative to
reasoning explicitly in terms of states is to reason in terms of features. In this
section, we consider reinforcement learning that uses an approximation of the
Q-function using a linear combination of features of the state and the action.
This is the simplest case and often works well. However, this approach re-
quires careful selection of features; the designer should find features adequate
to represent the Q-function. This is often a difficult engineering problem.

SARSA with Linear Function Approximation

You can use a linear function of features to approximate the Q-function in
SARSA. This algorithm uses the on-policy method SARSA, because the agent’s
experiences sample the reward from the policy the agent is actually following,
rather than sampling an optimum policy.

A number of ways are available to get a feature-based representation of the
Q-function. In this section, we use features of both the state and the action to
provide features for the linear function.

Suppose F1, . . . , Fn are numerical features of the state and the action. Thus,
Fi(s, a) provides the value for the ith feature for state s and action a. These
features are typically binary, with domain {0, 1}, but they can also be other
numerical features. These features will be used to represent the Q-function.

Qw(s, a) = w0 + w1F1(s, a) + · · ·+ wnFn(s, a)

for some tuple of weights, w = 〈w0, w1, . . . , wn〉. Assume that there is an extra
feature F0 whose value is always 1, so that w0 does not have to be a special case.

Example 11.14 In the grid game of Example 11.8 (page 464), some possible
features are the following:
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• F1(s, a) has value 1 if action a would most likely take the agent from state
s into a location where a monster could appear and has value 0 otherwise.

• F2(s, a) has value 1 if action a would most likely take the agent into a wall
and has value 0 otherwise.

• F3(s, a) has value 1 if step a would most likely take the agent toward a
prize.

• F4(s, a) has value 1 if the agent is damaged in state s and action a takes it
toward the repair station.

• F5(s, a) has value 1 if the agent is damaged and action a would most likely
take the agent into a location where a monster could appear and has value
0 otherwise. That is, it is the same as F1(s, a) but is only applicable when
the agent is damaged.

• F6(s, a) has value 1 if the agent is damaged in state s and has value 0 oth-
erwise.

• F7(s, a) has value 1 if the agent is not damaged in state s and has value 0
otherwise.

• F8(s, a) has value 1 if the agent is damaged and there is a prize ahead in
direction a.

• F9(s, a) has value 1 if the agent is not damaged and there is a prize ahead
in direction a.

• F10(s, a) has the value of the x-value in state s if there is a prize at location
P0 in state s. That is, it is the distance from the left wall if there is a prize
at location P0.

• F11(s, a) has the value 4− x, where x is the horizontal position in state s if
there is a prize at location P0 in state s. That is, it is the distance from the
right wall if there is a prize at location P0.

• F12(s, a) to F29(s, a) are like F10 and F11 for different combinations of the
prize location and the distance from each of the four walls. For the case
where the prize is at location P0, the y-distance could take into account the
wall.

An example linear function is

Q(s, a)
= 2.0− 1.0 ∗ F1(s, a)− 0.4 ∗ F2(s, a)− 1.3 ∗ F3(s, a)

− 0.5 ∗ F4(s, a)− 1.2 ∗ F5(s, a)− 1.6 ∗ F6(s, a) + 3.5 ∗ F7(s, a)
+ 0.6 ∗ F8(s, a) + 0.6 ∗ F9(s, a)− 0.0 ∗ F10(s, a) + 1.0 ∗ F11(s, a) + . . . .

These are the learned values (to one decimal place) for one run of the algorithm
that follows.

An experience in SARSA of the form 〈s, a, r, s′, a′〉 (the agent was in state s,
did action a, and received reward r and ended up in state s′, in which it decided
to do action a′) provides the new estimate of r + γQ(s′, a′) to update Q(s, a).
This experience can be used as a data point for linear regression (page 304).
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1: controller SARSA-FA(F, γ, η)
2: Inputs
3: F = 〈F1, . . . , Fn〉: a set of features
4: γ ∈ [0, 1]: discount factor
5: η > 0: step size for gradient descent
6: Local
7: weights w = 〈w0, . . . , wn〉, initialized arbitrarily
8: observe current state s
9: select action a

10: repeat
11: carry out action a
12: observe reward r and state s′
13: select action a′ (using a policy based on Qw)
14: let δ = r + γQw(s′, a′)−Qw(s, a)
15: for i = 0 to n do
16: wi ← wi + ηδFi(s, a)
17: s ← s′
18: a ← a′
19: until termination

Figure 11.16: SARSA with linear function approximation

Let δ = r + γQ(s′, a′)−Q(s, a). Using Equation (7.2) (page 305), weight wi is
updated by

wi ← wi + ηδFi(s, a).

This update can then be incorporated into SARSA, giving the algorithm shown
in Figure 11.16.

Selecting an action a could be done using an ε-greedy function: with proba-
bility ε, an agent selects a random action and otherwise it selects an action that
maximizes Qw(s, a).

Although this program is simple to implement, feature engineering – choos-
ing what features to include – is non-trivial. The linear function must not only
convey the best action to carry out, it must also convey the information about
what future states are useful.

Many variations of this algorithm exist. Different function approximations,
such as a neural network or a decision tree with a linear function at the leaves,
could be used. A common variant is to have a separate function for each action.
This is equivalent to having the Q-function approximated by a decision tree
that splits on actions and then has a linear function. It is also possible to split
on other features.

A linear function approximation can also be combined with other methods
such as SARSA(λ), Q-learning, or model-based methods. Note that some of
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these methods have different convergence guarantees and different levels of
performance.

Example 11.15 On the AIspace web site, there is an open-source implementa-
tion of this algorithm for the game of Example 11.8 (page 464) with the features
of Example 11.14 (page 483). Try stepping through the algorithm for individ-
ual steps, trying to understand how each step updates each parameter. Now
run it for a number of steps. Consider the performance using the evaluation
measures of Section 11.3.5 (page 473). Try to make sense of the values of the
parameters learned.

11.4 Review

The following are the main points you should have learned from this chapter:

• EM is an iterative method to learn the parameters of models with hidden
variables (including the case in which the classification is hidden).

• The probabilities and the structure of belief networks can be learned from
complete data. The probabilities can be derived from counts. The structure
can be learned by searching for the best model given the data.

• Missing values in examples are often not missing at random. Why they are
missing is often important to determine.

• A Markov decision process is an appropriate formalism for reinforcement
learning. A common method is to learn an estimate of the value of doing
each action in a state, as represented by the Q(S, A) function.

• In reinforcement learning, an agent should trade off exploiting its knowl-
edge and exploring to improve its knowledge.

• Off-policy learning, such as Q-learning, learns the value of the optimal pol-
icy. On-policy learning, such as SARSA, learns the value of the policy the
agent is actually carrying out (which includes the exploration).

• Model-based reinforcement learning separates learning the dynamics and
reward models from the decision-theoretic planning of what to do given the
models.

11.5 References and Further Reading

Unsupervised learning is discussed by Fischer [1987] and Cheeseman, Kelly,
Self, Stutz, Taylor, and Freeman [1988]. Bayesian classifiers are discussed by
Duda et al. [2001] and Langley, Iba, and Thompson [1992]. Friedman and Gold-
szmidt [1996a] discuss how the naive Bayesian classifier can be generalized to
allow for more appropriate independence assumptions.

For an overview of learning belief networks, see Heckerman [1999], Dar-
wiche [2009], and [Koller and Friedman, 2009]. Structure learning using deci-
sion trees is based on Friedman and Goldszmidt [1996b].
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For an introduction to reinforcement learning, see Sutton and Barto [1998]
or Kaelbling, Littman, and Moore [1996]. Bertsekas and Tsitsiklis [1996] inves-
tigate function approximation and its interaction with reinforcement learning.

11.6 Exercises

Exercise 11.1 Consider the unsupervised data of Figure 11.1 (page 454).

(a) How many different stable assignments of examples to classes does the k-
means algorithm find when k = 2? [Hint: Try running the algorithm on the
data with a number of different starting points, but also think about what
assignments of examples to classes are stable.] Do not count permutations
of the labels as different assignments.

(b) How many different stable assignments are there when k = 3?

(c) How many different stable assignments are there when k = 4?

(d) Why might someone suggest that three is the natural number of classes in
this example? Give a definition for “natural” number of classes, and use this
data to justify the definition.

Exercise 11.2 Suppose the k-means algorithm is run for an increasing sequence
of values for k, and that it is run for a number of times for each k to find the
assignment with a global minimum error. Is it possible that a number of values of
k exist for which the error plateaus and then has a large improvement (e.g., when
the error for k = 3, k = 4, and k = 5 are about the same, but the error for k = 6 is
much lower)? If so, give an example. If not, explain why.

Exercise 11.3 Give an algorithm for EM for unsupervised learning [Figure 11.4
(page 457)] that does not store an A array, but rather recomputes the appropriate
value for the M step. Each iteration should only involve one sweep through the
data set. [Hint: For each tuple in the data set, update all of the relevant Mi-values.]

Exercise 11.4 Suppose a Q-learning agent, with fixed α and discount γ, was in
state 34, did action 7, received reward 3, and ended up in state 65. What value(s)
get updated? Give an expression for the new value. (Be as specific as possible.)

Exercise 11.5 Explain what happens in reinforcement learning if the agent al-
ways chooses the action that maximizes the Q-value. Suggest two ways to force
the agent to explore.

Exercise 11.6 Explain how Q-learning fits in with the agent architecture of Sec-
tion 2.2.1 (page 46). Suppose that the Q-learning agent has discount factor γ, a
step size of α, and is carrying out an ε-greedy exploration strategy.

(a) What are the components of the belief state of the Q-learning agent?

(b) What are the percepts?

(c) What is the command function of the Q-learning agent?

(d) What is the belief-state transition function of the Q-learning agent?
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