Chapter 13

Ontologies and
Knowledge-Based Systems

The most serious problems standing in the way of developing an adequate
theory of computation are as much ontological as they are semantical. It
is not that the semantic problems go away; they remain as challenging as
ever. 1t is just that they are joined — on center stage, as it were — by even
more demanding problems of ontology.

— Smith [1996, p. 14]

How do you go about representing knowledge about a world so it is easy to
acquire, debug, maintain, communicate, share, and reason with? This chapter
explores how to specify the meaning of symbols in intelligent agents, how to
use the meaning for knowledge-based debugging and explanation, and, finally,
how an agent can represent its own reasoning and how this may be used to
build knowledge-based systems. As Smith points out in the quote above, the
problems of ontology are central for building intelligent computational agents.

13.1 Knowledge Sharing

Having an appropriate representation is only part of the story of building a
knowledge-based agent. We also should be able to ensure that the knowledge
can be acquired, particularly when the knowledge comes from diverse sources
and at multiple points in time and should interoperate with other knowledge.
We should also ensure that the knowledge can be reasoned about effectively.
Recall (page 61) that an ontology is a specification of the meanings of the
symbols in an information system. Here an information system is a knowledge

551

552 13. Ontologies and Knowledge-Based Systems

base or some source of information, such as a thermometer. The meaning is
sometimes just in the mind of the knowledge-base designer or in comments
with the knowledge base. Increasingly, the specification of the meaning is in
machine-interpretable form. This formal specification is important for seman-
tic interoperability — the ability of different knowledge bases to work together.

Example 13.1 A purchasing agent has to know, when a web site claims it
has a good price on “chips,” whether these are potato chips, computer chips,
wood chips, or poker chips. An ontology would specify meaning of the termi-
nology used by the web site. Instead of using the symbol “chip”, a web site
that adheres to ontologies may use the symbol “WoodChipMixed” as defined
by some particular organization that has published an ontology. By using this
symbol and declaring which ontology it is from, it should be unambiguous as
to which use of the word chip is meant. A formal representation of the web page
would use “WoodChipMixed”, which may get translated into English simply
as “chip”. If another information source uses the symbol “ChipOfWood”, some
third party may declare that the use of the term “ChipOfWood” in that infor-
mation source corresponds to “WoodChipMixed” and therefore enable the in-
| formation sources to be combined.

Before discussing how ontologies are specified, we first discuss how the
logic of the previous chapter (with variables, terms, and relations) can be used
to build flexible representations. These flexible representations allow for the
modular addition of knowledge, including adding arguments to relations.

Given a specification of the meaning of the symbols, an agent can use that
meaning for knowledge acquisition, explanation, and debugging at the knowl-
edge level.

13.2 Flexible Representations

The first part of this chapter considers a way to build flexible representations
using the tools of logic. These flexible representations are the basis of modern
ontologies.

13.2.1 Choosing Individuals and Relations

Given a logical representation language, such as the one developed in the pre-
vious chapter, and a world to reason about, the people designing knowledge
bases have to choose what, in the world, to refer to. That is, they have to choose
what individuals and relations there are. It may seem that they can just refer to
the individuals and relations that exist in the world. However, the world does
not determine what individuals there are. How the world is divided into indi-
viduals is invented by whomever is modeling the world. The modeler divides
up the world up into things so that the agent can refer to parts of the world
that make sense for the task at hand.

(©Poole and Mackworth, 2009

13.2. Flexible Representations 553

Example 13.2 It may seem as though “red” is a reasonable property to ascribe
to things in the world. You may do this because you want to tell the delivery
robot to go and get the red parcel. In the world, there are surfaces absorbing
some frequencies and reflecting other frequencies of light. Some user may have
decided that, for some application, some particular set of reflectance proper-
ties should be called “red.” Some other modeler of the domain might decide
on another mapping of the spectrum and use the terms pink, scarlet, ruby, and
crimson, and yet another modeler may divide the spectrum into regions that do
not correspond to words in any language but are those regions most useful to
| distinguish different categories of individuals.

Just as modelers choose what individuals to represent, they also choose what
relations to use. There are, however, some guiding principles that are useful
for choosing relations and individuals. These will be demonstrated through a
sequence of examples.

| Example 13.3 Suppose you decide that “red” is an appropriate category for
classifying individuals. You can treat the name red as a unary relation and write
that parcel a is red:

red(a).

If you represent the color information in this way, then you can easily ask what
is red:

ask red(X).

The X returned are the red individuals.
With this representation, it is hard to ask the question, “What color is parcel
a?” In the syntax of definite clauses, you cannot ask

ask X(a).

because, in languages based on first-order logic (page 519), predicate names
cannot be variables. In second-order or higher-order logic, this would return
any property of a, not just its color.

There are alternative representations that allow you to ask about the color
of parcel a. There is nothing in the world that forces you to make red a predicate.
You could just as easily say that colors are individuals too, and you could use
the constant red to denote the color red. Given that red is a constant, you can
use the predicate color where color(Ind, Val) means that physical individual Ind
has color Val. “Parcel a is red” can now be written as

color(a, red).

What you have done is reconceive the world: the world now consists of colors
as individuals that you can name. There is now a new binary relation color
between physical individuals and colors. Under this new representation you
can ask, “What color is block a?” with the query

ask color(a, C).

Artificial Intelligence draft of February 6, 2010

554 13. Ontologies and Knowledge-Based Systems

To make an abstract concept into an object is to reify it. In the preceding
example, we reified the color red.

| Example 13.4 It seems as though there is no disadvantage to the new rep-
resentation of colors in the previous example. Everything that could be done
before can be done now. It is not much more difficult to write color(X, red) than
red(X), but you can now ask about the color of things. So the question arises of
whether you can do this to every relation, and what do you end up with?

You can do a similar analysis for the color predicate as for the red predicate
in Example 13.3. The representation with color as a predicate does not allow
you to ask the question, “Which property of parcel a has value red?,” where the
appropriate answer is “color.” Carrying out a similar transformation to that of
Example 13.3, you can view properties such as color as individuals, and you can
invent a relation prop and write “individual a has the color of red” as

prop(a, color, red).
This representation allows for all of the queries of this and the previous exam-

ple. You do not have to do this again, because you can write all relations in
terms of the prop relation.

The individual-property-value representation is in terms of a single rela-
tion prop where

prop(Ind, Prop, Val)

means that individual Ind has value Val for property Prop. This is also called
the triple representation because all of the relations are represented as triples.
The first element of the triple is called the subject, the second is the verb, and
the third is the object, using the analogy that a triple is a simple three-word
sentence.

The verb of a triple is a property. The domain of property p is the set of
individuals that can appear as the subject of a triple when p is the verb. The
range of a property p is the set of values that can appear as the object of a triple
that has p as the verb.

An attribute is a property—value pair. For example, an attribute of a parcel
may be that its color is red. Two parcels may be identical if they have the same
attributes — the same values for their properties.

There are some predicates that may seem to be too simple for the triple
representation:

Example 13.5 To transform parcel(a), which means that a is a parcel, there
do not seem to be appropriate properties or values. There are two ways to
transform this into the triple representation. The first is to reify the concept
parcel and to say that a is a parcel:

prop(a, type, parcel).
(©Poole and Mackworth, 2009

13.2. Flexible Representations 555

Here type is a special property that relates an individual to a class. The constant
parcel denotes the class that is the set of all, real or potential, things that are
parcels. This triple specifies that the individual a is in the class parcel.

The second is to make parcel a property and write “a is a parcel” as

prop(a, parcel, true).

In this representation, parcel is a Boolean property which is true of things that
| are parcels.

A Boolean property is a property whose range is {true, false}, where true
and false are constant symbols in the language.

Some predicates may seem to be too complicated for the triple representa-
tion:

| Example 13.6 Suppose you want to represent the relation
scheduled(C,S,T,R),

which is to mean that section S of course C is scheduled to start at time T in
room R. For example, “section 2 of course ¢s422 is scheduled to start at 10:30 in
room cc208” is written as

scheduled(cs422,2,1030, cc208).

To represent this in the triple representation, you can invent a new individual,
a booking. Thus, the scheduled relationship is reified into a booking individual.

A booking has a number of properties, namely a course, a section, a start
time, and a room. To represent “section 2 of course cs422 is scheduled at 10:30
in room ¢c208,” you name the booking, say, the constant 6123, and write

prop(b123, course, cs422).
prop(b123, section, 2).
prop(b123, start_time, 1030).
prop(b123, room, cc208).

This new representation has a number of advantages. The most important is
that it is modular; which values go with which properties can easily be seen. It
is easy to add new properties such as the instructor or the duration. With the
new representation, it is easy to add that “Fran is teaching section 2 of course
cs422, scheduled at 10:30 in room ¢c208” or that the duration is 50 minutes:

prop(b123, instructor, fran).
prop(b123, duration, 50).
With scheduled as a predicate, it was very difficult to add the instructor or dura-

tion because it required adding extra arguments to every instance of the predi-
cate.

Artificial Intelligence draft of February 6, 2010

556 13. Ontologies and Knowledge-Based Systems

sys_admin
\ lemon_laptop_10000
occupation \ lemon_computer
sam model / lemon_disc

a brand
serves_building managed_by
has_logo
comp_scCi comp_2347 ight
_ wei
3 / \ I —> [ght
color
in_building OV?ed—by color
r107 |<&— has_office — fran \ \E
yellow

Figure 13.1: A semantic network

13.2.2 Graphical Representations

You can interpret the prop relation in terms of a graph, where the relation
prop(Ind, Prop, Val)

is depicted with Ind and Val as nodes with an arc labeled with Prop between
them. Such a graph is called a semantic network. Given such a graphical rep-
resentation, there is a straightforward mapping into a knowledge base using
the prop relation.

Example 13.7 Figure 13.1 shows a semantic network for the delivery robot
showing the sort of knowledge that the robot may have about a particular com-
puter. Some of the knowledge represented in the network is

prop(comp_2347, owned_by, fran).

prop(comp_2347, managed_by, sam).

prop(comp_2347, model, lemon_laptop_10000).

prop(comp_2347, brand, lemon_computer).

prop(comp_2347, has_logo, lemon _disc).

prop(comp_2347, color, green).

prop(comp_2347, color, yellow).

prop(comp_2347, weight, light).

prop(fran, has_office, r107).

prop(r107, in_building, comp_sci).

(©Poole and Mackworth, 2009

13.2. Flexible Representations 557

The network also shows how the knowledge is structured. For example, it

is easy to see that computer number 2347 is owned by someone (Fran) whose

office (r107) is in the comp_sci building. The direct indexing evident in the graph
| can be used by humans and machines.

This graphical notation has a number of advantages:

o Itis easy for a human to see the relationships without being required to learn
the syntax of a particular logic. The graphical notation helps the builders of
knowledge bases to organize their knowledge.

e You can ignore the labels of nodes that just have meaningless names — for
example, the name 0123 in Example 13.6 (page 555), or comp_2347 in Figure
13.1. You can just leave these nodes blank and make up an arbitrary name if
you must map to the logical form.

Terse Language for Triples

Turtle is a simple language for representing triples. It is one of the languages
invented for the semantic web (page 566). It is one of the syntaxes used for the
Resource Description Framework, or RDF, growing out of a similar language
called Notation 3 or N3.

In Turtle and RDF everything — including individuals, classes, and proper-
ties — is a resource. A Uniform Resource Identifier (URI) is a unique name
that can be used to identify anything. A URI is written within angle brackets,
and it often has the form of a URL because URLs are unique. For example,
(http://aispace.org) can be a URIL. A “#” in a URI denotes an individual that is
referred to in a web page. For example, (http://cs.ubc.ca/~poole/foaf.rdf#david)
denotes the individual david referred to in http://cs.ubc.ca/~poole/foaf.rdf. The
URI () refers to the current document, so the URI (#comp_2347) denotes an in-
dividual defined in the current document.

A triple is written simply as

Subject Verb Object.

where Subject and Verb are URIs, and Object is either a URI or a literal (string or
number). Verb denotes a property. Object is the value of the property Verb for
Subject.

Artificial Intelligence draft of February 6, 2010

558 13. Ontologies and Knowledge-Based Systems

| Example 13.8 The triples of Example 13.7 are written in Turtle as follows:

(#comp_2347) (#owned_by) (F#fran).

)
#comp_2347) (#managed_by) (#sam).
#comp_2347) (#model) (#lemon_laptop-10000).
#comp_2347) (#brand) (#lemon_computer).
#comp_2347) (#has_logo) (#lemon_disc).

)

{
{
{
{
(#comp_2347) (#color) (#green).
(#comp_2347) (#color) (#yellow) .
(#fran) (#has_office) (#r107).

(#r107) (#serves_building) (#comp_sci) .

The identifier “fran” does not tell us the name of the individual. If we wanted
to say that the person’s name is Fran, we would write

There are some useful abbreviations used in Turtle. A comma is used to group
objects with the same subject and verb. That is,

(#fran) (#name) “Fran”.

SV Oq,05.
is an abbreviation for

SV O.
SV O;.

A semicolon is used to group verb—object pairs for the same subject. That is,
S V1 O1 ; Vz Oz.
is an abbreviation for

SV 0.
S V3 0s.

Square brackets are to define an individual that is not given an identifier.
This unnamed resource is used as the object of some triple, but otherwise can-
not be referred to. Both commas and semicolons can be used to give this re-
source properties. Thus,

[V1 01; V2 Oy]

is an individual that has value O; on property V; and has value O, on property
V. Such descriptions of unnamed individuals are sometimes called frames.
The verbs are sometimes called slots and the objects are fillers.

(©Poole and Mackworth, 2009

13.2. Flexible Representations 559

| Example 13.9 The Turtle sentence

(comp_3645) (#owned_by) (#fran);
(#color) (#green), (#yellow) ;

(#managed_by) [(#occupation) (#sys_admin);
(#serves_building) (#comp_sci)].

says that (comp_3645) is owned by (#fran), its color is green and yellow, and it
is managed by a resource whose occupation is system administration and who
serves the comp_sci building.
This is an abbreviation for the triples

(comp_3645) (#owned_by) (#fran).

(comp_3645) (#color) (#green).

(comp_3645) (#color) (#yellow).

(comp_3645) (#managed_by) (i2134).

(i2134) (#occupation) (#sys_admin).

(i2134) (#serves_building) (#comp_sci).

| but where the made-up URI, (i2134), cannot be referred to elsewhere.

It is difficult for a reader to know what the authors mean by a particular URI
such as (#name) and how the use of this term relates to other people’s use of
the same term. There are, however, people who have agreed on certain mean-
ing for specific terms. For example, the property (http://xmlns.com/foaf/0.1/#name)
has a standard definition as the name of an object. Thus, if we write

(#fran) (http://xmlns.com/foaf/0.1/#name) “Fran”.

we mean the particular name property having that agreed-on definition.

It does not matter what is at the URL http://xmlIns.com/foaf/0.1/, as long as
those who use the URI (http://xmlns.com/foaf/0.1/#name) all mean the same
property. That URL, at the time of writing, just redirects to a web page. How-
ever, the “friend of a friend” project (which is what “foaf” stands for) uses that
name space to mean something. This works simply because people use it that
way.

In Turtle, URIs can be abbreviated using a “name:” to replace a URL and
the angle brackets, using an “@prefix” declaration. For example,

@prefix foaf: (http://xmlins.com/foaf/0.1/#)

lets “foaf:name” be an abbreviation for (http://xmlIns.com/foaf/0.1/#name). Sim-
ilarly,

@prefix : (#)

lets us write (#color) as :color.

Turtle also allows for parentheses for arguments to functions that are not
reified. It also uses the abbreviation “a” for “rdf:type”, but we do not follow
that convention.

Artificial Intelligence draft of February 6, 2010

560

13. Ontologies and Knowledge-Based Systems

Classes in Knowledge Bases and Object-Oriented Programming

The use of “individuals” and “classes” in knowledge-based systems is very
similar to the use of “objects” and “classes” in object-oriented programming
(OOP) languages such as Smalltalk or Java. This should not be too surprising
because they have an interrelated history. There are important differences that
tend to make the direct analogy often more confusing than helpful:

e Objects in OOP are computational objects; they are data structures and

associated programs. A “person” object in Java is not a person. How-
ever, individuals in a knowledge base (KB) are (typically) things in the
real world. A “person” individual in a KB can be a real person. A
“chair” individual can be a real chair you can actually sit in; it can hurt
you if you bump into it. You can send a message to, and get answers
from, a “chair” object in Java, whereas a chair in the real world tends
to ignore what you tell it. A KB is not typically used to interact with a
chair, but to reason about a chair. A real chair stays where it is unless it
is moved by a physical agent.

In a KB, a representation of an object is only an approximation at one
(or a few) levels of abstraction. Real objects tend to be much more com-
plicated than what is represented. We typically do not represent the
individual fibers in a chair. In an OOP system, there are only the repre-
sented properties of an object. The system can know everything about a
Java object, but not about a real individual.

The class structure of Java is intended to represent designed objects. A
systems analyst or a programmer gets to create a design. For example,
in Java, an object is only a member of one lowest-level class. There is
no multiple inheritance. Real objects are not so well behaved. The same
person could be a football coach, a mathematician, and a mother.

A computer program cannot be uncertain about its data structures; it
has to select particular data structures to use. However, we can be un-
certain about the types of things in the world.

The representations in a KB do not actually do anything. In an OOP
system, objects do computational work. In a KB, they just represent —
that is, they just refer to objects in the world.

Whereas an object-oriented modeling language, like UML, may be used
for representing KBs, it may not be the best choice. A good OO model-
ing tool has facilities to help build good designs. However, the world
being modeled may not have a good design at all. Trying to force a good
design paradigm on a messy world may not be productive.

(©Poole and Mackworth, 2009

13.2. Flexible Representations 561

13.2.3 Primitive Versus Derived Relations

Typically, you know more about a domain than a database of facts; you know
general rules from which other facts can be derived. Which facts are explic-
itly given and which are derived is a choice to be made when designing and
building a knowledge base.

Primitive knowledge is knowledge that is defined explicitly by facts. De-
rived knowledge is knowledge that can be inferred from other knowledge.
Derived knowledge is usually specified in terms of rules.

The use of rules allows for a more compact representation of knowledge.
Derived relations allow for conclusions to be drawn from observations of the
domain. This is important because you do not directly observe everything
about a domain. Much of what is known about a domain is inferred from the
observations and more general knowledge.

A standard way to use derived knowledge is to put individuals into classes.
We give general properties to classes so that individuals inherit the properties
of classes. The reason we group individuals into classes is because the mem-
bers of a class have attributes in common, or they have common properties that
make sense for them (see the box on page 569).

A class is the set of those actual and potential individuals that would be
members of the class. In logic, this is an intensional set, defined by a character-
istic function that is true of members of the set and false of other individuals.
The alternative is an extensional set, which is defined by listing its elements.

For example, the class chair is the set of all things that would be chairs. We
do not want the definition to be the set of things that are chairs, because chairs
that have not yet been built also fall into the class of chairs. We do not want
two classes to be equivalent just because they have the same members. For
example, the class of green unicorns and the class of chairs that are exactly 124
meters high are different classes, even though they contain the same elements;
they are both empty.

The definition of class allows any set that can be described to be a class.
For example, the set consisting of the number 17, the Tower of London, and
Julius Caesar’s left foot may be a class, but it is not very useful. A natural
kind is a class where describing objects using the class is more succinct than
describing objects without the class. For example, “mammal” is a natural kind,
because describing the common attributes of mammals makes a knowledge
base that uses “mammal” more succinct than one that does not use “mammal”
and repeats the attributes for every individual.

We use the property type to mean “is a member of class.” Thus, in the
language of definite clauses,

prop(X, type, C)

means that individual X is a member of class C.
The people who created RDF and RDF Schema used exactly the property
we want to use here for membership in a class. In the language Turtle, we can

Artificial Intelligence draft of February 6, 2010

562 13. Ontologies and Knowledge-Based Systems

define the abbreviation

@prefix rdf: (http://www.w3.0rg/1999/02/22-rdf-syntax-ns#}) .
@prefix rdfs: (http://www.w3.0org/2000/01/rdf-schema#) .

Given these declarations, rdf:type means the type property that relates an indi-
vidual to a class of which it is a member. By referring to the definition of type
at that URI, this becomes a standard definition that can be used by others and
can be distinguished from other meanings of the word “type.”

The property rdfs:subClassOf between classes specifies that one class is a
subset of another. In Turtle,

S rdfs:subClassOf C.

means that class S is a subclass of class C. In terms of sets, this means that S is
a subset of C. That is, every individual of type S is of type C.

Example 13.10 Example 13.7 explicitly specified that the logo for computer
comp_2347 was a lemon disc. You may, however, know that all Lemon-brand
computers have this logo. An alternative representation is to associate the logo
with lemon_computer and derive the logo of comp_2347. The advantage of this
representation is that if you find another Lemon-brand computer, you can infer
its logo.

In Turtle,

:lemon_computer rdfs:subClassOf :computer.

:lemon_laptop_10000 rdfs:subClassOf :lemon_computer.

:comp_2347 rdf:type :lemon_laptop_10000.
says that a lemon computer is a computer, a lemon laptop 10000 is a lemon
computer, and that comp_2347 is a lemon laptop 10000. An extended example
is shown in Figure 13.2, where the shaded rectangles are classes, and arcs from

classes are not the properties of the class but properties of the members of the
class.

The relationship between types and subclasses can be written as a definite
clause:

prop(X, type, C) <

prop(X, type, S) A
prop(S, subClassOf, C)

You can treat type and subClassOf as special properties that allow property
inheritance. Property inheritance is when a value for a property is specified
at the class level and inherited by the members of the class. If all members of
class ¢ have value v for property p, this can be written in Datalog as

prop(Ind, p,v) <
prop(Ind, type, c).
(©Poole and Mackworth, 2009

13.2. Flexible Representations 563

computer
rdfs:subClassOf lemon_disc
has_logo
lemon_computer color — | green
color
T oiow
rdfs:subClassOf y
sys_admin
\ lemon_laptop_10000
occupation
\ ? weight
Sam rdf:type
7 D light
serves_building Managed_by
comp_2347
comp_scCi |
. + owned_by
in_building
r107 |<—— has_office fran

Figure 13.2: A semantic network allowing inheritance

which, together with the aforementioned rule that relates types and subclasses,
can be used for property inheritance.

Example 13.11 All lemon computers have a lemon disc as a logo and have
color yellow and color green (see the logo and color arcs in Figure 13.2). This can
be represented by the following Datalog program:
prop(X, has_logo, lemon_disc) <
prop(X, type, lemon_computer).
prop(X, color, green) <«
prop(X, type, lemon_computer).
prop(X, color, yellow) <
prop(X, type, lemon_computer).
The prop relations that can be derived from these clauses are essentially the

same as that which can be derived from the flat semantic network of Figure 13.1
(page 556). With the structured representation, to incorporate a new Lemon

Artificial Intelligence draft of February 6, 2010

564 13. Ontologies and Knowledge-Based Systems

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.

Oprefix : <#>.

:computer rdf:type rdfs:Class.

:logo rdf :type rdfs:Class.
:lemon_disc rdf:type :logo.
:has_logo

rdf:type rdf :Property ;
rdfs:domain :computer ;
rdfs:range :logo.
:lemon_computer
rdf:type rdfs:Class ;
rdfs:subClass0f :computer ;
rdfs:subClassOf
owl:0ObjectHasValue(:has_logo :lemon_disc).

Figure 13.3: Turtle representation of Example 13.12

Laptop 10000, you only declare that it is a Lemon Laptop 10000 and the color
| and logo properties can be derived through inheritance.

RDF and Turtle do not have definite clauses. In these languages, instead of
treating the membership in a class as a predicate, classes are sets. To say that
all of the elements of a set S have value v for a predicate p, we say that S is a
subset of the set of all things with value v for predicate p.

Example 13.12 To state that all lemon computers have a lemon disc as a logo,
we say that the set of lemon computers is a subset of the set of all things for
which the property has_logo value lemon _disc.

A representation of this is shown in Figure 13.3. :computer and :logo are
both classes. :lemon_disc is member of the class :logo. :has_logo is a prop-
erty, with domain :computer and range :logo. :lemon_computer is a subclass
of :computer. It is also a subclass of the set of all individuals that have value
:lemon_disc for the property :has_logo.

owl:ObjectHasValue is a class constructor for OWL (see below), such that
owl:ObjectHasValue(:has_logo :lemon_disc) is the class of all individuals that
have the value :lemon_disc for the property :has_logo.

Some general guidelines are useful for deciding what should be primitive
and what should be derived:

e When associating an attribute with an individual, select the most general
class C, such that the individual is in C and all members of C have that at-
tribute, and associate the attribute with class C. Inheritance can be used

(©Poole and Mackworth, 2009

13.3. Ontologies and Knowledge Sharing 565

to derive the attribute for the individual and all members of class C. This
representation methodology tends to make knowledge bases more concise,
and it means that it is easier to incorporate new individuals because they
automatically inherit the attribute if they are a member of class C.

e Do not associate a contingent attribute of a class with the class. A contin-
gent attribute is one whose value changes when circumstances change. For
example, it may be true of the current computer environment that all of the
computers come in brown boxes. However, it may not be a good idea to put
that as an attribute of the computer class, because it would not be expected to
be true as other computers are bought.

e Axiomatize in the causal direction (page 204). If a choice exists between
making the cause primitive or the effect primitive, make the cause primitive.
The information is then more likely to be stable when the domain changes.

13.3 Ontologies and Knowledge Sharing

Building large knowledge-based systems is complex because

¢ Knowledge often comes from multiple sources and must be integrated. More-
over, these sources may not have the same division of the world. Often
knowledge comes from different fields that have their own distinctive ter-
minology and divide the world according to their own needs.

e Systems evolve over time and it is difficult to anticipate all future distinc-
tions that should be made.

e The people involved in designing a knowledge base must choose what in-
dividuals and relationships to represent. The world is not divided into in-
dividuals; that is something done by intelligent agents to understand the
world. Different people involved in a knowledge-based system should agree
on this division of the world.

e [t is difficult to remember what your own notation means, let alone to dis-
cover what someone else’s notation means. This has two aspects:

e given a symbol used in the computer, determining what it means;

e given a concept in someone’s mind, determining what symbol they
should use; that is, determining whether the concept has been used
before and, if it has, discovering what notation has been used for it.

To share and communicate knowledge, it is important to be able to come
up with a common vocabulary and an agreed-on meaning for that vocabulary.

A conceptualization is a mapping between symbols used in the computer
(i.e., the vocabulary) and the individuals and relations in the world. It pro-
vides a particular abstraction of the world and notation for that abstraction.
A conceptualization for small knowledge bases can be in the head of the de-
signer or specified in natural language in the documentation. This informal
specification of a conceptualization does not scale to larger systems where the
conceptualization must be shared.

Artificial Intelligence draft of February 6, 2010

566 13. Ontologies and Knowledge-Based Systems

| The Semantic Web |

The semantic web is a way to allow machine-interpretable knowledge to be
distributed on the World Wide Web. Instead of just serving HTML pages that
are meant to be read by humans, web sites will also provide information that
can be used by computers.

At the most basic level, XML (the Extensible Markup Language) provides
a syntax designed to be machine readable, but which is possible for humans
to read. It is a text-based language, where items are tagged in a hierarchi-
cal manner. The syntax for XML can be quite complicated, but at the sim-
plest level, the scope of a tag is either in the form (tag.../), or in the form
(tag...)...(/tag).

A URI (a Uniform Resource Identifier) is used to uniquely identify a re-
source. A resource is anything that can be uniquely identified. A URI is a
string that refers to a resource, such as a web page, a person, or a corporation.
Often URIs use the syntax of web addresses.

RDF (the Resource Description Framework) is a language built on XML,
providing individual-property-value triples.

RDEF-S (RDF Schema) lets you define resources (and so also properties) in
terms of other resources (e.g., using subClassOf). RDF-S also lets you restrict
the domain and range of properties and provides containers (sets, sequences,
and alternatives — one of which must be true).

RDF allows sentences in its own language to be reified. This means that
it can represent arbitrary logical formulas and so is not decidable in general.
Undecidability is not necessarily a bad thing; it just means that you cannot
put a bound on the time a computation may take. Simple logic programs with
function symbols and virtually all programming languages are undecidable.

OWL (the Web Ontology Language) is an ontology language for the
World Wide Web. It defines some classes and properties with a fixed inter-
pretation that can be used for describing classes, properties, and individuals.
It has built-in mechanisms for equality of individuals, classes, and properties,
in addition to restricting domains and ranges of properties and other restric-
tions on properties (e.g., transitivity, cardinality).

There have been some efforts to build large universal ontologies, such as
cyc (www.cyc.com), but the idea of the semantic web is to allow communities
to converge on ontologies. Anyone can build an ontology. People who want
to develop a knowledge base can use an existing ontology or develop their
own ontology, usually built on existing ontologies. Because it is in their inter-
est to have semantic interoperability, companies and individuals should tend
to converge on standard ontologies for their domain or to develop mappings
from their ontologies to others” ontologies.

(©Poole and Mackworth, 2009

13.3. Ontologies and Knowledge Sharing 567

Figure 13.4: Mapping from a conceptualization to a symbol

In philosophy, ontology is the study of what exists. In Al, an ontology
is a specification of the meanings of the symbols in an information system.
That is, it is a specification of a conceptualization. It is a specification of what
individuals and relationships are assumed to exist and what terminology is
used for them. Typically, it specifies what types of individuals will be modeled,
specifies what properties will be used, and gives some axioms that restrict the
use of that vocabulary.

Example 13.13 An ontology of individuals that could appear on a map could
specify that the symbol “ApartmentBuilding” will represent apartment build-
ings. The ontology will not define an apartment building, but it will describe it
well enough so that others can understand the definition. We want other peo-
ple, who may be inclined to use different symbols, to be able to use the ontology
to find the appropriate symbol to use (see Figure 13.4). Multiple people are able
to use the symbol consistently. An ontology should also enable a person to ver-
ify what a symbol means. That is, given a concept, they want to be able to find
the symbol, and, given the symbol, they want to be able to determine what it
means.

An ontology may give axioms to restrict the use of some symbol. For exam-
ple, it may specify that apartment buildings are buildings, which are human-
constructed artifacts. It may give some restriction on the size of buildings so
that shoeboxes cannot be buildings or that cities cannot be buildings. It may
state that a building cannot be at two geographically dispersed locations at the
same time (so if you take off some part of the building and move it to a differ-

Artificial Intelligence draft of February 6, 2010

568 13. Ontologies and Knowledge-Based Systems

ent location, it is no longer a single building). Because apartment buildings are
buildings, these restrictions also apply to apartment buildings.

Ontologies are usually written independently of a particular application

and often involve a community to agree on the meanings of symbols. An on-
tology consists of

e avocabulary of the categories of the things (both classes and properties) that
a knowledge base may want to represent;

e an organization of the categories, for example into an inheritance hierarchy
using subClassOf or subPropertyOf, or using Aristotelian definitions; and

e a set of axioms restricting the meanings of some of the symbols to better re-
flect their meaning — for example, that some property is transitive, or that
the domain and range are restricted, or that there are some restriction on
the number of values a property can take for each individual. Sometimes
relationships are defined in terms of more primitive relationships but, ulti-
mately, the relationships are grounded out into primitive relationships that
are not actually defined.

An ontology does not specify the individuals not known at design time. For

example, an ontology of buildings would typically not include actual build-
ings. An ontology would specify those individuals that are fixed and should
be shared, such as the days of the week, or colors.

Example 13.14 Consider a trading agent that is designed to find accommo-
dations. Users could use such an agent to describe what accommodation they
want. The trading agent could search multiple knowledge bases to find suitable
accommodations or to notify users when some appropriate accommodation be-
comes available. An ontology is required to specify the meaning of the symbols
for the user and to allow the knowledge bases to interoperate. It provides the
semantic glue to tie together the users’ needs with the knowledge bases.

In such a domain, houses and apartment buildings may both be residential
buildings. Although it may be sensible to suggest renting a house or an apart-
ment in an apartment building, it may not be sensible to suggest renting an
apartment building to someone who does not actually specify that they want
to rent the whole building. A “living unit” could be defined to be the collection
of rooms that some people, who are living together, live in. A living unit may
be what a rental agency offers to rent. At some stage, the designer may have to
decide whether a room for rent in a house is a living unit, or even whether part
of a shared room that is rented separately is a living unit. Often the boundary
cases — cases that may not be initially anticipated — are not clearly delineated
but become better defined as the ontology evolves.

The ontology would not contain descriptions of actual houses or apart-
ments because the actual available accommodation would change over time
and would not change the meaning of the vocabulary.

The primary purpose of an ontology is to document what the symbols mean
— the mapping between symbols (in a computer) and concepts (in someone’s

(©Poole and Mackworth, 2009

13.3. Ontologies and Knowledge Sharing 569

Aristotelian Definitions\

Categorizing objects, the basis for modern ontologies, has a long history. Aris-
totle [350 B.C.] suggested the definition of a class C in terms of
e Genus: a superclass of C. The plural of genus is genera.
e Differentia: the properties that make members of the class C different
from other members of the superclass of C.
He anticipated many of the issues that arise in definitions:

If genera are different and co-ordinate, their differentine are themselves
different in kind. Tnke as an instance the genus “animal” and the genus
“knowledge”. “With feet”, “two-footed”, “winged”, “aquatic”, are dif-
ferentiae of “animal”; the species of knowledge are not distinguished by
the same differentiae. One species of knowledge does not differ from an-
other in being “two-footed”. [Aristotle, 350 B.C.]

Note that “co-ordinate” here means neither is subordinate to the other.

In the style of modern ontologies, we would say that “animal” is a class,
and “knowledge” is a class. The property “two-footed” has domain “animal”.
If something is an instance of knowledge, it does not have a value for the
property “two-footed”.

To build an ontology based on Aristotelian definitions:

e For each class you may want to define, determine a relevant superclass,
and then select those attributes that distinguish the class from other sub-
classes. Each attribute gives a property and a value.

e For each property, define the most general class for which it makes
sense, and define the domain of the property to be this class. Make the
range another class that makes sense (perhaps requiring this range class
to be defined, either by enumerating its values or by defining it using
an Aristotelian definition).

This can get quite complicated. For example, defining “luxury furniture”,
perhaps the superclass you want is “furniture” and the distinguishing charac-
teristics are cost is high and luxury furniture is soft. The softness of furniture
is different than the softness of rocks. You also probably want to distinguish
the squishiness from the texture (both of which may be regarded as soft).

This methodology does not, in general, give a tree hierarchy of classes.
Objects can be in many classes. Each class does not have a single most-specific
superclass. However, it is still straightforward to check whether one class is
a subclass of another, to check the meaning of a class, and to determine the
class that corresponds to a concept in your head.

In rare cases, this results in a tree structure, most famously in the Linnaean
taxonomy of living things. It seems that the reason this is a tree is because of
evolution. Trying to force a tree structure in other domains has been much
less successful.

Artificial Intelligence draft of February 6, 2010

570 13. Ontologies and Knowledge-Based Systems

head). Given a symbol, a person is able to use the ontology to determine what it
means. When someone has a concept to be represented, the ontology is used to
find the appropriate symbol or to determine that the concept does not exist in
the ontology. The secondary purpose, achieved by the use of axiomes, is to allow
inference or to determine that some combination of values is inconsistent. The
main challenge in building an ontology is the organization of the concepts to
allow a human to map concepts into symbols in the computer, and for the
computer to infer useful new knowledge from stated facts.

13.3.1 Description Logic

A Uniform Resource Identifier has some meaning because someone published
that it has that meaning and because people use it with that meaning. This
works, but we want more. We would like to have meanings that allow a com-
puter to do some inference.

Modern ontology languages such as OWL (page 566) are based on descrip-
tion logics. A description logic is used to describe classes, properties, and
individuals. One of the main ideas behind a description logic is to separate

e a terminological knowledge base that describes the terminology, which
should remain constant as the domain being modeled changes, and

e an assertional knowledge base that describes what is true in some domain
at some point in time.

Usually, the terminological knowledge base is defined at the design time of the
system and defines the ontology, and it only changes as the meaning of the
vocabulary changes, which should be rare. The assertional knowledge base
usually contains the knowledge that is situation-specific and is only known at
run time.

It is typical to use triples (page 554) to define the assertional knowledge
base and a language such as OWL to define the terminological knowledge base.

OWL describes domains in terms of the following;:

e Individuals are things in the world that is being described (e.g., a particular
house or a particular booking may be individuals).

e Classes are sets of individuals. A class is the set of all real or potential things
that would be in that class. For example, the class “House” may be the set of
all things that would be classified as a house, not just those houses that exist
in the domain of interest.

e Properties are used to describe individuals. A datatype property has val-
ues that are primitive data types, such as integers or strings. For example,
“streetName” may be a datatype property between a street and string. An
object property has values that are other individuals. For example, “nextTo”
may be a property between two houses, and “onStreet” may be a property
between a house and a street.

OWL comes in three variants that differ in restrictions imposed on the classes
and properties. In OWL-DL and OWL-Lite, a class cannot be an individual or

(©Poole and Mackworth, 2009

13.3. Ontologies and Knowledge Sharing 571

Cy are classes, Py are properties, I are individuals, and 7 is an integer. #S is the
number of elements in set S:

Class Class Contains

owl:Thing all individuals

owl:Nothing no individuals (empty set)

owl:ObjectIntersectionOf (Cy, ..., Cx) individualsin C; N ---NCy

owl:ObjectUnionOf (Cy, ..., Cx) individuals in C{U - - - U Cy,

owl:ObjectComplementOf (C) the individuals not in C

OW|ZObj€CtOn€Of(Il, .. ,Ik) I,... I

owl:ObjectHasValue(P, I) individuals with value I on prop-
erty P, ie, {x:xPI}

owl:ObjectAllValuesFrom (P, C) individuals with all values in C on
property P;ie., {x:xPy — y € C}

owl:ObjectSomeValuesFrom(P, C) individuals with some values in C
on property P; ie, {x : dy €
C such that x Py}

owl:ObjectMinCardinality(n, P, C) individuals x with at least n indi-

viduals of class C related to x by P,
ie., {x:#{y|xPyandy € C} > n}
owl:ObjectMaxCardinality(n, P, C) individuals x with at most n indi-
viduals of class C related to x by P,
ie, {x:#{y|xPyandy € C} < n}

Figure 13.5: Some OWL built-in classes and class constructors

a property, and a property is not an individual. In OWL-Full, the categories
of individuals, properties, and classes are not necessarily disjoint. OWL-Lite
has some syntactic restrictions that do not affect the meaning but can make
reasoning simpler.

OWL does not make the unique names assumption (page 536); two names
do not necessarily denote different individuals or different classes. It also does
not make the complete knowledge assumption (page 192); it does not assume
that all relevant facts have been stated.

Figure 13.5 gives some primitive classes and some class constructors. This
figure uses set notation to define the set of individuals in a class. Figure 13.6
(on the next page) gives primitive predicates of OWL. The owl: prefixes are
from OWL. To use these properties and classes in an ontology, you include the
appropriate URI abbreviations:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix owl: <http://www.w3.0rg/2002/07/owl#>.

Artificial Intelligence draft of February 6, 2010

572 13. Ontologies and Knowledge-Based Systems

OWL has the following predicates with a fixed interpretation, where Cj are
classes, Py are properties, and I are individuals; x and y are universally quan-
tified variables.

Statement Meaning

rdf:type(I, C) IeC

rdfs:subClassOf (Cy, Cs) C1 CC
owl:EquivalentClasses(Cy, Cp) Ci=GC
owl:DisjointClasses(Cy, Cp) CiNC ={}

rdfs:domain(P, C) if xPy thenx € C

rdfs:range(P, C) if xPy theny € C
rdfs:subPropertyOf (P, P») xP1y implies xPpy
owl:EquivalentObjectProperties(P1, P;) xPqy if and only if xPpy
owl:DisjointObjectProperties(P1, Py) xP1y implies not xPy
owl:InverseObjectProperties(Py, Py) xP1y if and only if yPyx
owl:Samelndividual(Iy, ..., I,) ViVk I; = Iy
owl:DifferentIndividuals(Iy, . . ., I,,) VjVkj # kimplies I; # Iy
owl:FunctionalObjectProperty(P) if xPy; and xPy; theny; = 12
owl:InverseFunctionalObjectProperty(P) if x1Py and x,Py then x; = x»
owl: TransitiveObjectProperty (P) if xPy and yPz theny =z
owl:SymmetricObjectProperty if xPy then yPz

Figure 13.6: Some RDF, RDF-S, and OWL built-in predicates

In these figures, xPy is a triple. Note that this is meant to define the meaning
of the predicates, rather than any syntax. The predicates can be used with
different syntaxes, such as XML, Turtle, or traditional relations notation.

There is one property constructor: owl:ObjectInverseOf (P), which is the in-
verse property of P; that is, it is the property P~! such that yP~'x iff xPy. Note
that it is only applicable to object properties; datatype properties do not have
inverses, because data types cannot be the subject of a triple.

The list of classes and statements in these figures is not complete. There
are corresponding datatype classes for datatype properties, where appropriate.
For example, owl:DataSomeValuesFrom and owl:EquivalentDataProperties have
the same definitions as the corresponding object symbols, but are for datatype
properties. There are also other constructs in OWL to define properties, com-
ments, annotations, versioning, and importing other ontologies.

Example 13.15 As an example of a class constructor in Turtle notation, which
uses spaces between arguments,

owl:MinCardinality(2 :owns :building)

is the class of all individuals who own two or more buildings. That is, it is the
set {x : Ji;3ip x :owns iy and x :owns iy and iy # ip }. This class constructor must

(©Poole and Mackworth, 2009

13.3. Ontologies and Knowledge Sharing 573

be used in a statement, for example, to say that some individual is a member of
| this class or to say that this is equivalent to some other class.

| Example 13.16 Consider an Aristotelian definition (page 569) of an apartment
building. We can say that an apartment building is a residential building with
multiple units and the units are rented. (This is in contrast to a condominium
building, where the units are individually sold, or a house, where there is only
one unit). Suppose we have the class ResidentialBuilding that is a subclass of
Building.
We first define the functional object property numberOfUnits, with domain
ResidentialBuilding and range {one, two, moreThanTwo}. In Turtle this is written

:number0fUnits rdf:type owl:FunctionalObjectProperty;
rdfs:domain :ResidentialBuilding;
rdfs:range owl:0ne0f(:one :two :moreThanTwo) .

The functional object property ownership with domain ResidentialBuilding,
and range {rental, ownerOccupied, coop} can be defined similarly.

We can define an apartment building as a ResidentialBuilding where the
numberOfUnits property has the value moreThanTwo and the ownership property
has the value rental. To specify this in OWL, we define the class of things that
have value moreThanTwo for the property numberOfUnits, the class of things that
have value rental for the property ownership, and say that ApartmentBuilding is
equivalent to the intersection of these classes. In Turtle, this is

:ApartmentBuilding
owl:EquivalentClasses
owl:0ObjectIntersection0f (
owl:0bjectHasValue (:number0fUnits :moreThanTwo)
owl:0ObjectHasValue(:onwership :rental)
:ResidentialBuilding) .

This definition can be used to answer questions about apartment buildings,
such as the ownership and the number of units.

Note that the previous example did not really define ownership. The system
has no idea what this actually means. Hopefully, a user will know what it
means. Someone who wants to adopt an ontology should ensure that they use
a property and a class to mean the same thing as other users of the ontology.

A domain ontology is an ontology about a particular domain of interest.
Most existing ontologies are in a narrow domain that people write for specific
applications. There are some guidelines that have evolved for writing domain
ontologies to enable knowledge sharing:

o If possible, use an existing ontology. This means that your knowledge base
will be able to interact with others who use the same ontology.

e If an existing ontology does not exactly match your needs, import it and add
to it. Do not start from scratch, because then others who want to use the
best ontology will have to choose. If your ontology includes and improves
the other, others who want to adopt an ontology will choose yours, because
their application will be able to interact with adopters of either ontology.

Artificial Intelligence draft of February 6, 2010

574

13. Ontologies and Knowledge-Based Systems

Make sure that your ontology integrates with neighboring ontologies. For
example, an ontology about resorts will have to interact with ontologies
about food, beaches, recreation activities, and so on. Try to make sure that it
uses the same terminology for the same things.

Try to fit in with higher-level ontologies (see below). This will make it much
easier for others to integrate their knowledge with yours.

If you must design a new ontology, consult widely with other potential
users. This will make it most useful and most likely to be adopted.

Follow naming conventions. For example, call a class by the singular name
of its members. For example, call a class “Resort” not “Resorts”. Resist the
temptation to call it “ResortConcept” (thinking it is only the concept of a
resort, not a resort; see the box on page 575). When naming classes and
properties, think about how they will be used. It sounds better to say that
“r1is of type Resort” than “r1 is of type Resorts”, which is better than “r1 is
of type ResortConcept”.

As a last option, specify the matching between ontologies. Sometimes on-
tology matching has to be done when ontologies are developed indepen-
dently. It is best if matching can be avoided; it makes knowledge using the
ontologies much more complicated because there are multiple ways to say
the same thing.

OWL, when written in Turtle, is much easier to read than when using XML.
However, OWL is at a lower level than most people will want to specify or

read.

It is designed to be a machine-readable specification. There are many

editors that let you edit OWL representation. One example is Protégé (http:
//protege.stanford.edu/). An ontology editor should support the following:

It should provide a way for people to input ontologies at the level of abstrac-
tion that makes the most sense.

Given a concept a user wants to use, an ontology editor should facilitate
finding the terminology for that concept or determining that there is no cor-
responding term.

It should be straightforward for someone to determine the meaning of a
term.

It should be as easy as possible to check that the ontology is correct (i.e.,
matches the user’s intended interpretation for the terms).

It should create an ontology that others can use. This means that it should
use a standardized language as much as possible.

13.3.2 Top-Level Ontologies

Example 13.16 defines a domain ontology designed to be used by people who
want to write a knowledge base that refers to apartment buildings. Each do-
main ontology implicitly or explicitly assumes a higher-level ontology that it
can fit into. There is interest in building a coherent top-level ontology to which

(©Poole and Mackworth, 2009

13.3. Ontologies and Knowledge Sharing 575

other ontologies can refer and into which they can fit. Fitting the domain on-
tologies into a higher-level ontology should make it easier to allow them to
interoperate.

One such ontology is BFO, the Basic Formal Ontology. The categories of
BFO are given in Figure 13.7 (on the next page).

At the top is entity. OWL calls the top of the hierarchy thing. Essentially,
everything is an entity.

Entities are either continuants or occurrents. A continuant is something
existing at an instant in time, such as a person, a country, a smile, the smell of
a flower, or an email. Continuants maintain their identity though time. An oc-
current is something that has temporal parts such as a life, smiling, the opening
of a flower, and sending an email. One way to think about the difference is to
consider the entity’s parts: a finger is part of a person, but is not part of a life;
infancy is part of a life, but is not part of a person. Continuants participate in
occurrents. Processes that last through time and events that occur at an instant

Classes and Concepts

It is tempting to call the classes concepts, because symbols represent concepts:
mappings from the internal representation into the object or relations that the
symbols represent.

For example, it may be tempting to call the class of unicorns “unicornCon-
cept” because there are no unicorns, only the concept of a unicorn. However,
unicorns and the concept of unicorns are very different; one is an animal and
one is a subclass of knowledge. A unicorn has four legs and a horn coming
out of its head. The concept of a unicorn does not have legs or horns. You
would be very surprised if a unicorn appeared in a class about ontologies,
but you should not be surprised if the concept of a unicorn appeared. There
are no instances of unicorns, but there are many instances of the concept of
a unicorn. If you mean a unicorn, you should use the term “unicorn”. If
you mean the concept of a unicorn, you should use “concept of a unicorn”.
You should not say that a unicorn concept has four legs, because instances of
knowledge do not have legs; only animals (and furniture) have legs.

As another example, consider a tectonic plate, which is part of the Earth’s
crust. The plates are millions of years old. The concept of a plate is less than
a hundred years old. Someone can have the concept of a tectonic plate in
their head, but they cannot have a tectonic plate in their head. It should be
very clear that a tectonic plate and the concept of a tectonic plate are very
different things, with very different properties. You should not use “concept
of a tectonic plate” when you mean “tectonic plate” or vice versa.

Calling objects concepts is a common error in building ontologies. Al-
though you are free to call things by whatever name you want, it is only use-
ful for knowledge sharing if other people adopt your ontology. They will not
adopt it if it does not make sense to them.

Artificial Intelligence draft of February 6, 2010

576 13. Ontologies and Knowledge-Based Systems

entity
continuant
independent continuant
site
object aggregate
object
tiat part of object
boundary of object
dependent continuant
realizable entity
function
role
disposition
quality
spatial region
volume
surface
line
point
occurrent
temporal region
connected temporal region
temporal interval
temporal instant
scattered temporal region
spatio-temporal region
connected spatio-temporal region
spatio-temporal interval
spatio-temporal instant
scattered spatio-temporal region
processual entity
process
process aggregate
processual context
fiat part of process
boundary of process

Figure 13.7: Categories of Basic Formal Ontology (BFO). The indentation shows
the subclass relationship. Each category is an immediate subclass of the lowest
category above it that is less indented.

(©Poole and Mackworth, 2009

13.3. Ontologies and Knowledge Sharing 577

in time are also both occurrents.

A continuant is an independent continuant, a dependent continuant, or a
spatial region. An independent continuant is an entity that can exist by itself or
is part of another entity. For example, a person, a face, a pen, the surface of an
apple, the equator, a country, and the atmosphere are independent continuants.
A dependent continuant only exists by virtue of another entity and is not a part
of that entity. For example, a smile, the smell of a flower, or the ability to laugh
can only exist in relation to another object. A spatial region is a region in space,
for example, the space occupied by a doughnut now, the boundary of a county,
or the point in a landscape that has the best view.

An independent continuant can further be subdivided into the following;:

e A site is a shape that is defined by some other continuants. For example, the
hole in a donut, a city, someone’s mouth, or a room are all sites. Whereas
sites may be at a spatial region at every instance, they move with the object
that contains them.

e An object aggregate is made up of other objects, such as a flock of sheep, a
football team, or a heap of sand.

e An object is a self-connected entity that maintains its identity through time
even if it gains or loses parts (e.g., a person who loses some hair, a belief,
or even a leg, is still the same person). Common objects are cups, people,
emails, the theory of relativity, or the knowledge of how to tie shoelaces.

o A fiat part of an object is part of an object that does not have clear bound-
aries, such as the dangerous part of a city, a tissue sample, or the secluded
part of a beach.

e The boundary of an object is a lower-dimensional part of some continuant,
for example the surface of the Earth, or a cell boundary.

A spatial region is three-dimensional (a volume), two-dimensional (a sur-
face), one-dimensional (a line), or zero-dimensional (a point). These are parts
of space that do not depend on other objects to give them identity. They re-
main static, as opposed to sites and boundaries that move with the objects that
define them.

A dependent continuant is a quality or a realizable entity. A quality is
something that all objects of a particular type have for all of the time they exist
— for example, the mass of a bag of sugar, the shape of a hand, the fragility of a
cup, the beauty of a view, the brightness of a light, and the smell of the ocean.
Although these can change, the bag of sugar always has a mass and the hand
always has a shape. This is contrasted with a realizable entity, where the value
does not need to exist and the existence can change though time. A realizable
entity is one of the following:

o A function specifies the purpose of a object. For example, the function of a
cup may be to hold coffee; the function of the heart is to pump blood.

e A role specifies a goal that is not essential to the object’s design but can be
carried out. Examples of roles include the role of being a judge, the role of
delivering coffee, or the role of a desk to support a computer monitor.

Artificial Intelligence draft of February 6, 2010

578 13. Ontologies and Knowledge-Based Systems

e A disposition is something that can happen to an object, for example, the
disposition of a cup to break if dropped, the disposition of vegetables to rot
if not refrigerated, and the disposition of matches to light if they are not wet.

The other major category of entities is the occurrent. An occurrent is any of
the following;:

e A temporal region is a region of time. A temporal region is either connected
(if two points are in the region, so is every point in between) or scattered.
Connected temporal regions are either intervals or instants (time points).
Tuesday, March 1, 2011, is a temporal interval; 3:31 p.m. on that day is a
temporal point. Tuesdays from 3:00 to 4:00 is a scattered temporal region.

e A spatio-temporal region is a region of multidimensional space-time. Spatio-
temporal regions are either scattered or connected. Some examples of spatio-
temporal regions are the space occupied by a human life, the border between
Canada and the United States in 1812, and the region occupied by the devel-
opment of a cancer tumor.

e A processual entity is something that occurs or happens, has temporal parts
(as well as, perhaps, spatial parts), and depends on a continuant. For exam-
ple, Joe’s life has parts such as infancy, childhood, adolescence, and adult-
hood and involves a continuant, Joe. A processual entity is any of the fol-
lowing;:

e A process is something that happens over time and has distinct ends,
such as a life, a holiday, or a diagnostic session.

e A process aggregate is a collection of processes such as the playing of
the individuals in a band, or the flying of a set of planes in a day.

o A fiat part of process is part of a process having no distinct ends, such
as the most interesting part of a holiday, or the most serious part of an
operation.

e A processual context is the setting for some other occurrent, for exam-
ple, relaxation as the setting for rejuvenation, or a surgery as a setting
for an infection.

e A boundary of a process is the instantaneous temporal boundary of a
process, such as when a robot starts to clean up the lab, or a birth.

The claim is that this is a useful categorization on which to base other on-
tologies. Making it explicit how domain ontologies fit into an upper-level on-
tology promises to facilitate the integration of these ontologies. The integration
of ontologies is necessary to allow applications to refer to multiple knowledge
bases, each of which may each use different ontologies.

Designing a top-level ontology is difficult. It probably will not satisfy ev-
eryone who must use one. There always seem to be some problematic cases.
In particular, boundary cases are often not well specified. However, using a
standard top-level ontology should help in connecting ontologies together.

(©Poole and Mackworth, 2009

