
THE UNIVERSITY OF BRITISH COLUMBIA

Rationale for the department

The proposed course, currently referred to as CPSC203, will serve as a second course for novice
programmers. Designed for non-CS majors, it emphasizes practicality and productivity, without
compromising the essentials of computer science—discussion of algorithmic efficiency and software
engineering are woven into the curricular narrative throughout the course.

Student background:
In the long term, we anticipate that students enrolling in CPSC203 will come from a variety of
introductory experiences, including even informal or secondary school exposure to the fundamental
constructs of programming. At its genesis, the course relies on the level of programming fluency
achieved in CPSC103. The learning objectives of PHYS210: Introductory Computational Physics
(http://laplace.physics.ubc.ca/210/Topics.html), suggest that it provides a reasonable foundation for
CPSC203, as well, though some remediation in software design, and in Python syntax, may be
necessary. In addition, COMM337: Business Programming and Analytics
(http://blogs.ubc.ca/genemoolee/files/2018/01/COMM-337-Course-Outline-2018.01.02.pdf) would
provide students with adequate preparation for the new course, though I am concerned that the pace of
that course and magnitude of its syllabus would leave students with subpar mastery of its learning
objectives. Finally, MATH210: Mathematical Computing
(https://github.com/ubc-math210/2018September) is a fantastic pre-requisite. It gives a robust
treatment of introductory topics, and it explores the domain of elementary numerical computation. We
will continue to evaluate alternative introductory experiences on campus as we become aware of them.

While CPSC203 is designed to be a terminal course, there are a variety of follow-up options for those
who wish to deepen their study of computing. At the end of the course, students will be prepared for
applied data science courses like the new CPSC330, and they could also pivot to future non-major
offerings such as courses based on the IoT, web programming, or mobile app development. CPSC203
is not intended to be a pre-requisite for any major-stream CPSC course.

Pedagogy and sustainability:
Course classroom instruction is designed as a mixed model of guided and exploratory lab work (we
will be studying the efficacy of this approach), and as such we expect to facilitate laptop use in class,
via some means, yet to be determined. We’ll use Python 3, enhanced by popular libraries such as
Pandas, Matplotlib, NLTK, and PILLOW, and including more advanced features of the language such
as list comprehensions, basic OOP, unit testing, and type hints. Student deliverables include 4
substantial and increasingly independent programming projects, and approximately 60 fluency
exercises, one per day.

The primary vision for sustainability revolves around a centralized course repository that would
contain, in separate sub-repos, 1) the unchanging curricular materials, 2) the semester-by-semester
creative curricular components, 3) a guidebook that should be used as a reference for both pedagogy
and infrastructure, and 4) the general set of bookmarks and references that drive the content.

http://laplace.physics.ubc.ca/210/Topics.html
http://blogs.ubc.ca/genemoolee/files/2018/01/COMM-337-Course-Outline-2018.01.02.pdf
https://github.com/ubc-math210/2018September

THE UNIVERSITY OF BRITISH COLUMBIA

Some course curricular content would be slow to change, and updates would likely go through me,
while others would vary every semester according to the preferences of the instructor. The breakdown
of this by course element:

● Exams: There will be a template attached to learning objectives, but the instructor would build
out content.

● Classroom exercises: unchanging (minimal course credit)
● POTD: unchanging (minimal course credit)
● Projects: I would like for these to be done collaboratively, between me and the instructor, at

least until the template for them clarifies.
● Lab exercises: unchanging (minimal course credit)

A new instructor for the course would have creative responsibility for exams and projects. In addition,
they would have the opportunity to create new classroom modules based on a strong narrative, and in
discussion with me. (I envision these as a sort of pull-request to the course repo.)

It is naive to imagine that the background references and computing infrastructure will be static.
Incremental changes to each will occur inside a “teachers guide” which I envision as a wiki space.

I will not know, until I build out the course content, whether or not additional student resources should
be created. I am open to the idea of recording technical components of the course instructional
narrative, for student reference (and possibly for pre-class work), but I cannot yet articulate which
specific topics will be appropriate for that medium.

Conclusion:
Situating the new course is easy, given the summary presented in the Epilogue of HtDP—Onward,
Developers and Computer Scientists (https://htdp.org/2018-01-06/Book/part_epilogue.html), which I
believe is a fitting epilog to any robust introductory experience.

“Right now, you might be wondering what to study next. The answer is both more programming and more computing.

As a student of program design, your next task is to learn how the design process applies in the setting of a full-fledged
programming language. Some of these languages are like the teaching languages, and the transition will be easy. Others require
a different mind-set because they offer means for spelling out data definitions (classes and objects) and for
formulating signatures so that they are cross-checked before the program is run (types).

In addition, you will also have to learn how to scale the design process to the use and production of so-called frameworks
(“stacks”) and components. Roughly speaking, frameworks abstract pieces of functionality—for example, graphical user
interfaces, database connections, and web connectivity—that are common to many software systems. You need to learn to
instantiate these abstractions, and your programs will compose these instances to create coherent systems. Similarly, learning to
create new system components is also inherently a part of scaling up your skills.

As a student of computing, you will also have to expand your understanding of the computational process. This book has
focused on the laws that describe the process itself. In order to function as a real software engineer, you need to learn what the
process costs, at both a theoretical level and a practical one. Studying the concept of big-O in some more depth is a first, small
step in this direction; learning to measure and analyze a program’s performance is the real goal because you will need this skill
as a developer on a regular basis. Above and beyond these basic ideas, you will also need knowledge about hardware,
networking, layering of software, and specialized algorithms in various disciplines.”

Effects of the course on enrollments of core major CPSC courses will be minimal. It is intended as a
course for only non-majors. I anticipate that students who take the course will be interested in potential

https://htdp.org/2018-01-06/Book/part_epilogue.html

THE UNIVERSITY OF BRITISH COLUMBIA

future offerings of new computing courses like Applied Machine Learning (DSCI330 or CPSC330),
Applied Database Design, Applied Scientific Computing, or Applied Information Visualization, but we
do not expect that they will be prepared for the current CPSC versions of those courses. (We should
expect students to request those CPSC courses, however, and fashion a consistent response.)

Course Design Resources (bookmarks):

1. http://interactivepython.org/runestone/static/thinkcspy/index.html
2. https://www.python-course.eu/advanced_topics.php
3. https://towardsdatascience.com/billboard-hot-100-analytics-using-data-to-understand-the-shift-i

n-popular-music-in-the-last-60-ac3919d39b49
4. https://github.com/guoguo12/billboard-charts
5. https://github.com/jdan/Melopy
6. http://www.martinbroadhurst.com/bin-packing.html
7. https://www.americanscientist.org/article/first-links-in-the-markov-chain
8. http://willdrevo.com/fingerprinting-and-audio-recognition-with-python/#
9. https://ieeexplore.ieee.org/document/7867412 (traffic simulation using CA)
10. http://www.aclweb.org/anthology/P10-1015 (social networks in novels)
11. https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf

http://interactivepython.org/runestone/static/thinkcspy/index.html
https://www.python-course.eu/advanced_topics.php
https://towardsdatascience.com/billboard-hot-100-analytics-using-data-to-understand-the-shift-in-popular-music-in-the-last-60-ac3919d39b49
https://towardsdatascience.com/billboard-hot-100-analytics-using-data-to-understand-the-shift-in-popular-music-in-the-last-60-ac3919d39b49
https://github.com/guoguo12/billboard-charts
https://github.com/jdan/Melopy
http://www.martinbroadhurst.com/bin-packing.html
https://www.americanscientist.org/article/first-links-in-the-markov-chain
http://willdrevo.com/fingerprinting-and-audio-recognition-with-python/
https://ieeexplore.ieee.org/document/7867412
http://www.aclweb.org/anthology/P10-1015
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf

THE UNIVERSITY OF BRITISH COLUMBIA

Course Outline

Category: (1)
Faculty: Science
Department: Computer Science
Faculty Approval Date:

Date: 11 December 2018
Contact Person: Patrice Belleville
Phone: 2-9870
Email: patrice@cs.ubc.ca

Effective Date for Change: 19W
Proposed Calendar Entry:

CPSC 203 (3) Practical Programming (or
Applied Data Structures and Algorithms)

Students tackle increasingly complex
algorithmic problems, using a modern
programming language and a variety of
approaches. Emphasis on problem
decomposition and abstraction guide
explorations of topics from applied
algorithms, for example Voronoi
Diagrams, Markov Chains, Bin Packing,
and Graph Search. [3-0-1]

Prerequisite: One of CPSC103, CPSC 110,
MATH 210, PHYS210, COMM337.

URL:
Present Calendar Entry: None

Type of Action: Create new course.

Rationale for Proposed Change:
The proposed course, currently referred to
as CPSC203, will serve as a second course
for novice programmers. Designed for
non-CS majors, it emphasizes practicality
and productivity, without compromising
the essentials of computer
science—discussion of algorithmic
efficiency and software engineering are
woven into the curricular narrative
throughout the course. In short, it answers
the “now what?” question students ask
after they complete an introductory course.

 Not available for Cr/D/F grading.
(Check the box if the course is NOT eligible for Cr/D/F
grading. Note: Not applicable to graduate-level courses.)

Rationale for not being available for
Cr/D/F):

 Pass/Fail or Honours/Pass/Fail
grading
(Check one of the above boxes if the course will be
graded on a P/F or H/P/F basis. Default grading is
percentage.)

THE UNIVERSITY OF BRITISH COLUMBIA

1. Course Information:

Calendar entry: CPSC203 (3) Practical Programming (or Applied Data Structures and Algorithms)

Students tackle increasingly complex algorithmic problems, using a modern programming language
and a variety of approaches. Emphasis on problem decomposition and abstraction guide explorations of
topics from applied algorithms, for example Voronoi Diagrams, Markov Chains, Bin Packing, and
Graph Search.

Prerequisite: One of CPSC103, CPSC 110, MATH 210, PHYS210, COMM337.

A. Expanded Course Description

At the completion of this course, students will view computation as a tool for solving complex
quantitative, data-centric, or analytical problems. They will be fluent in Python. The problems
addressed in the course arise from a variety of contexts, rely on diverse data sources (including APIs,
text, .csv files, etc.) and produce appropriate output (including histograms and line graphs, images,
music, data structure viz, etc.). Broad themes in the course include: 1) solving multi-stage problems
using data design, abstraction, and decomposition, 2) algorithm efficiency, 3) data structures, 4) using
computation to express ideas—bridging the gap between ideas and implementation.

The course consists of a sequence of 7 activities we call “explorations.” Each exploration is a rich
problem designed to expose course learning objectives in the context of an application. Classroom
exercises and demonstrations are used to model relevant problem-solving strategies. Some explorations
are derived from interesting data sources, others are puzzle-based, still others arise from classic
problems in science or computing. Most have a breadth component whose purpose is to tie the
exploration to applications outside the classroom.

The table below lists the explorations, broken into broad conceptual units: Programming Fluency,
Applying Classic Algorithms, Algorithm Design, and Data Structures. Students will complete a project
for each of those units, beginning with a constrained and guided analysis of hit streaks within the
Billboard Hot 100 song rating system, and concluding with visualization of a relational or hierarchical
structure created on top of a data set of their choice.

Exploration Time Short Description
PROGRAMMING FLUENCY Sample Student Project: Billboard Hot 100

Song Streaks
1 Billboard Hot 100: Intro and Review
https://www.billboard.com/charts/hot-100

1wk We will use the billboard.py API to access and
analyze various songs and artists over time.
Questions may initially involve only a single
top-100 list, but will expand to include multiple
types of lists, over many weeks/years.

THE UNIVERSITY OF BRITISH COLUMBIA

2 Handcraft: Iteration Games 1wk Students will solve and design pattern puzzles,
inspired by traditional handcrafts, and world
flags.

APPLYING CLASSIC ALGORITHMS Sample Student Project: Modeling Traffic w/
Cellular Automata

3 The Overstory: Discrete Voronoi
Diagrams

1.5wk Voronoi diagrams are commonly used to
simulate the growth of forest overstory. We
implement a simple nearest center algorithm,
discuss simulation more generally, and explore
additional applications of Voronoi diagrams.

4 Random Song Generator: Markov
Chains

1.5wk Ada Lovelace foretold the use of a computer for
automatic music generation. We explore a
model for music generation using Markov
Chains. We also discuss additional applications
of Markov Chains, including protein folding
and page rank.

ALGORITHM DESIGN Sample Student Project: Campsite scheduling
5 Knapsack: Hard problems 2wk We explore the idea of computationally

infeasible problems via a very light intro to
NP-Completeness. Students devise their own
approximation algorithms, and apply them to
our test cases.

DATA STRUCTURES Sample Student Project: Tournament or Social
Network Viz

6 Volleyball tournaments: Trees 2wk Given a set of volleyball game results, infer a
tournament schedule. In the context of this
exploration, students grapple with the
complexity of recursive algorithms. We also
challenge students to create a novel
visualization of a tournament.

7 Harry Potter’s Social Network: Graphs 2wk We use co-occurrence of characters from text to
infer Harry Potter’s social network. The same
algorithm is then applied to a variety of texts.
Results are visualized via an interactive graph.

Principles from CPSC103, including data design, use of type hints, and testing, underlie coding
practices in CPSC203, but we will not use custom libraries to support these practices. All libraries used
in the course are either small open source projects, like Melopy (https://github.com/jdan/Melopy) or
billboard.py (https://github.com/guoguo12/billboard-charts), or they are broadly adopted standard
libraries, like matplotlib or nltk.

The course is intended for non-CS majors, and non-CS graduate students.

For the first offering, in 2019W1, we intend to start with 80-100 students. We anticipate that the course
will scale up with CPSC103 enrollment, and that it will be appealing to students who come to
university with a taste of programming from secondary school.

THE UNIVERSITY OF BRITISH COLUMBIA

B. Course Objectives

Exploration 1 objectives: Students will:

1. install Python3 (anaconda) and open source IDE Atom on their personal laptops, if available.
2. use basic Unix commands, including cd, ls, pwd, mkdir, etc. to organize their work.
3. use source code control using Git.
4. use an API to retrieve data.
5. design data definitions relevant to a task.
6. speculate on their own questions to ask of a data set.
7. iterate over a list, filtering by a given attribute.
8. use nested iteration: for each list, for each week.
9. deploy Python’s unittest framework on given test cases.
10. use Matplotlib to visualize multiple data streams.

Themes: review and setup, iterative assembly of data, using APIs, testing and debugging.

Exploration 2 objectives: Students will:

1. explore RGB color representation in the context of general data representation.
2. use PILLOW (a Python imaging library) to access image data.
3. iterate over the pixels in an image applying myriad photo filters of their own design.
4. define algorithmic complexity and analyze image modification algorithms.
5. create new images as composites and functions of old images.
6. create visual patterns using functional decomposition of image segments.
7. design a set of functions that could be used to define a collection of flags of world countries.

Themes: more complex iteration, problem decomposition, images as data.

Exploration 3 objectives: Students will:

1. be able to explain how the overstory of the forest can be simulated by Voronoi diagrams.
2. be introduced to the dictionary data structure.
3. solve many small programming problems related to dictionary syntax.
4. practice transforming data from, for example, lists of occurrences into a dictionary of

frequencies.
5. design an algorithm for computing Voronoi diagrams given a set of points, using dictionaries.
6. analyze the complexity of an algorithm to compute Voronoi diagrams.
7. be introduced to Python objects in the context of points in the plane.
8. use random numbers to generate simulated data.

Themes: classic algorithms applied to scientific problems, basic data structures, objects, complexity.

Exploration 4 objectives: Students will:

1. be able to describe Ada Lovelace’s prescient description of a computational device to compose
music.

2. use Melopy, a simple music library for Python, to generate simple songs.
3. write code to count co-occurrences of notes in a song.
4. write code to simulate song composition using Markov Chains.
5. solve simple problems using discrete probabilities.
6. compute steady state probability distributions.

THE UNIVERSITY OF BRITISH COLUMBIA

7. describe how Markov chains can be used for computer simulations.
Themes: simulation, more complex iteration and data assembly, basic discrete probability.

Exploration 5 objectives: Students will:

1. be able to describe computationally infeasible problems, especially the bin-packing problem.
2. design and implement approximation algorithms for bin-packing.
3. comfortably manipulate data into lists of dictionaries containing list elements, and other

complex data definitions.
4. challenge their approximation algorithms by finding inputs for which the approximation is not

optimal.
5. practice critical reading of problem statements, contrasting bin-packing with efficiently solved

similar problems.
6. visualize bin-packing approximate solutions.

Themes: Problem statements, intractability, approximation algorithms, increasingly complex data
manipulation.

Alternative Exploration 5 objectives (instructor choice): Students will:

1. be able to explain how music identification software works.
2. explore FFT and music spectrograms.
3. use peak amplitudes to fingerprint songs.
4. characterize music fingerprints using a hash table.
5. use a simple Python SQL database.
6. search a database of hashed music fingerprints to match a given query.

Themes: Sophisticated data manipulation, hashing, introductory SQL.

Exploration 6 objectives: Students will:

1. recursively define hierarchical structures (trees)
2. design and implement an algorithm to infer a tournament tree from a set of completed games.
3. implement the breadth first traversal of a tree.
4. search a tree for a given team’s results (application of traversal).
5. design and implement a novel visualization of a tournament tree.

Themes: the tree data structure, working with Python’s tree implementation, algorithm design.

Exploration 7 objectives: Students will:

1. explore nltk, Python’s Natural Language ToolKit, through simple exercises.
2. use nltk to parse text from a novel into lists of words.
3. use nltk to extract character (or other named entity) information from the text.
4. tally co-occurrence of characters in small segments of the text.
5. interpret character co-occurrence as the edges of a graph.
6. explain graph implementation, generally and in Python.
7. visualize social network graphs of characters in a novel.

Themes: solving a problem with many steps, graphs and graph implementation, text as data.

Alternative Explorations 6 and 7 may be developed based on data from Pokémon. Specific learning
objectives for those explorations depend on the API used. We have conducted discussions with Niantic,

THE UNIVERSITY OF BRITISH COLUMBIA

the Pokémon Company, and anticipate that Niantic will be opening its API for educational purposes
sometime in the near future.

The overriding purpose of the course is to give students the tools they need to formulate and answer
questions that arise from their own interests and study domains. We plan to give them lots of joyful
examples on which to build their knowledge base.

C. Potential Instructors

Cinda Heeren, Kemi Ola, Mike Gelbart, Meghan Allen, Paul Carter.

2. Course Format:

Classroom:
3x50min activity-based classroom meetings per week. Example activity types include: 1)
pair-programming solutions of problems related to the course projects, 2) worksheet-based creativity
exercises designed to help them to understand data or articulate problems, and 3) interactive demos that
introduce problem domains.

Problems of the Day (POTD):
Students will be given a daily homework assignment in the form of a programming task whose solution
should require no more than 15min (five per week, 60 for the term). These exercises will increase
fluency and provide practice in subtasks necessary for project success. They will be based on the
assigned reading, and they will serve as pre-class activities. We expect to use a web-based
programming interface such as that found at http://repl.it/ for this portion of the course. These problems
will emphasize coding conventions and algorithms using simple data (mostly strings and numbers).

Labs:
Lab exercises will serve as a middle ground between the “small-thinking” necessary for solving the
POTD, and the “large-thinking” necessary for solving the course projects. Skills related specifically to
Python programming, such as list comprehensions, class definitions, and type hints will be introduced
in lab exercises. The syntax of course libraries will be addressed in lab, freeing classroom time for
more conceptual work. Complete lab exercises will frequently serve as templates for solving
components of the larger project. For example, Lab 2 will instruct students in the use of Matplotlib to
create line graphs for multiple data streams, and they will then use that skill to display the results of
their computation in Project 1.

Timeline:
A typical week in the course requires the following engagement by students:

Activity Duration
Classroom meetings 3x50min
Lab 1x50min
POTD 5x15min
Pre-Class reading 3x20min
Project development 4hr

http://repl.it/

THE UNIVERSITY OF BRITISH COLUMBIA

Total 9.5hr

Marking protocols:
Lab exercises will be self-assessed in conversation with the lab TA. Lab solutions will be available for
independent evaluation, but no TA marking will take place.

Problems of the day will be automatically marked by the online delivery system. Students may
resubmit their work repeatedly to achieve credit.

Each project will be comprised of a technical component (2/3credit) and a creative component
(1/3credit). The technical component will be marked via automated testing against provided test cases.
The creative component will be TA and peer evaluated during lab meetings using a rubric provided
when the assignment is released.

Computing Infrastructure:
Students will deploy Python3 (anaconda) on their own laptops, if possible. Solutions for students
without laptops are being explored. GitHub will be used as the platform for all code distribution and
evaluation. Best practices for remote repository use will be taught early in the course and will be
expected throughout.

3. Course Schedule:

See table above for classroom and project schedule. There will be a midterm after unit 4, at the
midpoint of the term. A final exam will be used to assess design processes and programming fluency.

4. Learning Outcomes:

Many, many, programming tasks involve recognizing and articulating the data transformations that
must take place in order to solve a problem. The goal of this course is to provide students with a broad
set of skills they will deploy when addressing computation problems of their own, and from their own
domain.

In CPSC103, and in most other introductory courses, students learn principled and robust techniques
for solving simple linear problems:

THE UNIVERSITY OF BRITISH COLUMBIA

The proposed course, CPSC203, takes every element of that problem flow and introduces more
complexity and more variety:

5. Assessment Criteria and Grading:

Students will be graded on a numerical basis.

Evaluation

Grading scheme (percentage):

Programming Projects 4 x 7.5% = 30%
Problems of the Day 60 x 0.25% = 15%
Lab Exercises 10 x 1% = 10%
In-Class Exercises 5%
Midterm 15%

THE UNIVERSITY OF BRITISH COLUMBIA

Final Exam 25%

6. Required and Recommended Material:

Daily exercises and reference to particular constructs and syntax will come from:
http://interactivepython.org/runestone/static/thinkcspy/index.html

All other course materials will be instructor-authored.

7. Articulation:
Once approved, the course description will be forwarded to Computer Science departments at other BC
institutions and they will be encouraged to submit articulation requests for any courses they offer that
they feel are similar to CPSC203.

8. Budget Impact:
This course will require one instructor and the same number of TAs that other undergraduate CPSC
courses are assigned. The department will assume any costs that might result if we see an overall
growth in the number of second-year students that we teach.

9. Library Impact:

None

10. Consultation With Other Academic Units:
We will consult with ARTS, COMM, CPEN, MATH, PHYS and STAT.

Statement of Academic Integrity:

NOTE: All instructors have been asked to include the following type of statement of Academic Integrity in their course outlines distributed to students.

The academic enterprise is founded on honesty, civility, and integrity. As members of this enterprise, all students are expected to know, understand, and
follow the codes of conduct regarding academic integrity. At the most basic level, this means submitting only original work done by you and
acknowledging all sources of information or ideas and attributing them to others as required. This also means you should not cheat, copy, or mislead
others about what is your work. Violations of academic integrity (i.e., misconduct) lead to the breakdown of the academic enterprise, and therefore serious
consequences arise and harsh sanctions are imposed. For example, incidences of plagiarism or cheating may result in a mark of zero on the assignment or
exam and more serious consequences may apply if the matter is referred to the President’s Advisory Committee on Student Discipline. Careful records are
kept in order to monitor and prevent recurrences.

http://interactivepython.org/runestone/static/thinkcspy/index.html
http://interactivepython.org/runestone/static/thinkcspy/index.html

