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Abstract
Multiconfiguration wave function expansions combined with configuration interaction methods
are a method of choice for complex atoms where atomic state functions are expanded in a basis
of configuration state functions. Combined with a variational method such as the
multiconfiguration Hartree–Fock (MCHF) or multiconfiguration Dirac–Hartree–Fock
(MCDHF), the associated set of radial functions can be optimized for the levels of interest. The
present review updates the variational MCHF theory to include MCDHF, describes the
multireference single and double process for generating expansions and the systematic procedure
of a computational scheme for monitoring convergence. It focuses on the calculations of energies
and wave functions from which other atomic properties can be predicted such as transition rates,
hyperfine structures and isotope shifts, for example.

Keywords: atomic structure theory, correlation, Dirac equation, multiconfiguration methods,
Schrödinger’s equation, variational methods

(Some figures may appear in colour only in the online journal)

1. Introduction

Atomic physics was the original testing ground for the new-
born quantum theory close to a century ago, both regarding
the nonrelativistic theory by Schrödinger [1] and the relati-
vistic theory by Dirac [2, 3]. Just a few years after this change

of paradigm in physics, computational methods were intro-
duced to deal with models for systems other than the simplest
hydrogen-like one [4–6]. Since then, the development of
computational methods has been closely linked to dealing
with new challenges in atomic physics—from atomic
spectroscopy that was introduced and flourishing in the 1900s
[7, 8], to the high-order, harmonic generation in ultra-high
intense laser fields in recent days [9].

Today atomic physics is an important and very active
branch of physics, both for its own sake while constantly
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finding new and exciting fields and applications, but also in
support of other disciplines through data and fundamental
insights. Atomic physicists are competing in high-profile
journals and are active in many of the most prestigious
laboratories in the world, including, e.g., CERN in the search
for anti-hydrogen [10].

To classify some of the most interesting fields of research
and ‘Raison d’être’ for atomic physics in general, and com-
putational methods in particular, we can look at

(i) Many-body theory, since atomic systems are governed
by the well-understood electromagnetic interactions.

(ii) Fundamental physics, since atomic experiments give
unprecedented accuracy at a relatively low cost, open-
ing up the possibility of performing extremely accurate
measurements and finding small disturbances in exotic
processes.

(iii) Plasma diagnostics in astrophysics, since most of the
information about the Universe, consisting of ions and
electrons, reaches us through electromagnetic radiation
and most of the ‘visible’ Universe is in the plasma-state.

(iv) Complementing experiments, in a symbiotic relation-
ship, in which the expensive and time consuming
experiments are used to benchmark critically evaluated
computational data, for diagnostics, and other purposes.

In this introduction we will start to describe this in more
details, and then give an outline of this review.

1.1. Many-body theory

The electromagnetic interactions in atoms are well-known—
in nonrelativistic theory arguably exactly, and within the
relativistic framework to very high precision. It is fair to say
that the theory of quantum electrodynamics (QED) is the best
tested theory of interaction in physics where, e.g., its ‘cou-
pling constant’—the fine-structure constant—is known to 0.3
parts in a billion ( ( )a = 0.0072973525664 17 ) an unprece-
dented accuracy [11]. The fact that the interactions are well
understood (we know how to describe the nucleus–electron
and electron–electron interactions) opens up a unique possi-
bility to study many-body effects. After starting with the
independent particle model, we can therefore focus on what
we will refer to as correlation—the complex dynamic beha-
vior of electrons.

1.2. Fundamental properties

Experimental atomic physics has reached accuracies that are
unprecedented for determining, for example, relative energies
of stationary states. If, at the same time, it is possible to
develop accurate computational methods for the ‘known’
atomic structure, it opens up the possibility of measuring
small and minute effects, as a difference between the mea-
sured and computed results. If everything else is handled in a
systematic fashion, these deviations could be interpreted as
due to fundamental processes left out in the computational
methods. This methodology has been applied to a wide range
of fields, for example, the properties of exotic nuclei [12],

violation of different fundamental symmetries [13], or the
variation of the fine-structure constant with space and time
[14, 15]. It is clear that atomic physics offers a unique and,
relatively speaking, inexpensive way to investigate these
topics. For relatively simple systems, calculations are now
accurate enough to lead to the development of the next gen-
eration of atomic clocks [16].

1.3. Plasma diagnostics

The most important argument for investigation of atoms and
ions is probably the fact that over 99% of all visible matter in
the Universe is in the plasma state [17] and many interesting
features in the laboratory consist of plasmas. Since the con-
stituents of a plasma are charged ions, together with electrons
and photons, virtually all information we get on their prop-
erties is from the light they emit. This is the realm of theor-
etical atomic physics, where one predicts the light-emission of
ions and how it is affected by the property of the plasma. If
data for atomic transitions are known, the spectra from the
plasma can give information about its fundamental properties,
e.g., temperature and density (if they are well-defined), as
well as the abundance of different elements and the balance
between different ionization stages [18]. In some cases we are
also able to determine magnetic fields—their strengths and
polarization [19, 20].

In cases where the plasma is not in what is referred to as
local thermal equilibrium, even stronger demands are put on
the atomic data, to be used in modeling [21, 22]. In addition,
other atomic parameters such as line shapes, might be useful
for different properties of the plasma. If we know the influ-
ence of the nucleus on the atomic structure, manifested by the
so called hyperfine structure and isotope shifts, we can
determine the isotopic composition of, e.g., astrophysical
plasma—important to test different models of nucleosynthesis
in the stars and in the interstellar medium [23–28].

1.4. Complementing experiments

It is clear that experimental determination of the wealth of
data needed is both extremely time consuming and expensive.
Unfortunately, this has lead to a situation where very few
experimental groups today are involved with atomic
spectroscopy. At the same time, the need for data is increasing
[29]. We mention three examples, where recent developments
put great strain on atomic physics:

(i) Fusion power might be one of the energy sources for
the future. To confine the fusion plasma, which has a
temperature of millions of degrees, it is necessary to
select the wall and divertor material with great care. The
magnetic confinement is just not enough—there will
always be some ‘stray’ particles that will hit the wall or
divertor. For the latter, it turns out that tungsten could
be the best choice [18]. It has excellent chemical
properties, e.g., high heat conductivity and high melting
point, but it also has a very complex atomic structure
[30, 31]. When tungsten atoms are sputtered and
contaminate the plasma, the complex structure of the
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atom leads to the risk of heavy loss of energy due to
many possible ways of radiating, and thereby also
causing instabilities within the plasma. The complexity
is also a hindrance to the necessary diagnostics of this
contamination—very little is known about the structure
of the different ions of tungsten. A major effort in later
years on the spectroscopy of tungsten, has been to
understand these complex systems and be able to help
in developing a new energy source [32–34].

(ii) Recently some astrophysical missions and spectro-
graphs (GIANO [35], CRIRES [36], SOFIA [37]) have
moved into the infra-red wavelength region, making
new objects visible and open for analysis. This is due to
the fact that the infra-red light has a higher transmission
through dust clouds, which are common in our Galaxy
and beyond. But, the long wavelength infra-red spectra
are produced by transitions between levels lying close
together in energy. Examples of this in atomic ions are
transitions between highly excited states in, e.g.,
Rydberg series, and unexpected or forbidden transitions
within ground configurations. Both of these are a
challenge for experiment and need a strong support by
accurate and systematic computations.

(iii) Also recently, a new form of experiments has been
developed that has reached a realm of properties of
observed matter and time scales considered impossible
just a decade or two ago. It involves ion traps [38, 39]
and storage rings [40–42] where very low densities,
sometimes single ions, of highly charged plasma can be
studied. This opens up the possibility to probe exotic
processes in ions, such as forbidden and unexpected
transitions from states with lifetimes of up to seconds or
even hours [19]. Considering that ‘normal’ lifetimes in
ions are in the nanosecond range or less, the lifetimes of
these long-lived states are to these ‘normal’ lifetimes in
ions as the age of the Universe is to one single day.
Modelling of the processes behind these transitions,
whether it is nuclear spin-flips or high-order multipole
interactions, is a true challenge to theory and probes our
deep understanding of quantum mechanics.

The most efficient approach is therefore to use compu-
tations to model ions and benchmark these with selected and
targeted experiments. With advances in technology, more and
more properties are being predicted through computation,
where comparison with experiment provides a validation and
a mechanism for assessing the accuracy of a computational
result.

1.5. Determination of accuracy

Atomic data are needed for different reasons. This requires a
thorough understanding of the atomic system consisting of a
nucleus and a number of electrons, possibly in strong
magnetic fields. In this review we will discuss one family of
methods to deal with these systems. But it is not only
important to find theoretical values of different properties, we
also need to find a method to critically evaluate the data.

There are basically two ways to approach this, either one
derives theoretical expressions that give upper limits of the
error in a computed result [43, 44], or one designs an
approach that, in a systematic fashion, extends the complexity
or simply the size of the calculations [45–47]. If the com-
plexity could be described quantitatively, it is then possible to
estimate the convergence of the calculations, or even extra-
polate to give the deviation from the ‘exact’ value [48–51].
The methods we describe here offer a clear way to define a
systematic approach since, as we will see in later sections, an
atomic state is represented by an atomic state function (ASF),

( )Y GJ , which is expanded in a set of configuration state
functions (CSFs), ( )gF aJ ,

( ) ( ) ( )å gY G = F
a

a a
=

J c J . 1
M

1

The CSFs are created as linear combinations of products of
members of an active set (AS) of orbitals, according to
suitable angular momentum coupling rules for the case at
hand. By extending the AS systematically, we increase the
space spanned by the CSFs and thereby approach the
complete space and the exact representation of the atomic
state. As we will discuss later, this opens up a method for
investigating the convergence of our method, which in turn
will give an estimation of its accuracy.

1.6. A computational approach

There are many computational methods in atomic physics.
They may be classified generally as being based on pertur-
bation theory or variational theory. Each may be further
characterized as nonrelativistic or relativistic.

In the present review, we focus on general multi-
configuration variational methods that determine a wave
function for an atomic state in terms of a basis of CSFs as
shown in equation (1). The basis states are constructed from
one-electron orbitals (i.e. wave functions) that depend on the
Hamiltonian under consideration. For light atoms, where the
size of the nucleus is not a significant factor and relativistic
effects can be adequately represented by first-order theory, the
nonrelativistic Hamiltonian with a point charge may be used
for determining orbitals. For heavier elements, where the
effect of the nuclear size needs to be considered and a fully
relativistic treatment is needed, the Dirac–Coulomb Hamil-
tonian is the basic Hamiltonian for one-electron orbitals.
Various corrections may then be added including QED
effects.

The multiconfiguration Hartree–Fock (MCHF) method
with Breit–Pauli corrections (MCHF+BP) and the multi-
configuration Dirac–Hartree–Fock (MCDHF) method with
Breit and QED corrections (MCDHF+Breit+QED) represent
these two approaches. Both are variational methods where the
radial factors of orbitals are functions that optimize an energy
expression. As a consequence, orbitals with a low generalized
occupation are no longer ‘spectroscopic’ and represent cor-
rections to the wave function for the electron–electron cusp
condition arising from the singularities in the Hamiltonian
away from the nucleus [52]. The underlying variational
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formulation of these two theories differ in detail, but is very
similar in concept. The same computational procedures can be
used. In fact, many concepts are easier to explain in non-
relativistic theory and we will do so here. Some of the var-
iational theory for the MCHF method was presented in 1977
[53], when MCHF expansions were small and before the
systematic computational schemes developed in the early
1990s were introduced.

A significant advance in the last few decades has been the
introduction of systematic methods that rely on single and
double (SD) excitations from a multireference (MR) set for
generating wave function expansions. In a recent study, near
spectroscopic accuracy was obtained for Si-like spectra con-
sisting of nearly 100 levels with an expansion size of about a
million [54]. The present review is restricted to the prediction
of energies and wave functions for all elements of the periodic
table. It updates the variational MCHF theory to include
MCDHF, describes the MR single- and double- substitution
(MRSD) process for generating expansions and the sys-
tematic procedure of a computational scheme for monitoring
convergence. We refer to these as the MCHF-MRSD or
MCDHF-MRSD computational procedures. The codes used
for illustrative purposes are ATSP2K [55] and GRASP2K
[56], respectively. Descriptions of these codes have been
published and codes are freely available. They also are gen-
eral purpose and have been tested extensively. For atoms with
only a few electrons, Hylleraas type methods [57] are
recommended (although code is not available, to our
knowledge). At the same time, GRASP2K is not at the
leading edge with respect to QED corrections, but given its
open source availabilty, can be modified by the user.

A more recent advance has been the introduction of
B-spline methods in which integro-differential equations are
replaced by generalized eigenvalue problems [58]. This
facilitates the calculation of high-lying Rydberg states, but
also provides a complete basis set of orbitals in a fixed
potential, where the range is restricted to the range of an
occupied orbital. As a consequence, the orbitals would have a
somewhat ‘local’ character. It is also possible to satisfy
orthogonality conditions through the use of projection
operators applied to the matrix eigenvalue problem. These
methods will not be part of the focus of this review.

2. The many-electron Hamiltonians

2.1. The nonrelativistic Hamiltonian

In quantum mechanics, a stationary state of an N-electron
atom is described by a wave function ( )Y q q,.., N1 , where

( )s=q r ,i i i represents the space and spin coordinates,
respectively, of the electron labeled i. The wave function is
assumed to be continuous with respect to the space variables
and is a solution to the wave equation

( ) ( ) ( )Y = YEq q q q,.., ,.., , 2N N1 1

where  is the Hamiltonian operator for the atomic system.
For bound state solutions, the wave function must be square

integrable and as a result of this, solutions exist only for
discrete values of E that represent the total energy of the
system.

The operator  depends on the quantum mechanical
formalism and on the atomic system, including the model for
the nucleus. For nonrelativistic calculations, the starting point
is the time-independent Schrödinger’s equation (2) using the
Hamiltonian for a nuclear point charge of infinite mass
located at the origin of the coordinate system. In atomic units
[11], this Hamiltonian is

( )

( )

 å å å å= + = -  - +
= > = = > =

⎛
⎝⎜

⎞
⎠⎟h i

r

Z

r r

1 1

2

1
,

3
i

N

j i

N

ij i

N

i
i j i

N

ij
NR

1 1 1

2

1

where h(i) is the one-electron nonrelativistic Schrödinger
Hamiltonian of electron i moving in the Coulomb field of the
nuclear charge Z, ri is the electron–nucleus distance and rij is
the distance between electron i and electron j. The one-
electron terms on the right-hand side describe the kinetic and
potential energy of the electrons with respect to the nucleus,
and the two-electron terms the Coulomb potential energy
between the electrons. The latter terms introduce singularities
into the wave equation, away from the origin, and are
problematic in that they destroy the ‘separability’ of the
Hamiltonian NR. The Hamiltonian (3) can be approximated
as

( ) ( ) ( )  å å» = = -  - +
= =

⎛
⎝⎜

⎞
⎠⎟h i

Z

r
u r

1

2
, 4

i

N

i

N

i
i

i iNR 0
1

0
1

2

where ui(r) depends only on r and not on the angular
coordinates. It is useful to discuss the consequences of such a
first approach. As we will see below, it will give us the form
of the wave functions, which will be discussed in more detail
in the next section. The approximation (4) implies that each
electron moves in a central field ( ) ( )= - +V r u ri

C Z

r i of
spherical symmetry

( ) ( ) ( ) ( )y q j s y q j s-  + =⎜ ⎟⎛
⎝

⎞
⎠V r r r

1

2
, , , , , , . 5i

C
i i i

2

For bound state ( ) < 0i , the solutions yi can be written in
spherical coordinates as [59]:

( ) ( ) ( ) ( ) ( )( )y q j s q j c s=r
P r

r
Y, , , , , 6nlm m

nl
lm m

1 2
l s l s

where l and =s 1 2 denote the orbital and spin quantum
numbers, respectively, ml and ms specify the projections of l
and s along the z-axis, and σ represents the spin variable. The
radial functions Pnl(r) are solutions of the radial equation

( ) ( ) ( ) ( ) ( )- + +
+

=
⎛
⎝⎜

⎞
⎠⎟r

V r
l l

r
P r P r

1

2

d

d

1

2
. 7nl

C
nl nl nl

2

2 2

Equations (5) and (7) reduce to the hydrogenic Schrödinger
equation if N = 1. In that particular case the potential simply
reduces to ( ) = -V r Z rC when neglecting the finite size of
the nucleus. The radial equation only has solutions for
eigenvalues ( ) º = -Z n2n

2 2 Eh (the Hartree unit for
energy). With the eigenvalues being l-independent, the bound
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spectrum is highly degenerate ( )=g n2n
2 . The radial func-

tions Pnl(r) are the well-known hydrogen-like functions [59]
with - -n l 1 nodes. When  = >k 2 02 , the spectrum is
continuous and the different solutions to the radial equation
are labeled by k instead of n. In this case the radial function
Pkl(r) represents a free electron of momentum k [60, 61].
Though continuum processes are of great importance, this
review will focus only on bound state solutions for atoms and
ions. The principal quantum number n distinguishes solutions
with the same set of other quantum numbers, but different
energies. The condition >n l assures that the power series
expansion of the hydrogenic radial function terminates and
the radial function is square integrable.

For a many-electron system with a point charge nucleus of
charge +Z , a realistic central field potential for each electron
has the asymptotic form ( ) ( )= - - +V r Z N r1C / for
large distances and behaves as -Z r/ as r 0. The require-
ment of connecting these two limits forces us to accept that the
central field is no longer Coulomb-like. As a result, the one-
electron eigenvalues nl of (7) become l-dependent, in contrast
with the hydrogenic case.

It is worthwhile to note that the functions (6) are also
eigenfunctions of the parity operator Π where

( ) ( ) ( ) ( )
( )

y s y s y sP = - = -r r r, , 1 , .

8
nlm m nlm m

l
nlm ml s l s l s

2.2. The Dirac–Coulomb–Breit Hamiltonian

In the nonrelativistic treatment it is formally straightforward
to include the interaction between the electrons but, in the
relativistic case, additional terms are needed since the
instantaneous Coulomb interaction—electron–nucleus and
electron–electron—is not Lorentz invariant and neglects the
magnetic properties of the electron motion. Also, the speed of
light (c) is finite in a relativistic model, and retardation effects
need to be considered [62, 63]. A common approach is to
combine the one-electron operators of the Dirac theory, with a
nuclear potential, Vnuc(r), corrected for an extended nuclear
charge distribution function, instead of the one for a point
charge, a correction important for heavy elements. This yields
the Dirac–Coulomb Hamiltonian, which in atomic units is
[64]

( )

( · ( ) ( ))

( )

 å å

å åa b

= +

= + + - +

= > =

= > =

h i
r

c V r c
r

p

1

1
1

,

9

i

N

j i

N

ij

i

N

i i i i
j i

N

ij

DC
1

D
1

1
nuc

2

1

where hD is the one-electron Dirac operator (shifted for the
energy to coincide with nonrelativistic conventions), α and β

are usual 4 × 4 Dirac matrices, c is the speed of light
( a= = ¼1 137.035999 a.u.), and º -p i the electron
momentum operator. For the finite nucleus approximation,
either a uniform nuclear charge distribution, or a more
realistic nuclear charge density given by a Fermi distribution

function is used. In both cases the root mean square of the
nuclear radius that enters in the definition of the nuclear
potential changes from one isotope to another [65, 66].

Similarly to (4), the Dirac–Coulomb Hamiltonian can be
approximated as

( )

( · ( ) ( ) ( )) ( )

 å

å a b

»

= + + + -

=

=

h i

c V r u r cp 1 , 10

i

N

i

N

i i i i i i

DC
1

0

1
nuc

2

each electron is then moving in a spherically symmetric
central field potential ( ) ( ) ( )= +V r V r u ri

C
inuc . The many-

electron problem becomes separable just as in the nonrela-
tivistic case, and the many-electron wave function can be
expressed as a simple product of one-electron solutions of the
Dirac equation with the central field, usually written as

( )
( ) ( )
( ) ( ) ( )

˜
y q j

q j
q j

=
W
W

⎛
⎝⎜

⎞
⎠⎟r

r

P r

Q r
, ,

1 ,

i ,
, 11nlsjm

nlj lsjm

nlj l sjm

where Pnlj(r) and Qnlj(r) are the radial functions and
( )q jW ,lsjm are two-component spherical spinors built from

the coupling of the spherical harmonics ( )q jY ,lml
and the spin

functions ( )cm
1 2

s

( ) ∣ ( ) ( )( )åq j q j cW = á ñl m m l jm Y,
1

2

1

2
, , 12lsjm

m m
l s lm m

1 2

l s

l s

with

( )( ) ( )c c= =-

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

1
0 ,

0
1 . 131 2 1 2

1
2

1
2

Note that the spherical spinor for the large component (Pnlj(r))
depends on l whereas for the small component (Qnlj(r))
it depends on a quantity denoted as l̃ . The coupling in (12)
requires ∣ ∣  - +l j l1 2 1 2 and = - - +m j j, 1,

-j j.., 1, . One can show that in the case of a field
of spherical symmetry, the wave function is an eigenfunction
of the parity operator introduced in (8). This in turn leads
to the pair of two-component spinors in (11) having
opposite parity, which implies that l̃ and l are related to each
other [67]

˜ ( )=
+ = +
- = -

⎧⎨⎩l
l j l

l j l

1 for 1 2
1 for 1 2.

14

Introducing the quantum number κ as the eigenvalue of the
operator ·s= - - lK 1 through

( ) ( )
( )

( )k
k
k

=
- + = +

+ = -

⎧⎨⎩
l j l

l j l

1 for 1 2 negative
for 1 2 positive ,

15

allows us to rewrite the eigenfunctions (11) simply as

( )
( ) ( )
( ) ( ) ( )y q j

q j
q j

=
W
Wk

k k

k k-

⎛
⎝⎜

⎞
⎠⎟r

r

P r
Q r

, ,
1 ,

i ,
, 16n m

n m

n m

where the spin-dependence is represented by the κ quantum
number. The relationship between the spectroscopic notation
and the angular momentum quantum numbers l, l̃ , j and κ is
shown in table 1. It should be noted that each state is uniquely
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specified by κ and that the wave function is a vector of length
four. For this reason, Dirac theory is said to be a 4-component
theory. The nljm quantum numbers often are used instead of
the equivalent kn m.

Since the spin-angular functions are linearly independent,
we can separate out the radial parts of the one-electron
functions to get

( ( ) ) ( ) ( )

( ) ( ( ) ) ( )
( )

k

k

- - - =

+ + - - =

k k

k k

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

V r E P r c
r r

Q r

c
r r

P r V r c E Q r

d

d
0,

d

d
2 0,

17

C
n n

n
C

n
2

where the zero of the energy scale has been shifted to
correspond to the electron detachment limit, as in nonrelati-
vistic theory. For the special case of N = 1 and ( ) =V rC

-Z r , the bound state solutions where ( )  - m c E2 02

are well known. The functions ( ( ) ( ))k kP r Q r,n n and the
corresponding eigenenergies º kE En depend on the n and κ

quantum numbers (see for instance [64, 68]). The number of
nodes in the large component ( )kP rn is - -n l 1, as in the
nonrelativistic case. The number of nodes in ( )kQ rn is
- -n l 1 for k < 0 but n − l for k > 0 [66]. It is

worthwhile to emphasize the fact that for a given n, the
solutions for k are degenerate (e.g., s2 1 2 and p2 1 2), which
preserves the degeneracy in l as we observed for the
nonrelativistic case. This, of course, is not true for a general
central potential, but a special property of the Coulomb
potential.

Solutions with energies >E 0 are the positive energy
continuum states, but (17) also has solutions with
< -E mc2 2 known as negative energy states that constitute

what is called the ‘negative energy sea’.
For the relativistic description of the many-electron sys-

tem, the Dirac–Coulomb Hamiltonian (9) is only the first
approximation and is not complete. To account for the cor-
rections from the so called transverse photon interaction, we
can use an approximation of order a2:

· ( )

( · )( · )
( )

( )

 å
a a

a a

w

w

w
 

=-

+
-

> =

⎡
⎣⎢

⎤
⎦
⎥⎥

r c

r

r c

r c

cos

cos 1
, 18

j i

N
i j ij ij

ij

i j
ij ij

ij ij

TP
1

2 2

to represent the magnetic interactions and the retardation
effects [69–71] where  is the gradient operator involving

differentiation with respect to = -r r rij i j and ∣ ∣=r rij ij . In
this expression, given in the Coulomb gauge, wij represents
the energy of the virtual exchanged photon between two
electrons introduced in QED, even in the absence of the
emission or absorption of ‘real’ radiation. The value of wij can
be interpreted in terms of differences in orbital one-electron
energies.

In the low photon energy limit (or the long wavelength
approximation), when w  0ij , the expression (18) reduces to
the Breit interaction [64, 66]

( · )
( · )( · )

( ) å a a
a a

= - +
> =

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥r r

r r1

2
. 19

j i

N

ij
i j

i ij j ij

ij
Breit

1
2

Adding (18) to the Dirac–Coulomb Hamiltonian (9) gives the
Dirac–Coulomb–Breit Hamiltonian (in the effective Coulomb
gauge)

( )    = + + . 20DCB DC TP DC Breit

Further QED corrections to the Dirac–Coulomb–Breit
Hamiltonian are not expressed as operators. The most
important correction is the self-energy correction, which
arises from the interaction of the electron with its own
radiation field. For hydrogenic systems the electron self-
energy can be expressed as

( ) ( )a
p

a
aD = ⎜ ⎟

⎛
⎝

⎞
⎠E

Z

n
F nlj Z, , 21SE

2 4

3

where ( )aF nlj Z, is a slowly varying function of aZ . The
latter function has been derived by Mohr and co-workers [72–
74]. There have been no generalizations of the self-energy
calculations to arbitrary N-electron atomic systems. Instead
the total self-energy correction is given as a sum of one-
electron corrections weighted by the fractional occupation
number of the one-electron orbital in the wave function. Each
one-electron contribution is expressed in terms of the
tabulated hydrogenic values either by relying on a screened
nuclear charge or by a scaling factor obtained from the
Welton picture [75]. The most recent developments include
also a non-local QED operator, which can be incorporated in
the Dirac–Coulomb–Breit eigenvalue problem [76, 77] but
has not been implemented in GRASP2K to date.

The other important QED correction is the vacuum
polarization correction, which is related to the creation and
annihilation of virtual electron–positron pairs in the field of
the nucleus. The vacuum polarization can be described by a
correction to the Coulomb potential. For a nuclear charge
distribution ( )r r the correction to the nuclear potential,
referred to as the Uehling potential [78], is given by

( ) ( )[ ( ∣ ∣)

( ∣ ∣)] ( )
ò

a
r=- ¢ ¢ - ¢

- + ¢ ¢

¥
V r

r
r r K c r r

K c r r r

2

3
2

2 d 22

Uehl

2

0
0

0

where

( ) ( )ò= + -
¥

- ⎜ ⎟⎛
⎝

⎞
⎠K x

t t
t te

1 1

2
1 d . 23xt

0
1 3 5

2

Table 1. Spectroscopic notation of relativistic shells.

s1 2 p1 2 p3 2 d3 2 d5 2 f5 2 f7 2 g7 2 g9 2

s -p +p -d +d -f +f -g +g

l 0 1 1 2 2 3 3 4 4
l̃ 1 0 2 1 3 2 4 3 5
j 1/2 1/2 3/2 3/2 5/2 5/2 7/2 7/2 9/2
κ −1 +1 −2 +2 −3 +3 −4 +4 −5
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Terms of higher order can also be evaluated as the expectation
value of potentials. Numerical evaluation of the expectation
values relies on analytical approximations of the K0 function
by Fullerton and Rinker [79]. The above QED terms are
included in the GRASP2K package [56], as originally
implemented in [80], to yield the final Hamiltonian

( )   = + ++ . 24DCB QED DCB SE VP

The GRASP2K code also includes terms arising from the
lowest-order nuclear motional corrections [81], namely the
normal mass shift (NMS) term based on the Dirac kinetic
energy operator

( · ( )) ( ) å a b= + -
=M

c cp
1

1 , 25
i

N

i i iNMS
1

2

where M is the nuclear mass in atomic units (me), and the
specific mass shift (SMS) term

· ( ) å=
> =M

p p
1

. 26
j i

N

i jSMS
1

Higher-order corrections have been derived by Shabaev
[82, 83] and independently by Palmer [84], giving rise to the
following total nuclear recoil operator

· ( · ) ·

( )

 å a aa
= - +

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟M

Z

r r
p p

r r
p

1

2
.

27
i j

N

i j
i

i
i i i

i
jrecoil

,
2

In this formulation, the NMS and SMS Hamiltonians are
defined as the one- and two-body parts of (27). Treating the
one- and two-body parts together, the operator (27) now
includes a factor ( )1 2 and the summation is over all pairs of
indices i and j.

2.3. The BP Hamiltonian

Dirac theory requires both large, P(r), and small, Q(r), radial
components for the one-electron wave function. In the non-
relativistic limit (  ¥c ) known as the Pauli approximation
[66], the small component can be estimated from the large
one [64], as

( ) ( ){ ( )} ( )
a k

a= + +⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠Q r

r r
P r

2

d

d
1 , 282

and the wave function again depends on only one function.
The traditional method, however, is to modify the Hamilto-
nian. In the BP approximation, relativistic effects are
accounted for by modifying the nonrelativistic Hamiltonian
(3) to include additional terms of order a2 as an approx-
imation of the Dirac–Coulomb–Breit operator and using
nonrelativistic radial functions [85, 86]. This BP Hamiltonian
is often expressed as a sum over operators {i, }= ¼i 0, ,5
introduced by Bethe and Salpeter [69], but it is also
informative to separate the components according to their
effect on the atomic energy spectrum as suggested by Glass

and Hibbert [87], namely

( )   = + + , 29BP NR RS FS

where NR is the nonrelativistic many-electron Hamiltonian.
The relativistic shift operator, RS, commutes with L and S
and can be written as

( )     = + + + + . 30RS MC D1 D2 OO SSC

The mass correction term,MC, represents a correction to the
kinetic energy:

( ) åa
= - 

=8
. 31

i

N

iMC

2

1

4

The next two interactions describe the one- and two-body
Darwin terms D1 and D2, which are relativistic corrections
to the nucleus–electron and electron–electron interactions,
respectively. They are given by:

( )

 å åa a
= -  = 

= > =

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
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Z

r r8

1
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4

1
.

32
i

N

i
i j i

N

i
ij

D1

2

1

2
D2

2

1

2

The term SSC represents the Fermi-contact-type electron
interaction contributing to the spin–spin interaction [88] and
is therefore called the spin–spin-contact contribution [86]. It
has the form

( · ) ( · ) ( ) åpa
d= -

> =

s s r r
8

3
. 33

j i

N

i j i jSSC

2

1

Finally OO is the orbit–orbit term, which represents the
magnetic interaction between the magnetic moments of
electron orbits

( · ) ( ( · ) )
( ) åa

= - +
> =

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥r r

p p r r p p

2
. 34

j i

N
i j

ij

ij ij i j

ij
OO

2

1
3

The fine-structure Hamiltonian FS describes magnetic
interactions between the spin and orbital angular momenta of
the electrons, and does not commute with L and S, but only
with the total angular momentum = +J L S. It consists of
three terms

( )   = + + , 35FS SO SOO SS

that induce the term splitting (fine structure). The largest
contribution is, in most cases, the spin–orbit interaction SO

representing the interaction of the spin and angular magnetic
momenta of an electron in the field of the nucleus

· ( ) åa
=

=

Z

r
l s

2

1
. 36

i

N

i
i iSO

2

1
3

The spin–other-orbit SOO and spin–spin SS contributions
are interactions between magnetic moments related to the spin
and orbital motion of different electrons

( ) ( ) åa
= -

´
+

¹ r

r p
s s

2
2 , 37

i j

N
ij i

ij
i jSOO

2

3
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s s
s r s r1

3 . 38
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ij
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2

1
3 2

These spin-dependent operators usually produce a good
representation of the fine structure splitting of terms in light to
medium-sized atoms and ions. The spin–orbit interaction is
the dominant term and behaves like Z4. The spin–other orbit
reduces the size of the calculated fine structure splitting and
scales as Z3. The spin–spin interaction obeys the same Z3

scaling law but, is two or three orders of magnitude smaller
for most atomic systems [89].

3. The CSF

When the electron–electron interactions can be approximated
by a central field, as in equations (4) or (10), the equations for
the many-electron system in free space become separable and
the solutions are simply products of the one-electron orbitals
(6) or (11). Each one-electron orbital, or spin-orbital, is
defined by a set of four quantum numbers, nlm ml s in the
nonrelativistic case, and nljm or kn m in the relativistic case.
Since the orbital energies do not depend on the magnetic
quantum numbers m m,l s or m, there are many degeneracies
and any linear combination of products with the same total
energy is also a solution. Not all solutions are physical since
electrons are indistinguishable fermions (the absolute square
of the wave function will be independent of a coordinate
exchange of two particles) and the wave function should be
antisymmetric under coordinate exchange of two particles.
This forces us to represent the wave function of a many-
electron atom in terms of Slater determinants that identically
vanish if two spin–orbitals have the same values of the four
quantum numbers. Thus for allowed atomic states no two
spin–orbitals can have the same values of the four quantum
numbers. This is the exclusion principle originally discovered
by Pauli in 1925 [90] and leads to the shell structure of
an atom.

For a many-electron system in free space with no pre-
ferred direction, the nonrelativistic Hamiltonian commutes
with both the total orbital and spin angular momentum
operators L and S, and therefore also L2, S2, Lz and Sz, so that
the exact solution to the wave equation Ψ can be chosen as an
eigensolution of these operators with quantum numbers
LSM ML S. This approximation often yields results for low
ionization stages and light ions that are in good agreement
with observation. This has led to the so called LS-approx-
imation, very important in atomic physics, not the least for
historical reasons. However, for getting ‘spectroscopic acc-
uracy’, the L- and S-symmetry ultimately needs to be broken
in order to take relativity into account, making the corresp-
onding quantum numbers LS ‘good’ but not ‘perfect’ any-
more. On the other hand, the Dirac–Coulomb–Breit
Hamiltonian and the BP Hamiltonian commute with
= +J L S, and therefore with the J2 and Jz operators. The

corresponding quantum numbers JM are perfect quantum
numbers, useful for representing the eigensolutions in

relativistic cases for which symmetry-breaking due to the
hyperfine interaction or external fields can be neglected.

Because the quantum numbers are different for the
nonrelativistic and relativistic cases, it will be clearer at this
point to distinguish between the two cases.

3.1. Nonrelativistic CSFs and their construction

In the nonrelativistic framework the Hamiltonian commutes
with total angular and total spin operators. As a result, any
physical solution corresponds to a symmetry-adapted linear
combination of Slater determinants that is also an eigen-
function of these operators. This requirement splits the solu-
tions into a number of LS terms of given parity and each such
solution defines a CSF with total quantum numbers LSM ML S.
The construction of these eigenstates using the relevant
angular and spin operators is described in the next section.
The associated nl quantum numbers define a subshell, its
occupation number w representing the number of electrons
with the given nl quantum numbers.

For an N-electron atom or ion, a general configuration
consists of m groups of equivalent electrons, namely

( ) ( ) ( ) ( )å=
=

n l n l n l N w... , , 39w w
m m

w

i

m

i1 1 2 2
1

m1 2

where wi is the occupation number of subshell i.

3.1.1. A single subshell. In the case of a configuration with
only a single subshell, ( )nl w, we introduce the antisymmetric
CSF, (( ) )anF nl LSM Mw

L S , where the additional numbers α

and ν uniquely specify the considered state when there is
more than one term with the same LS value. The seniority
number ν, which will be discussed below, is needed for l 2
subshells while an additional number α is introduced for
shells with orbital angular momenta l 3, i.e. for electrons
from the ‑f , ‑g , K shells to get the one-to-one classification
of the energy levels [92].

Such a CSF can be built by using a recursive method in
which the CSF for a state with w electrons is defined as a sum
of products of antisymmetric CSFs for states with -w 1
electrons (the parent states) coupled to a single electron nl state
[93]. This process can be expressed in terms of coefficients of
fractional parentage (CFPs) ( ∣} )an an-l LS l LSw w1 , the parent
states (( ) )anF -nl LSM Mw

L S
1 , and an nlm ml s state for a single

electron, namely

(( ) ) ∣( )
∣(( ) )

( ∣} )
( )

an an
an an

an an

F º ñ

= å ñ

´
an

-

-

nl LSM M nl LSM M

nl LS nl LSM M

l LS l LS

,

.

40

w
L S

w
L S

LS
w

L S

w w

1

1

The recurrence continues until w = 1, which is a trivial case
since a single electron has no antisymmetry requirement.

The orbital and spin couplings, + =ℓL L and
+ =S 1 2 S, involved in (40) require the use of the
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vector-coupling expansion for + =j j J1 2 , namely

∣
∣ ∣ ∣ ( )å

g g
g g
ñ

= ñ ñ á ñ

+ =

j j JM

j m j m j j m m j j JM , 41
m m

m m M

1 1 2 2

,
1 1 1 2 2 2 1 2 1 2 1 2

1 2

1 2

where the coefficients ∣á ñj j m m j j JM1 2 1 2 1 2 are the well-known
Clebsch–Gordan coefficients [94, 95]. The CFPs are defined
to ensure that the wave function is antisymmetric and thereby
satisfies the Pauli exclusion principle. It is clear that they play
a fundamental role in the theory of many-electron atoms. The
final CSF for a single subshell separates into a radial and a
spin-angular factor, according to

(( ) ) [ ( ) ]∣
( )

an anF º P ñ=
=nl LSM M P r r l LSM M ,

42

w
L S i

i w
nl i i

w
L S1

where we have used the notation ∣ an ñl LSM Mw
L S to denote a

spin-angular function involving only angular coordinates.

3.1.2. Seniority and quasispin. Racah introduced the
seniority quantum number in a formal way [93, 96, 97]. It
can be thought of as a classification of terms, with ν equal to
the number of electrons in the subshell when it first occurs,
say w0. The next time this LS-term can occur is for

= +w w 20 . If in this case there are two terms with the
same LS-symmetry, we choose the seniority n = w0 for the
one formed by the coupling of (( ) ( )( ))F = =nl S M M0 0L S

2 1

to the previous occurrence, as in

(( ) ( ) )
(( ) ( ) )
(( ) ( )( )) ( )

a n
a n

F =
= F =
´ F = =

+nl w LSM M
nl w LSM M

nl S M M0 0 . 43

w
L S

w
L S

L S

2
0

0
2 1

0

0

The second term with the same LS-symmetry, will be defined
by seniority n = +w 20 and coupled to be orthogonal to
the first.

However, this has a group-theoretical interpretation
based on the theory of quasispin [98–101]. Briefly, if we
define the quasispin quantum number Q as:

( ) ( )n= + -Q l
1

2
2 1 , 44

then it is possible to show that the corresponding operator will
have the transformation and commutation properties of the

spin momentum. The quantum number representing its
projection will be

( ) ( )= - -M w l
1

2
2 1 45Q

and it shows the range of the number of electrons in the shell
for a given l, in which the term LS, characterized by the
quantum number ν, exists.

In the single subshell CSF notation, accounting for the
quasispin Q and its projection MQ, the CSF can then be
written as [102]:

∣( ) ∣ ( )an añ º ñnl LSM M nl QLSM M M . 46w
L S Q L S

3.1.3. Several subshells. To construct a specific CSF
associated with the configuration introduced in
equation (39) for multiple subshells, one starts with the
products of the antisymmetric eigenfunctions for the different
groups of equivalent electrons, namely

( ∣( )
( ∣( )

( ∣( ) ( )





a n
a n

a n

ñ
´ ñ¼

´ ñ

n l L S M M

n l L S M M

n l L S M M , 47

w
L S

w
L S

m m m
w

m m m m L S

1 1 1 1 1 1 1

2 2 2 2 2 2 2

m
m m

1
1 1

2
2 2

where1 represents the w1 coordinates { }¼q q, , w1 1
,2 the w2

coordinates { }¼+ +q q, ,w w w11 1 2
, etc, up to the final set m

{ }¼- +q q, ,N w N1m
of the last mth shell. With the repeated use

of the vector-coupling expansion (41), we can couple the
product functions to the final total angular momenta LSM ML S

according to some specified coupling scheme. In this review
as well as in ATSP2K and GRASP2K, the coupling applies
from left-to-right and downwards, as shown graphically in
figure 1 for LS-coupling. The orbital and spin angular
momenta of the first two subshells are coupled to yield a
resultant state L S12 12. Then successively, until all subshells
have been coupled, the next subshell is coupled to a resultant
to form a new state. Each subshell-coupling uses the angular
momenta coupling expansion (41) twice, first in the orbital
space ( ( ) + =¼ - ¼L L Lk k k12 1 12 ), and then in the spin
space ( ( ) + =¼ - ¼S S Sk k k12 1 12 ).

This procedure leads to a function, denoted by
( )gFÃ LSM ML S

u, which is antisymmetric with respect to co-
ordinate permutations within each subshell, but not antisym-
metric with respect to permutations between different sub-
shells [103]. The additional antisymmetrization can, however,
be accomplished through the restricted permutations

( )
!

!
( ) ( )

( )

åg gF =


- F=

Ã
Ã

⎛
⎝⎜

⎞
⎠⎟LSM M

w

N
LSM M1 ,

48

L S
a
m

a p
L S

u1
1 2

where the sum is over all permutations involving coordinate
exchange only between two different subshells such that the
coordinate number within each subshell remains in an
increasing order. The antisymmetrizing permutations of
electron coordinates between different subshells appreciably
complicates the appearance of basis functions (48); however,
these complications largely disappear in the evaluation of

Figure 1. Coupling of subshells for a CSF in LS-coupling.
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matrix elements of symmetric operators [94, 104]. So, all this
leads to the most general form of a CSF

( ) ∣
∣( ) ( )

( ) ( )
( )

g g
a n a n

a n a n

F º ñ
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ñ

LSM M LSM M

n l L S n l L S L S

n l L S L S n l L S LSM M...

49

L S L S
w w

w
m m

w
m m m m L S

1 1 1 1 1 1 2 2 2 2 2 2 12 12

3 3 3 3 3 3 123 123 m

1 2

3

that in the quasispin representation (46), becomes

( ) ∣
∣( ) ( )

( )
( ) ( )

g g
a a

a
a

F º ñ
º

ñ

LSM M LSM M

n l Q L S M n l Q L S M L S

n l Q L S M L S

n l Q L S M LSM M
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. 50

L S L S

Q Q

Q

m m m m m m Q L S

1 1 1 1 1 1 2 2 2 2 2 2 12 12

3 3 3 3 3 3 123 123

m

1 2

3

In this notation γ represents the configuration and all the
intermediate quantum numbers that define the CSF. The
configuration determines the parity ( )= - åP 1 li

N
i of the CSF.

3.2. Relativistic CSFs

3.2.1. Single subshell CSF case. In relativistic atomic
theory, there are two possible k=nlj n , orbitals for each nl
nonrelativistic one when ¹l 0. Instead of the CSF
∣( ) an ñnl LSJw , we then have to deal with a number of CSFs
∣( ) ( )a n a n ñnlj J nlj J J ,w w

1 1 1 1 2 2 2 21 2 with the restrictions that

( )
   + +

+ =
w j w j

w w w

0 2 1, 0 2 1,

and . 51
1 1 2 2

1 2

For subshells with angular momenta =j , , ,1

2

3

2

5

2
and 7

2
corresponding to s ,w p ,w d ,w and f w shells as well as
= -j l 1

2
of gw shell, the seniority ν and J are sufficient to

classify the relevant states. α becomes relevant when j 9 2
to avoid any ambiguity.

It is interesting to compare the different couplings for
3d 4 ( J = 2). For one nonrelativistic configuration 3d 4

spanning the eight ( J = 2, even parity) CSFs, there are four
relativistic configurations - +d d3 33 , - +d d3 32 2, - +d d3 3 3 and +d3 4.

A closed subshell is now defined by the quantum
numbers nlj and, when ¹l 0, there will be two such subshells
for each nonrelativistic one. A closed subshell contains +j2 1
electrons. A separation of an electron configuration ( )nl w into
( jj-coupled) subshells is unique only for closed shells and for
shells with a single vacancy. In general, several jj-coupled
configurations with different distributions of the electrons can
be found for each single nonrelativistic configuration.

Relativistic CSFs for subshells of equivalent electrons are
formed as a vector-coupled product of one-electron states, as
in the nonrelativistic case, except that the fractional parentage
coefficients guaranteeing the exchange antisymmetry involve
the JM quantum numbers. They do not factor simply into a
radial and spin-angular part, as in the nonrelativistic case (42).

Similar to the nonrelativistic case, the quasispin quantum
number Q of a relativistic subshell ∣( ) an ñnlj JMw

J is simply
related to the seniority quantum number ν by

( )n=
+

-⎜ ⎟⎛
⎝

⎞
⎠Q

j2 1

2
2 52

while MQ, the eigenvalue of Qz, depends on the occupation
number w, namely

( )= -
+⎜ ⎟⎛

⎝
⎞
⎠M w

j2 1

2
2. 53Q

The wave function of a subshell of w equivalent electrons
and total angular momentum J can then be written in both the
seniority and quasispin representations:

∣( ) ∣( ) ∣
( )

an k an k añ º ñ º ñnlj JM n JM n QJM M .

54

w
J

w
J Q J

3.2.2. Multiple subshells. The CSF for the vector-coupled
shells are derived in a similar manner as in the nonrelativistic
case (see equations (49) and (50)), except that the subshell Ji
angular momenta are the only ones that need to be coupled.
For instance, in the seniority representation, a general CSF
takes the following form

( ) ∣
∣( ) ( )

( ) ( ) ( )

g g
k a n k a n

k a n k a n

F º ñ
º

ñ

JM JM

n J n J J

n J J n J JM... , 55

J J
w w

w
m m

w
m m m J

1 1 1 1 1 2 2 2 2 2 12

3 3 3 3 3 123 m

1 2

3

where γ represents the electron configuration in jj-coupling
and all additional quantum numbers needed to completely
specify the state.

3.3. Variational methods for wave functions as a single CSF

Given a set or orthonormal radial functions, the set of CSFs
with the same parity and LS or J quantum numbers defined by
these radial functions form a basis for a function space of
approximate wave functions, or ASFs, denoted as Ψ. A very
special case is the one where the wave function is expressed
as a single CSF.

In our discussion so far, we have shown how the spin-
angular factor of a CSF can be constructed assuming the
radial functions were from a general central-field approx-
imation. The question then arises as to which radial functions
yield the ‘best’ approximate wave functions. Variational
methods [105, 106] that optimize the total energy, result in
equations for the radial functions known as Hartree–Fock
(HF) equations in nonrelativistic theory and Dirac–Hartree–
Fock (DHF) in relativistic theory.

For a normalized wave function Ψ the total energy is the
expectation value of the Hamiltonian (3), namely

[ ] ∣ ∣ ∣ ( )Y = áY Yñ áY Yñ =E with the condition 1. 56

When the definition of Ψ includes functions or constants that
can be varied, the ‘best’ wave function Ybest is the function
for which d =E 0 for all allowed perturbations dY,
orthogonal to Ψ and the boundary conditions, namely

∣ ∣ ( )dá Y - Y ñ =E 0. 57best

When Ψ is assumed to be a single CSF, only the radial
functions can be varied. Thus an expression for the energy in
terms of radial functions is useful and is referred to as an
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energy functional. The orthogonality constraints must also be
included in the variational process. As a result, the allowed
perturbations, viewed as perturbations of the radial functions,
are of two types—those that involve only a single radial
function, and those that require that two radial functions be
perturbed simultaneously in order to maintain orthonormality.
Perturbations of more than two orbitals of the same symmetry
can be expressed as a sequence of perturbations two at a time.

3.3.1. The Hartree–Fock equations. Let ¼a b c, , , represent
one-electron radial functions for an orthonormal set of spin–
orbitals (6) with associated quantum numbers n l n l, ,a a b b

¼n l ,c c . and ∣g ñLS the CSF for a configuration γ with LS
quantum numbers. Since energies are independent of the ML

and MS quantum numbers, these quantum numbers will be
suppressed in the notation for the CSFs.

The HF equations are derived by applying the variational
principle [53] to an expression for the total energy of the CSF
based on the nonrelativistic Hamiltonian (3). It can be shown
that

( ) ( ) ( )å åg g =
=

LS h i LS w I a a, , 58
i

N

a
a

1

where, in general

( ) ∣ ∣

( ) ( )





d= á - ñ

= + -
+

I a b P P

r

Z

r

l l

r

,
1

2
and

d

d

2 1
. 59

l l a b

2

2 2

a b

By using the expansion in terms of Legendre polynomials

( ) ( )å q= <

>
+r

r

r
P

1
cos , 60

k

k

k k
12

1

where ( )=<r r rmin ,1 2 and ( )=>r r rmax ,1 2 , the contribution
from the two-electron operator becomes

∣ ∣ [ ( ) ( )] ( )å åg gá ñ = +
> =

LS
r

LS f F ab g G ab
1

, 61
j i

N

ij abk
abk

k
abk

k

1

where the sum is over pairs of orbitals, possibly from the
same subshell. Here ( ) ( )=F ab R ab ab,k k and ( ) =G abk

( )R ab ba,k are special cases of the more general Slater
integral

( ) ( ) ( )∣ ∣ ( ) ( ) ( )= á ñ<

>
+

R ab cd P r P r
r

r
P r P r, . 62k

a b

k

k c d1 2 1 1 2

This integral is symmetric with regard to coordinate exchange
as well as left/right exchange. The ( )F abk integrals are
referred to as ‘direct’ integrals in that the same orbitals are
selected for the left/right pair whereas ( )G abk integrals are
exchange integrals because they arise from the anti-
symmetrizing exchange operator. Though defined as a double
integral, Hartree [104] showed they could be evaluated
efficiently through a pair of one-dimensional integrals:

( ) ( ) ( ) ( )ò=
¥

<

>
+

Y ab r r
r

r
P s P s s; d , 63k

k

k a b
0 1

where <r ( >r ) denotes the smaller (larger) of r and s so that

( ) ( ) ( ) ( ) ( )ò=
¥

R ab cd P r P r
r

Y bd r r,
1

; d . 64k
a c

k

0

The spin-angular coefficients { }wa , { } { }f g,abk abk can be
determined using the Slater–Condon rules for the Slater
determinant algebra [107], or the Fano approach in the
Racah–Wigner algebra [103]. In the last decade, a more
efficient and general approach has been developed by
Gaigalas et al [108], combining second quantization in the
coupled tensorial form, angular momentum theory in the
orbital, spin and quasispin spaces, and graphical techniques.
The relative simplicity of the energy expression (59) and (61)
results from the orthonormality assumption for spin–orbitals
(6)

( ) ( ) ( )*ò y s y s s d=r r r, , d d . 65a b ab

Due to the orthonormality property of the spherical harmonics
and spin functions, this reduces to the radial orthonormality
condition within each l-subspace

∣ ( ) dº á ñ - =P P 0. 66ab a b n na b

The energy expression, along with Lagrange multipliers
λ for orthonormality constraints (66) define the HF energy
functional,

({ } ) ( )

[ ( ) ( )]

( )





å

å

å

g

d l

=

+ +

+

P LS w I a a

f F ab g G ab

; ,

. 67

a
a

abk
abk

k
abk

k

ab
l l ab aba b

The first type of perturbation for which the functional
must be stationary is d +P P Pa a a, where dPa satisfies all
boundary conditions and is orthogonal to all the occupied
orbitals with the same symmetry. The perturbation for each
term in the energy expression, when summed (see [58, 109]),
is a function of the form ( ) ( )dP r K a r2 ;a so that the stationary
condition becomes

( ) ( ) ( )

( )

 òd d d= = "
¥

P r K a r r P r2 ; d 0, allowed .

68

a a
0

This condition can only be satisfied if

( ) ( )ºK a r; 0. 69

Applying the stationary condition for the variation of each
orbital a, results in a system of m coupled equations where m
is the number of subshells. For a CSF (like 1s22s) with only
two orbitals a b, with ¢nl n l, quantum numbers, subject to
orthogonality the two equations have the form [58]

( )e e
e e- =

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

H
H

P
P

P
P

0
0

0, 70
a

b
a

b

aa ab

ba bb

a

b
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where Ha, for example, is the integro-differential operator

( ) ( ) ¯ ( ) ( )

= - -

+
+

+ +

⎡
⎣⎢

⎤
⎦⎥

H w
r

Z

r

l l

r
Y a r X a r

1

2

d

d

1

2
; ; . 71

a
a

a a

2

2

2

Contributions to the direct potential ( )Y a r; arise from the
( )F abk integrals in the energy functional whereas contribu-

tions to the exchange potential ¯ ( )X a r; arise from the ( )G abk

terms. For the radial function Pa(r), the latter integrals have
the form ( ( ) ) ( )Y ab r r P r;k

b . In other words, the function
Pa(r) is part of an integrand, making the equation an integro-
differential equation of eigenvalue type when e = 0ab , in
which case

¯ ( ) ( ) ( ) ( ) ( )å=
⎛
⎝⎜

⎞
⎠⎟w X a r P r g

Y ab r

r
P r;

;
. 72a a

bk
abk

k

b

In these equations, the matrix (εab) is called the energy
matrix [53] which in our definition is the same as the matrix
of Lagrange multipliers. It has been customary to write
differential equations so that the coefficient of the highest
derivative is unity, which requires dividing each equation by
-w 2a . The latter has the consequence that the (εab) matrix is
no longer symmetric when the occupation numbers differ,
even thoughl l=ab ba. When this convention is not followed
and the epsilon matrix ( )eab is symmetric, it follows that

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ( )

e e
e e

=á ñ = á ñ

= á ñ = á ñ

P H P P H P

P H P P H P

, ,

, . 73
aa a

a
a ab b

a
a

ba a
b

b bb b
b

b

The second type of perturbation relates to the ‘rotation’
of orbitals in orbital space that in two-dimensional space can
be defined in terms of a single parameter [ ] Î -1, 1 as in

( )


= - +
⎡
⎣⎢

⎤
⎦⎥O 1

1
1 , 742

where ( ) q+ =1 1 cos2 and θ represents the angle of
rotation. The radial transformation

( )
( )

( )
( ) ( )




¢

¢
= - +

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

P r

P r

P r
P r

1
1

1 , 75a

b

a

b

2

allows the effect of a rotation on the energy to be expanded in
powers of ò, namely

( ) ( ) ‐  = + + ¢ +E E g g0 higher order terms,2

where g represents the gradient of the energy with respect to
rotation and E(0) is the energy before orbitals are rotated.
Then the stationary condition

( ) ¶ ¶ = = + ¢E g g0 2 , 76

leads to ( ) = - ¢g g2 . When this condition is satisfied,
e e=ab ba. Rules for determining g and ¢g from the energy
expression are given in [109].

In the simple case of the HF equation for s s S1 2 1 where

( ) ( ) ( ) ( )= + + +E I s s I s s F s s G s s1 , 1 2 , 2 1 2 1 20 0

the condition for a stationary solution is

( ) ( ) ( )- =R s s s s R s s s s1 1 ; 1 2 2 2 ; 2 1 0. 770 0

Equation (76) not only determines g (the amount by which the
stationary condition is not satisfied) but also how much the
radial functions used for evaluating the expression, need to be
rotated for a stationary solution. When more than two radial
functions are connected through orthogonality, the energy
should be stationary for all rotations, a condition that will be
satisfied to first-order if it is stationary for the rotation of all
pairs of radial functions.

It should be pointed out that the off-diagonal energy
parameters prevent the HF-equations from being integro-
differential equations of eigenvalue type. In contrast, when
B-spline methods are used, expressions can be derived for the
off-diagonal parameters which, when substituted into the
equations, result in a generalized eigenvalue problem for each
radial function [110].

Several properties of the HF solutions follow from these
considerations.

3.3.2. Koopmans’ theorem. The diagonal energy parameter
e eºnl nl aa, (see (73)) for a singly occupied shell can easily be
shown to be directly related to the binding energy of the nl
electron, namely the difference in energy on the N-electron
system and the energy of the -N 1 electron system in which
the nl electron has been removed, using the same set of radial
functions for both the N and -N 1 electron systems [53, 91].
In general

( ) ¯ (( ) ) ( ) ∣ ∣( )

( )

åe g= - + á ñ
> =

E LS E nl nl
r

nl
1

,

78

nl nl
w w

j i

N

ij

w
,

HF

1

where ¯ (( ) )E nl w is the energy of the atomic system when the
( )nl w subshell has been removed and the remaining term is a
correction relating to the self-interaction within the subshell
when >w 1. This is the usual Koopmans’ theorem [111, 112]
that has been used successfully for estimating many
ionization energies.

The HF equations may not always have unique solutions.
Consider the case of s s1 22 2 where the CSF can be expressed
as a single Slater determinant. A unitary transformation (or
rotation of the orbitals) changes the radial functions, but
leaves the wave function and the total energy invariant. Thus
there are an infinite number of solutions to the HF equations.
Koopmans also defined a unique solution for this case as the
extreme values of the symmetric energy matrix ( )e ¢nl n l, . For
these extreme values, the s1 orbital is the most bound orbital
in the set of possible solutions, the s2 the orbital least bound,
and the off-diagonal Lagrange multiplier is zero [53]. Thus, in
HF calculations, it is customary to omit the rotations of
orbitals of two filled subshells and their Lagrange multipliers,
thereby implicitly setting the Lagrange multipliers to zero.
But filled subshells are not the only case where the wave
function remains invariant under rotation. Another well-
known example is s s S1 2 3 [53]. Non-unique cases can be
detected through rotation analysis in that, for such cases,
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= ¢ =g g 0 and the Lagrange multiplier can be set to
zero [113].

3.3.3. Brillouin’s theorem. The requirement that the ‘best’
solution satisfy the stationary condition of equation (57) can
be generalized to matrix elements of the Hamiltonian between
CSFs or linear combinations of CSF. At this point it is
important to keep in mind the nature of the perturbations of
radial functions. In the HF approximation, the ‘best’ wave
function is the HF solution

( )gY = F LS .best HF

When a single orbital is perturbed, the perturbations can be
expressed in terms of a complete basis ( )¢P rn l , orthogonal to
the occupied orbitals. Then the stationary condition for all dPnl

will be satisfied if it is satisfied for every d = ¢P Pnl n l. This
perturbation of the radial function, denoted by  ¢nl n l
results in a perturbation of the CSF, ( )gF  ¢LS nl n l. If we recall
the construction of the CSF, and equation (42), it is clear that
none of the spin-angular factors are affected. Thus, in 1s22s,
for example only the CSF for the subshell containing orbital a
(or nl) will be affected. Thus the perturbation of the HF
s2 -radial function,  +P P Ps s ns2 2 , leads to

( ) [ ( ) ( )[ ( ) ( )]]∣ ( )

( ) ( )
( )





+ ñ

º F + F

-r r r P r P r P r P r ss S s S

s s S s ns S1 2 1 ,

79

s s s ns1 2 3
1

1 1 1 2 2 3 3
1 2

HF 2 2 2 2

so that, to first order in ò,

( )
( ) ( )∣ ∣ ( ) ( )   = + áF F ñ +

80

E E s s S s ns S2 1 2 1 .HF HF 2 2 2 2 2

Since the HF solution is stationary for this perturbation, it
follows that

( )∣ ∣ ( ) ( )áF F ñ = "s s S s ns S n1 2 1 0, . 81HF 2 2 2 2

In this case, adding the ( )F s ns S1 2 2 to the HF wave function
as a correction, would not further lower the energy and it is
convenient to think of the HF wave function as already
having included these CSFs.

The situation changes when orbitals are multiply
occupied and the structure of F̃  ¢nl n l satisfying

( )∣ ∣ ˜ ( )gáF F ñ = ¢LS 0, 82nl n l
HF

in the general case, is more complex [114]. Consider 2p3 Po2 .
We must first uncouple an orbital using equation (40) in order
to have a single p2 coupled to an expansion over the parent
2p2 LS terms where this expansion is determined by the CFPs.
Expressing the perturbed wave function in terms of CSFs, the
stationary condition requires that the Brillouin matrix element
be zero, or

( )∣ ∣ ˜ ( )áF F ñ =p P2 0. 83o
p np

HF 3 2
2

In the present case, this is a matrix element between 2p3 Po2

and a particular linear combination of CSFs

( ( ) )F ¢ ¢p L S np P2 o2 2 , namely

∣ ˜

∣ ( ) ∣ ( )

∣ ( )

( )

F ñ =

- ñ - ñ

+ ñ



⎧⎨⎩
⎫⎬⎭

p P np P p D np P

p S np P

3
1

2
2

5

18
2

2

9
2 ,

84

p np

o o

o

2

2 3 2 2 1 2

2 1 2

where the weights are the associated CFP (40). Thus the HF
solution has included a particular combination of 2p2np CSFs
but not each CSF exactly: adding the three CSFs separately,
each with their own expansion coefficient, would lower the
energy of the HF wave function.

When two orbitals a b, are subject to an orthogonality
condition, the perturbation from a rotation must also have a
zero interaction with the HF wave function [115, 116]. This
perturbation comes from a pair of substitutions, namely
  -a b b a, . An excellent example is the excited state

s s S1 2 1 . A rotational perturbation produces a state propor-
tional to { }-s s S2 1 22 2 1 . The stationary condition
requires that the HF solution be such that

( )∣ ∣ { }
F

-
=s s S

s s
S1 2

2 1

2
0.1

2 2
1

This condition on the solution is difficult to satisfy without
the use of rotational transformations. In general, when two
open shells of the same symmetry are present, Brillouins
theorem states that HF solutions have the property that the
interaction between the HF solution and a specific linear
combination of CSFs will be zero [117], implying that some
average interaction between CSFs has been included in the
approximation. In fact, the hydrogenic s s S1 2 1 state and the
perturbed linear combination of CSFs are degenerate in Z-
dependent perturbation theory so that the mixing of these two
CSFs would be included already in the zero-order wave
function (see section 5.2).

Brillouin’s theorem states, in effect, that ∣ ∣ ˜áF Fñ = 0HF

for a class of functions that can be related to the allowed
perturbations for which the energy is stationary. The
‘annihilation’ of Brillouin’s matrix elements for fully
variational solutions of the HF problem constitutes a useful
property. It has been intensively used for testing the extension
of the HF code to the f N shell for general occupation numbers
[92]. It is worthwhile to note that in the checking process,
‘accidental’ zeros characterizing the HF solution of Lantha-
nides in their ground state and appearing in f nf4
Brillouin’s matrix elements were discovered and remain
unexplained, even after exploring the use of an isospin basis
[118, 119].

3.3.4. Solution of the HF equations. With these theorems in
mind, given an initial estimate for all the occupied radial
functions, solutions to the HF equations of equation (71) can
be obtained by an iterative process referred to as the self-
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consistent field (SCF) method, namely:

Very efficient methods solve the differential equations by
using finite differences based on a discrete representation of
the radial functions on a logarithmic mesh. Instead of treating
the equation as an integro-differential equation, the exchange
contribution of equation (72), along with any off-diagonal
energy parameters, are treated as a non-homogeneous term
and the differential equation solved as a boundary-value
problem. Details can be found in [53, 113]. Essentially, in
every iteration, the method improves the radial function. This
is done by matching the solutions from outward integration
and inward integration. Since the differential equations for
excited states may be the same as for a lower state, the
adjustment process needs to take into account the desired
eigenstate. Node counting is used in the numerical HF
program, taking into account the possibility that the rotation
of orbitals may have introduced additional nodes that need to
be ignored, thereby making node counting somewhat of an
art. But the SCF process does not guarantee convergence. A
well-known example which starts with large oscillations is
F 2p5 Po2 : if the p2 estimated orbital is too contracted, the
screening of the nucleus will be too large, and the next
estimate will be too extended. ‘Accelerating’ parameters may
be introduced that actually dampen the rate of change thereby
damping the oscillations in the change of the orbitals and
speeding convergence [58].

The accuracy of the solution of the HF equation can be
assessed through the virial theorem [59] which states that the
ratio of the potential energy relative the kinetic energy is
exactly −2.0.

3.3.5. DHF equations. The DHF equations are similar to the
nonrelativistic equations for a single CSF except for some
differences in the details. By definition, HF and DHF are
methods applied to a single CSF either in LS or jj-coupling. In
many cases, the two are equivalent but in others there is a
difference. For example, the 2p4 1D case in nonrelativistic
theory becomes ( ) ( )+- + - +p p p p0.8258 2 2 0.5648 2 23 2 2 in jj-
coupling and Dirac theory. Therefore the equivalent of the HF
wave function is no longer a single CSF and needs to be
treated as part of a multiconfiguration approximation
discussed in the next section.

The relativistic extension of the HF approach to the DHF
approach is to apply the variational principle to the energy

functional

({ } { } ) ∣ ∣ ( )  åg g g d l= á ñ + k kP Q J J J, ; , 85
a b

ab abDC
,

a b

where ∣g ñJ is a single CSF (54), and DC is the Dirac–
Coulomb Hamiltonian (9). Lagrange multipliers lab for
orbitals a and b belonging to the same κ-space ( )k k=a b ,
are introduced in (85) for each radial orthonormality
constraint, namely

[ ( ) ( ) ( ) ( )] ( ) ò dº + - =P r P r Q r Q r rd 0. 86ab a b a b n na b

The matrix element for the total energy for the Dirac–
Coulomb Hamiltonian (9) can be expressed in terms of spin-
angular coefficients and radial integrals

∣ ∣ ( )

[ ( ) ( )] ( )

 å

å

g gá ñ =

+ +

J J w I a a

f F ab g G ab

,

. 87
a

a

abk
abk

k
abk

k

DC

The one-body interaction gives rise to the spin-angular
coefficients that reduce to occupation numbers wa and to the

( )I a a, integrals where (in the general case)

( ) { ( ) ( ) ( )
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( )( ( ) ) ( )} ( )
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d

d
d

d
2 d . 88

a b

a
a

b

a
a

b

a b

0
nuc

nuc
2

a b

The two-body interaction gives rise to the spin-angular
coefficients f g,abk abk and to the ( ) ( )=F ab R ab ab,k k and

( ) ( )=G ab R abk k integrals. The latter are special cases of the
relativistic Slater integrals

( ) [ ( ) ( )

( ) ( )] ( ) ( )

ò=

+

k k

k k

¥
R ab cd P r P r

Q r Q r
r

Y bd r r

,

1
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k
n n

n n
k

0
a a c c

a a c c
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The relativistic DHF Yk-functions are defined by

( ) [ ( ) ( )

( ) ( )] ( )

ò=

+

k k

k k

¥
<

>
+

Y ab r r
r

r
P s P s

Q s Q s s

;

d . 90

k
k

k n n

n n

0 1 a a b b

a a b b

The spin-angular coefficients appearing in (87) can be
evaluated using algebraic expressions for matrix elements
adapted for spin-angular integrations in jj coupling, involving
the calculation of reduced CFP and completely reduced
matrix elements of double tensors [120, 121].

From this expression it is possible to derive the DHF
equations from the usual variational argument [64] as an
integro-differential problem
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where ( ) ( ( ) ( ) ¯ ( ))= + +V a r V r Y a r X a r; ; ;nuc . In this
expression, Vnuc(r) is the effective electron–nucleus potential
at radius r taking into account the finite size of the nuclear
charge distribution through a uniform or a Fermi distribution
of the charge, ( )Y a r; is the direct potential, and ¯ ( )X a r;
contains the exchange contributions in integro-differential
form as described in the HF method.

Koopmans’ and Brillouin’s theorems apply to the DHF
solution as well. Though the relativistic CSF for a shell of
equivalent electrons does not factor simply into a radial and
spin-angular factor, (82) for multiply occupied subshell still
holds. What differs is the perturbation, namely
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A difference, at least conceptually, is that the perturbation may
now be either a positive energy function (bound or continuum,
not necessarily a state) or a negative energy function that
satisfies boundary conditions and orthogonality as indicated by
the n* notation. Orbital rotations for stationary conditions may
also occur. When compared with perturbation theory methods in
the ‘no-pair’ approximation that exclude contributions from a
negative energy sea, this may account for differences in results.
GRASP2K calculations, to date, have not found it necessary to
constrain the calculation in any way. Also different are the CFP.
The equivalent expression for (84) is
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4. The multiconfiguration wave functions

The single CSF approach described in the previous section is
based on an independent particle model, where the electrons
are assumed to move in an average, central field of the other
electrons and the nucleus. In this approach we do not start by
defining a detailed form for these potentials, just the fact that
they define the form of our wave functions, as linear com-
bination of products of spin–orbitals (6) or (11). We then
develop the HF and DHF method by assuming this form of
the orbitals. To take into account corrections to the inde-
pendent particle model is, by definition, to include electron
correlation which we will discuss in a later section. Here we
just observe that a ‘straight-forward’ approach would be to
represent the ASF, not any longer as a single CSF, but as a
multiconfiguration (MC) function expanded in terms of a
basis of, say M, CSFs;

( )åY = F
a

a a
=

c . 94
M

1

In our definition of an MC approach, there are two phases:

(i) the determination of the cα coefficients, or weights, for
a given set of CSFs. We will refer to this as the
configuration interaction (CI) phase, and

(ii) the determination of the orbitals, as an extension to the
HF or the DHF method for a given set of expansion
coefficients.

Let us start with the CI phase.

4.1. Configuration interaction

In a ‘pure’ CI approach, only the expansion coefficients in
(94) are variational parameters and can be determined by the
Rayleigh–Ritz method. The stationary condition then leads to
the eigenvalue problem

( ) ( )- =EH I c 0, 95M M M

where we assume an orthonormal CSF basis. In fact there are
M eigenvalues and eigenvectors, often referred to as
eigenpairs. If the mth eigenvalue, Em

M is the total energy of
the desired state, then the associate normalized eigenvector
cm

M defines the expansion coefficients for the state. The
M × M matrix ( )= abHHM is called the ‘interaction matrix’
and has elements

∣ ∣ ( )= áF F ñab a bH . 96

As stated in the introduction, we are aiming for a sys-
tematic approach, where we include a set of CSFs of
increasing size to improve our approximate ASF. An essential
foundation for this is the Hylleraas–Undheim–MacDonald
(HUM) theorem [122, 123], which states the following rela-
tionship for the eigenvalues when the size of the matrix
increases from M to +M 1, namely

( ) ¼ ¼-
+E E E . 97m

M
m
M

m
M

1
1
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In other words, the eigenvalues of the matrix of size M
interlace those of size +M 1. The implication of this is that
when the basis set is increased by including an additional CSF
of the same symmetry, we are approaching the exact solution
for the energy from above. It then follows that the mth
eigenvalue is an upper bound for the mth exact solution of the
wave equation for the Hamiltonian operator , provided the
matrix size is at least M m. To be even more explicit, if the
energies are bounded from below as in nonrelativistic theory,
the HUM theorem shows that the variational method is a
minimization method not only for ASFs lowest in their
symmetry, but also for excited states as long as the basis
includes the CSFs needed for the lower states.

As an example, if we apply the HUM theorem to
( )E s s S1 2HF 1 states in He-like systems, then the energy

calculation is for a matrix of size M = 1, and hence the result
is an upper bound to the energy of the ground state 1S. In
order to obtain a wave function whose energy is an upper
bound to the exact s s1 2 1S energy, the second energy level for
this symmetry, it is necessary to have an expansion over a
basis that includes the 1s2 1S CSF as well as s s1 2 1S so that
the desired solution is the second eigenvalue with M 2.
The calculation of the wave function of the s s1 2 1S state has a
long history [124, 125].

4.1.1. The two-by-two CSF example. The CI method is
frequently used in atomic physics, and has become a
metaphor for ‘interacting configurations’ that represent
correlation. To understand some of its implications it is
valuable to investigate the simplest case ofM = 2, to see what
differs from the single-configuration approach. In this case the
matrix eigenvalue problem is

( ) ( ) ( )=
⎛
⎝⎜

⎞
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H H
H H

c
c E

c
c , 9811 12

21 22

1

2
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2

with =H H21 12, since we are dealing with Hermitian
operators. The eigenvalues for this problem are roots of the
quadratic polynomial obtained from the secular equation

∣ ∣ ( )- =EH Idet 0. 99

The two real roots +E and -E , of this equation are [94]
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and the corresponding eigenvectors
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Note that one eigenvalue is above ( )H Hmax ,11 22 while the
other is below ( )H Hmin ,11 22 . Due to the fact that the trace is
conserved ( + = +- +H H E E11 22 ) it is clear that the
interaction term ( =H H12 21) produces an apparent mutual
repulsion of the two energy levels.

Two interesting cases may be be considered

• the off-diagonal interaction H12 can be considered as a
perturbation of the diagonal energies when ∣ H2 12

( )∣ -H H 122 11 ,
• the diagonal energies are ‘nearly degenerate’ (∣( -H22

) ∣ H H2 111 12 ).

In the former, assuming without loss of generality that
<H H11 22 and expanding the square roots of (100) and (102)

in binomial series, one finds
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where ( )d º -H H H12 22 11 . The fact that ∣ ∣ d guarantees
the high purity of the eigenvectors.

For the second case, the most spectacular scenario occurs
in the degenerate case ( =H H11 22) for which the two
eigenvectors are mixed with ∣ ∣ ∣ ∣= = c c 1 21

2
2

2 (or 50%)
for any non-zero H12 matrix element.

There are many near degeneracies in atomic spectra. An
example is the high-lying perturber s p P3 3 o5 3 CSF in the
sulfur iso-electronic sequence which interacts with the

( )s p D nd P3 3 o2 3 2 3 Rydberg series CSFs. As the nuclear
charge of the atomic system increases [126] the perturber
descends into the lower region of the spectrum and the
energies of the two components of the wave function change
order. As a result there may be ‘short-range’ interactions in
the presence of level crossings at selected values of Z and the
order of the dominant component changes and hence, also the
label [127]. However, the energy of solutions to the wave
equation are continuous functions of Z and plots of the lowest
energy of a given symmetry, the second lowest, etc, are
continuous functions with an anti-crossing at the point of
degeneracy. A unique identification of an ASF is a position
number (POS) and symmetry. More will be said about the
labelling problem in section 4.7.

4.1.2. Large CI expansions. Another interesting case is the
one that occurs when the CSF expansion can be partitioned
into two subsets, namely those CSFs whose coefficients may
be large and those that are small. Let us assume the two sets
of expansion coefficients are represented by the column
vectors ( )c 0 and ( )c 1 , respectively. This also partitions the
interaction matrix H into blocks so that (95) becomes

( )
( ) ( )

( ) ( )

( )

( )

( )
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H H
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c
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E c
c

, 105
00 01

10 11

0

1

0

1

where ( )H 00 is the interaction matrix between large compo-
nents, ( )H 11 for interactions between small components of the
wave function, and ( ) ( )=H H01 10 represents the interactions
between CSFs of the large and those of the small block. This
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equation can be rewritten as a pair of equations, namely

( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
- + =

+ - =
H EI c H c

H c H EI c

0,

0. 106

00 0 01 1

10 0 11 1

Solving for ( )c 1 in the second equation and substituting into
the first, we get an eigenvalue problem for ( )c 0

( ( ) ) ( )( ) ( ) ( ) ( ) ( )- - - =-H H H EI H EI c 0. 10700 01 11 1 10 0

This is known as a method of deflation in numerical analysis
since it reduces an eigenvalue for a matrix of size N × N to an
eigenvalue problem of size m × m, where m is the expansion
size of ( )c 0 . Of course, once E and ( )c 0 have been determined,
the small components can be generated from the expression

( ) ( )( ) ( ) ( ) ( )= - - -c H EI H c 1081 11 1 10 0

and a full wave function is defined. Note that the eigenvalue
problem is now nonlinear.

In perturbation theory, where only one eigensolution is
computed at a time, the matrix ( )( ) -H EI11 is replaced by the
difference between the diagonal elements ( )Hii

11 of ( )H 11 and
the zero-order energy, ( )E 0 , which is an eigenvalue of ( )H 00 .
Then ( )( ) ( )-H E Iii

11 0 is a diagonal matrix and its inverse is
also diagonal. In CI the computation simplifies tremendously
if only diagonals are needed since many interactions can then
be omitted. But computationally, such an assumption is not
necessary since it is also possible to replace ( )( ) - -H EI11 1 by
an approximate inverse, a strategy that is used in the
GRASP2K Davidson method for solving the eigenvalue
problem iteratively. This method has not yet been imple-
mented in GRASP2K and its effectiveness needs to be
evaluated when many eigenvalues are required as in a study
of states in a Rydberg series. Certainly it could be used to
obtain excellent initial estimates for the Davidson algorithm
[130, 131].

Note that expression (108) is the linear algebra equivalent
of the effective Hamiltonian derived in the CI-MBPT
program [128]. In CI-MBPT however, the CSFs that define
the small components are used only to correct the energy,
unless they are included through perturbation theory applied
to the property of interest [129].

4.2. The MCHF method

Multiconfiguration methods, MCHF or MCDHF, differ from
CI methods in that both the expansion coefficients and the
radial functions are varied for a stationary energy. The pro-
cedures are the same as for the single CSF wave function and
many of the properties are similar except for some differ-
ences. Though the single configuration case is a subset of the
multiconfiguration case, here we will focus on the differences.

In the MCHF method the normalized atomic state wave
function (ASF) is expanded in a basis set of M CSFs

( ) ( ) ( )å åg gY = F =
a

a a
a

a
=

LS c LS c, where 1, 109
M

1

2

and the associated energy becomes
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The diagonal matrix elements for the energy can be expressed
as linear combinations of one-electron integrals ( )I a a, and
two-electron Slater integrals ( )F abk and ( )G abk , as in the HF
case (see (59) and (61)), but off-diagonal matrix elements
introduce one-electron integrals ( )I a b, and Slater integrals

( )R ab cd,k with symmetries different from the
( ) ( )=F ab R ab ab,k k (direct) and the ( ) ( )=G ab R ab ba,k k

(exchange) symmetry. For example, ∣ ∣á p D3 2 1
NR

( )ñ =s d D R p p s d3 3 2 5 3 3 3 , 3 31 1 . Then the energy func-
tional has the form

∣ ∣ ( ) ( ) ( ) å åáY Yñ = +t I a b v R ab cd, , , 111
ab

ab
abcd k

abcd k
k

NR
;

;

where

( )å å= =
ab

ab
a b

ab

ab
a bt t c c v v c cand 112ab ab abcd k abcd k; ;

are contributions from all the interactions between CSFs. The
coefficient aataa is the occupation of the orbital a in CSF α and
taa = wa is the generalized occupation number of an orbital a
in analogy with the HF notation. Similarly, abvabcd k; is the
contribution to the energy of a given Slater integral.

As in the derivation of the HF equations from the var-
iational principle [53], Lagrange multipliers are introduced for
each constraint ab defining the energy functional

({ } { } ) ∣ ∣ ( )  åg d l= áY Yñ +c P LS, ; , 113
ab

l l ab abNR a b

where ab is the orthonormality constraint (66). Both the
expansion coefficients c and the radial functions P are varied.

For a given set of radial functions { ( )}P rnl , the total
energy is optimized through the variation of the expansion
coefficients as in the CI method, leading to the matrix
eigenvalue problem

( )= EHc c 114

with many solutions. Only one eigenvector is the desired
eigenvector, not necessarily the lowest and this vector defines
the expansion coefficients.

For a given set of mixing coefficients { }ac , the stationary
condition with respect to a variation in the radial functions,

( )dP ra , leads to a system of coupled differential equations

( ) ( ) ¯ ( ) ( )
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a
a a

a
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2

2 2

similar in form to the HF equation (71). What differs are the
types on integrals that may occur in the energy expression.
Slater integrals of the symmetry ( )R ab ab,k again contribute
to the direct potential ( )Y a r; through ( )Y bb r r;k functions.
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All other ( )R ab cd,k integrals contribute to ¯ ( )X a r; through
( ) ( )Y bd r P r r;k

c functions. Also included in ¯ ( )X a r; are
contributions from ( )I a b, integrals where ¹b a. Again, for
each orbital angular momentum, there is a matrix ( )eab arising
from the orthogonality constraints [53]. In the ATSP2K code,
all contributions to ¯ ( ) ( )X a r P r; a , together with off-diagonal
energy parameters, are treated as a non-homogeneous term in
the differential equation. But with B-spline matrix methods,
the radial functions are again solutions of a generalized
eigenvalue problem [132].

4.2.1. Brillouin’s theorem for multiconfiguration solutions.
Properties of the HF equations can be extended to the MCHF
equations, with some qualifications.

The generalized Brillouin’s theorem is not nearly as
important as in HF when a given orbital occurs in many
CSFs. If Ynl

MCHF is the portion of the ASF (complete with
expansion coefficients) that contains the orbital nl and Y  ¢nl n l

MCHF

represents the function obtained through the  ¢nl n l
substitutions that themselves may require expansions in terms
of CFPs when an orbital is multiply occupied, then the
following holds:

∣ ∣ ( )áY Y ñ = ¢ 0. 116nl nl n l
MCHF

NR
MCHF

Thus the included interactions may only apply in a broad
average sense.

Table 2 shows the role of Brillouin’s theorem in HF and
MCHF calculations. For the HF calculation, (82) states that
the interaction between 2p4 and a specific linear combination
of the 2p33p CSFs has a zero matrix element but by adding
the CSFs explicitly into a MCHF calculation in which only p3
is varied, the energy is reduced significantly. Varying both p2
and p3 reduces the total energy more but, at the same time,
the rotations that enter into such a calculation have a
noticeable effect on the expansion coefficients. In calculation
(3a) and (3b), CSFs such as p p2 32 2 are also present. These
CSFs are part of Brillouin’s theorem for calculation (2b).
Varying both p2 and p3 again allows for orbital rotations but
the energy reduction is now considerably less and the
expansion coefficients for 2p33p CSFs are not greatly
changed. Not given in this table are the expansion coefficients
of p p2 32 2. Thus, in general, Brillouin’s theorem is not
significant for larger multiconfiguration expansions.

But it may still have a significant effect in some small
cases. An example is the interaction of ∣ ñs p S3 3 6 2 with the
∣ ñs p nd S3 32 4 2 continuum in Cl. In the HF approximation, the
former is located in the continuum but with the introduction
of the single ∣ ñs p d S3 3 32 4 2 CSF into the wave function
expansion, the MCHF d3 orbital has included the effect of
both the interaction with the continuum states and the bound
states. This d3 orbital has a mean radius similar to that of the
p3 orbital [133]. It was confirmed that the MCHF results
agreed with perturbation theory only when the latter included
both continuum and bound states. In this case, the interaction
with the continuum lowered the energy of the state into the
bound spectrum and the d3 orbital became a bound orbital
approaching zero at large r. This is an example where the
summation over continuum states may cancel at large r so that
the state does not ‘decay’ into the continuum.

4.2.2. Uniqueness of the multiconfiguration solutions. For
multiconfiguration expansions, rotational analysis for
detecting a non-unique solution [113] is usually not of
sufficient benefit, to justify the needed computational effort.
The probability of a non-unique solution often decreases
when many different CSFs of different symmetries are
included except for a certain class of expansions and
modifications can be made to the expansion so that
equations have a unique solution.

Well-known cases for which the radial functions are not
unique are complete active space (CAS) expansions [134].
Consider an ASF for s S1 2 1 and the orbital set { }s s1 , 2 of the
same symmetry. Let the CSF basis be the set of all two-
electron 1S CSFs that can be constructed from these orbitals,
namely { }s s s s S1 , 1 2 , 22 2 1 . Any rotational transformation of
the orbital set changes the expansion coefficients of the ASF,
but leaves the wave function and its energy invariant. Without
a unique solution, a computational process for a solution may
still converge (if nodal properties are relaxed) but will depend
on the initial estimates. Computationally, it is desirable to
have a well-defined solution. Koopmans’ theorem for similar
situations in the HF case sets the off-diagonal Lagrange
multiplier to zero, but this does not always work well for a
CAS solution. Essentially, with this CAS expansion, there is a
degree of freedom in the expansion. Much more can be
gained by using the degree of freedom to set one of the
expansion coefficients to zero or, equivalently, eliminating a
CSF from the expansion. If the desired solution had been for

Table 2. Total energies in Eh for p P2 4 3 ASF in oxygen illustrating the role of Brillouin’s theorem as a function of the method on the total
energy and the expansion coefficients: (1) HF, (2) MCHF for { }p p p2 , 2 34 3 , and (3){ }p p p p p2 , 2 3 , 2 34 3 2 2 . In (2a) and (3a) the s s p1 , 2 , 2 are
fixed and only p3 varied, whereas in (2b) and (3b) both p2 and p3 are varied allowing orbital rotations.

Varied Total Expansion coefficients

energy 2p4 ( )p P p2 33 2 ( )p D p2 33 2 ( )p S p2 33 4

(1) All −74.809398 1.0000
(2a) p3 −74.812490 0.9977 0.0379 −0.0154 −0.0532
(2b) p p2 , 3 −74.841396 0.9179 −0.1669 0.2426 −0.2659
(3a) p3 −74.844914 0.9942 0.0209 −0.0072 −0.0301
(3b) p p2 , 3 −74.845367 0.9936 0.0110 0.0065 −0.0443
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s s S1 2 1 , then clearly 2s2 should be eliminated so our
computed solution would be an upper bound to the second
exact solution of the Hamiltonian. For such a solution, the
generalized Brillouin’s theorem states that the interaction
between YMCHF and perturbation obtained by rotating the
s s1 , 2 orbitals is zero, which in this case is easier to confirm
through computation than direct analysis, and the energy is
the same as the CAS energy.

But what should be eliminated if the desired solution is
the ground state? In this case the HUM theorem is not helpful.

Suppose the orbital set is the { }¼s s ms1 , 2 , set so that
the CSF basis consists of all { }¢nsn s S1 CSFs, with ¢n n m, .
The expansion over this basis is a two-electron partial wave
since every CSF has the same ∣ ¢ ñss S1 spin-angular factor and
could be written as

( ) ( ) ( ) ∣ ( )åY = ¢ ñ=

¢
¢ ¢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟s S c R r R r ss S1 , 117l

n n
nn ns n s

0 2 1

,
1 2

1

where ( ) ( )=R r P r rnl nl and =¢ ¢c cnn n n. The above radial
factor for the partial wave can be expressed in matrix vector
form. Let C be the symmetric matrix ¢cnn , and ( )R r the row
vector { ( ) ( ) ( )}¼R r R r R r, , , m1 2 . Then the radial factor
becomes

( ) ( ) ( ) ( ) ( )å =
¢

¢ ¢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟c R r R r R r C R r . 118

n n
nn ns n s

t

,
1 2 1 2

Since C is symmetric, there exists a unitary transformation
that will diagonalize the matrix of expansion coefficients so
that the partial wave has the form

( ) ∣ ( )åY = ñs S c ns S1 . 119
n

n
MCHF 2 1 2 1

The process can be extended to other symmetries so that

( ) ∣ ( )ååY = ñs S c nl S1 . 120
l n

nl
MCHF 2 1 2 1

The orbitals of this ‘reduced form’ of the wave function are
also called the ‘natural’ orbital expansion [53, 135] and are
the ones that diagonalize the density matrix [136, 137]. It is
the form obtained by using each of the ( ( ))´ -m m 1 2
degrees of freedom toward eliminating the ‘off-diago-
nal’ CSFs.

The forms of these orthogonal transformations depend on
the spin-angular symmetry of the different partial waves
[135]. For a Po1 two-electron system, the set of partial waves
have the symmetry { }¼sp pd df, , , . In this case the radial
transformations for reducing the ¢nsn p expansion to

( )+ns n p1 expansions differ from the radial transformations
reducing the ¢npn d expansion to ( )+np n d1 . For this reason,
the reduced forms cannot be used simultaneously in both sp
and pd subspaces, unless the sets of p-orbitals involved in the
two couplings are allowed to differ. This was one of the
original motivations for implementing non-orthogonal orbi-
tals that preserve the othonormality of CSFs within a partial
wave [138].

For a given active orbital set, the size of a CAS
expansion grows dramatically with the number of electrons
and ‘restricted active space’ wave functions [139] should be

built. For nominal two-electron atoms such as alkaline-earth
atoms and atoms of the IIB group of the periodic table,
multiconfiguration expansions can be generated by restricting
the excitations to the outer valence shells (i.e. no hole in the
core), and using the reduced forms with non-orthogonal
orbitals to include valence correlation [140, 141].

When the generalized occupation is small, the associated
radial function is quite different from the normal ‘spectro-
scopic’ (hydrogenic) orbital. Koopmans’ theorem also has a
different interpretation. Consider the case

( ) ∣ ∣ ( )Y = ñ + ñs S c s S c f S1 1 4 , 121MCHF 2 1
1

2 1
2

2 1

where no orthogonality constraints are present. By substitut-
ing the expressions for the matrix elements into (110), the
expression for the total energy becomes the sum of integrals
with coefficients weighted by expansion coefficients. For our
example, it is easy to show that

( )

( ) ¯ ( ) ∣ ∣
( ) ¯ ( ) ∣ ∣

e

e

= - + á ñ

= - + á ñ

122

E s S E s c s S r s S

E s S E f c f S r f S

1 1 1 1 1 ,

1 4 4 1 4 ,

s s

f f

1 1
MCHF 2 1

1
2 2 1

12
2 1

4 4
MCHF 2 1

2
2 2 1

12
2 1

where ¯ ( )E nl is the energy when the nl orbital has been
removed (or set to zero). In the present example for He I,

=c 0.0057662 , and 4f 2 clearly is a correction to the s S1 2 1

ASF, lowering its total energy by 0.00066 Eh. But this f S4 2 1

CSF is very different from a HF CSF. In fact,
=H E17.016622 h, which is well into the positive energy

continuum although the f4 orbital is bound.

4.2.3. Solution of the MCHF equations. Because the
equations for the expansion coefficients and the radial
functions are coupled, the MCHF equations are solved by
the MC-SCF process, similar to the SCF except that, after
orthogonalization of the orbital set, the interaction matrix
needs to be computed and the desired eigenvectors
determined. For solving large CI problems, the ATSP2K
code uses an approach based on the Davidson method [131]
with robust preconditioning [142]. This is an iterative method
based entirely on matrix-vector multiplication, requiring an
initial estimate of the desired solution. Initially, when no
estimates are available, approximate values can be determined
by diagonalizing a small matrix. After that, when the current
estimate is used as a starting value for the Davidson algorithm
as the MC-SCF iteration converges, improved eigenvectors
can be obtained with only a few (2–3) matrix-vector
multiplies. Sparse matrix methods are used for representing
the interaction matrix since possibly only 10% of the matrix
or less may be non-zero.

The differential equations are solved using finite
difference methods based on a discrete representation of the
radial functions on a logarithmic mesh. Details can be found
in [53, 113]. For selecting the solution of a given differential
equation, node counting of the radial function is applied to the
spectroscopic orbitals that are defined as those occupied in the
single configuration HF approximation, or more generally,
orbitals that have a generalized occupation number of 0.5 or
greater. In technical terms node counting amounts to guiding
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the solution of the differential equation in such a way that
radial functions have the same node structure as the
corresponding hydrogen-like function provided small ampli-
tudes in the tail are ignored that result from the rotation of
orbitals. No node constraint needs to be imposed on the
orbitals that are unoccupied in the HF approximation.

4.2.4. Extended MCHF methods. The MCHF method can
also be used to simultaneously obtain wave functions for
many states. If all are of the same symmetry, the states may
require many eigenvalues and eigenvectors of the same
interaction matrix, or they may have different symmetries or
parities, in which case different interaction matrices are
needed. The variational principle is then applied to a weighted
linear combination of functionals of the individual states and
the energies and expansions coefficients are obtained as the
corresponding eigenvalues and eigenvectors of the
Hamiltonian matrix for the given symmetry [55]. This
method is extremely useful for BP calculations,
discussed next.

4.3. BP wave functions

For light atoms, where relativistic effects are expected to be
small, an orthonormal orbital basis from an ordinary or
extended MCHF calculation may be used in combination with
the CI method and the BP Hamiltonian, BP (29). This
method has produced many J-dependent energy levels [143]
in good agreement with observation. An example of the use
of the CI method is given by the BP calculations [143] in
which the nonrelativistic Hamiltonian used for optimizing the
orbitals in the MCHF approach is corrected by the inclusion
of the BP relativistic operators (29). The CSF basis is
extended to allow LS-term mixings for a given J and parity.
The ASF is then an expansion over a set of CSFs (49),

( ) ( ) ( )

( )

åå ååg gY = F =
a

a a
a

a
=

J c LSJ c, where 1,

123
LS

M
LS

LS

LS

1

2
LS

in which the + =L S J angular momentum coupling (41) is
realized for each term symmetry. HereMLS is the length of the
expansion for a given LS term.

The evaluation of the BP operators appearing in (29)
involves a large variety of radial integrals, as illustrated in
[144–147]. The two-body terms SS and SOO are not
straight forward leading to many radial integrals. The com-
plexity of the two-bodyOO operator however, exceeds those
of FS, increasing the computer time required to evaluate an
interaction matrix. Thus, it has been customary to omit the
orbit–orbit effect from energy spectrum calculations. The
theory used to compute the interaction matrix assumes that all
the CSFs are defined in terms of a single orthonormal set of
orbitals. The extended MCHF method assures that this con-
dition is met and has been used successfully to compute many
levels of the Na-like to Ar-like sequences for nuclear charges
up to Z = 30 [148].

4.3.1. Complete degeneracies. When relativity is treated in
the BP approximation, the relativistic corrections are included
in the CI step with orbitals obtained from non relativistic HF/
MCHF calculations. The LS-mixing can be dramatic when
terms lie close to each other, or are accidentally degenerate.
Complete degeneracies may occur when the two different
term energy expressions are identical, i.e., they will be the
same for all radial functions. For example, a strong relativistic
mixing occurs between p d D2 3 o5 3

2 and p d D2 3 o5 1
2 CSFs as

observed in the study of the Ne-like spectra [148] because of
this near degeneracy. A systematic analysis of the energy
expressions shows that singlet-triplet term-degeneracies occur
not only for ( ) ( ))= =p l L l L l,5 1 3 but also for some
singlet and triplet terms arising from the ¢+l ll4 1 configurations,
as reported in table 3.

In all these cases, strong relativistic mixing is expected
for J = L. Note that if a degeneracy is found for some terms of

¢+l ll4 1 , the complete degeneracy also holds for the same terms
arising from ¢ ¢+l ll4 1 . This can be explained through the spin-
quasispin exchange.

4.4. The MCDHF method

The relativistic extension of the MCHF approach is to define
the ASF as an expansion over a set of jj-coupled relativistic
CSFs (55),

( ) ( ) ( )å åg gY = F =
a

a a
a

a
=

J c J c, where 1, 124
M

1

2

and the energy functional

({ } { } { } ) ∣ ∣

( )

  åg d lº áY Yñ + k kc P Q J, , ;

125
ab

ab abDC a b

as the expression for relativistic energy using the Dirac–
Coulomb Hamiltonian (9). Lagrange multipliers are intro-
duced for constraining the variations in the one-electron
functions ( )d dk kP Q,n n to satisfy the constraint (86), that
guarantees the orthonormality of the one-electron functions
and of the CSFs.

The energy functional of (124) with the Dirac–Coulomb
Hamiltonian (9) can be expressed in terms of spin-angular
coefficients and radial integrals

∣ ∣ ( ) ( ) ( ) å åáY Yñ = +t I a b v R ab cd, , , 126
ab

ab
abcd k

abcd
k k

DC
;

where

( )å å= =
ab

ab
a b

ab

ab
a bt t c c v v c c, 127ab ab abcd k abcd k; ;

are contributions from all the interactions between CSFs. The
one-body interactions give rise to the spin-angular coeffi-
cients tab and the ( )I a b, integrals defined by (88) and the
two-body interactions to the spin-angular coefficients
vabcd
k and to the relativistic Slater integrals ( )R ab cd,k defined

by (89) and (90).
The coefficient of ( )I a a, , namely =w ta aa is the gen-

eralized occupation number for orbital a. The spin-angular
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coefficients tab and vabcd
k appearing in (126) are evaluated

using the same methods as for DHF [120, 121].
As in the nonrelativistic MCHF approach, it is possible to

derive the MCDHF equations from the usual variational
argument by varying both the large and small component:

( )

( )

( )
( )

( )
( ) ( )åe d

- -

+ -

=

k

k

k k
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⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎤

⎦
⎥⎥⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

w
V a r c

c V a r c

P r
Q r

P r
Q r

;

; 2

, 128

a
r r

r r

a

a

b
ab

b

b

d

d

d

d
2

a

a

a b

( ) ( ) ( ) ¯ ( )= + +V a r V r Y a r X a r; ; ;nuc is built, similarly to
the nonrelativistic case, from the nuclear, direct and exchange
contributions arising from both diagonal and off-diagonal

∣ ∣áF F ña bDC matrix elements. In each κ-space, Lagrange
related energy parameters  =ab n na b

are introduced to
impose the orthonormality constraints (86) in the variational
process. The method of solution for both the expansion
coefficients and the radial functions are similar to those for
the MCHF equations. The main difference is in the solution of
the differential equations since the Dirac equations are a pair
of first-order differential equations.

An interesting case for relativistic theory is that of the
helium-like ground state for high-Z ions discussed in the
MCHF section 4.2. A concern is the presence of negative
energy states in an approximate wave function. Indelicato and
Desclaux [149] claimed their convergence problems for nat-
ural orbital expansions, when orbitals with >n 4 were pre-
sent, were due to the absence of projection operators. Among
the n = 4 orbitals, only s4 converged. In a subsequent paper,
Indelicato [150] introduced projection operators into an
MCDHF calculation and claimed these were essential for a
solution. But the difficulty could also have been due to
numerical problems. With the GRASP92 [80] code, MCDHF
results [151] were obtained for both +U90 and Ho65+ for He-
like expansions up to n = 6 in good agreement with Indeli-
cato’s results including projection operators. The numerical
problems can be understood already from the simple expan-
sion over the { }s f1 , 42 2 1S basis, which, in jj-coupling
becomes { }+ -s f f1 , 4 , 42 2 2 J = 0. As Z increases, ultimately the
contribution to the energy from 4f 2 will be below the num-
erical accuracy of the solution of the equation for the s1
spinor. SCF iterations then are no longer meaningful unless
the s1 is fixed.

In this review we have expressed the MCDHF equations
in a manner that includes the generalized occupation number

so that the matrix of Lagrange multipliers is symmetric.
Correlation orbitals may have extremely low occupation
number such as = -t 10aa

6. In the present form division by
small numbers is avoided and as t 0aa , e  0aa . In the
previous definition, the diagonal energy was proportional to
e taa aa, a ratio that approaches¥ as t 0aa and would be of
concern if the parameter were related to a binding energy. A
derivation of the diagonal energy parameter for e

+ +f f4 4 (or
e

- -f f4 4 ) without the introduction of diagonal Lagrange multi-
pliers has been published [152, 153] where it is shown that
large Lagrange multipliers in the earlier definition implied
that the +f4 2 or -f4 2 CSF was high in the positive energy
continuum, as found in the earlier MCHF study. The one-
electron energies of the 4f− and 4f+ are shown as a function
of Z in [153].

4.4.1. Breit and QED corrections. The variational method
can be applied to the DCB (20) with the consequence that
Brillouin’s theorem would be satisfied for selected excitations
but at the cost of considerable computational effort. As in the
case of the MCHF method (see table 2) Brillouin’s theorem
alone is not sufficient for accuracy. Thus, this option has not
been implemented in GRASP2K. Instead, larger expansions
are used that allow for a systematic calculation.

In the GRASP2K code, Breit and QED corrections are
computed using the MCDHF orbitals from a calculation using
the HDC Hamiltonian and then applying the CI method with a
Hamitonian that includes the desired corrections. Generally,
the most important correction is the Breit correction with the
Dirac–Coulomb–Breit Hamiltonian (20). In the GRASP2K
code, by default, all corrections are included in the matrix
elements for the Hamiltonian, such as  +DCB QED (24). Thus
they are not perturbative corrections and affect the wave
function. When correlation orbitals with small generalized
occupation numbers are present, the correction to some
individual matrix elements may become large. Then they
could also be computed perturbatively, thereby not affecting
the wave function.

The first QED correction included in GRASP2K is the
vacuum polarization correction, applied to all matrix elements

( )∣ ∣ ( ) ( )∣ ( )∣ ( )

( )

 åg g g gáF F ñ = áF F ña b a b
=

J J J V r J ,

129
i

N

iVP
1

Uehl

where ( )V riUehl includes vacuum polarization potential terms
of both second- and fourth-order in QED perturbation theory.

The second QED correction, the self-energy contribution
SE, is applied to the diagonal energies as

( )∣ ∣ ( ) ( ) ( ) åg gáF F ñ =a a
=

J J w E a , 130
a

n

aSE
1

SE

w

where nw is the number of subshells in the CSF, wa is the
number of electrons in subshell a in CSF, ( )E aSE is the one-
electron self-energy of an electron in subshell a. The way of
estimating ( )E aSE differs from one approach to another
[154, 155].

Table 3. Cases of complete degeneracies of singlet and triplet terms
of ¢+l ll4 1 configurations.

¢p p5 ( )P P,1 3 d p9 ( )D D,1 3 f p13 ( )F F,1 3

p d5 ( )D D,1 3 ¢d d9 ( )P P,1 3 f d13 ( )D D,1 3

¢d d9 ( )F F,1 3 f d13 ( )G G,1 3

p f5 ( )F F,1 3 d f9 ( )D D,1 3 ¢f f13 ( )P P,1 3

d f9 ( )G G,1 3 ¢f f13 ( )F F,1 3

¢f f13 ( )H H,1 3
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Other corrections that can be added in GRASP2K are the
normal mass and SMSs as defined in equations (25) and (26).
A more practical way to evaluate isotope shifts for different
pairs is to calculate the expectation values of the relevant
operators for whatever isotope combination, using the
appropriate computational tool SMS92 [156]. The higher-
order corrections can be estimated from the expectation
values of the nuclear recoil operator (27) using RIS3 [157], a
recent module of the GRASP2K package.

4.4.2. Consequence of changing the Hamiltonian. As
mentioned earlier, in GRASP2K the Breit and QED
corrections are included in a CI calculation after the
variational method has been used to determine radial
functions. When expansions are compared with orbitals
optimized for the DCB, the CI mixing may be larger
because of Brillouin’s theorem not being satisfied although
energy may be comparable. It should be remembered that the
natural orbitals of a reduced form are optimized for a specific
Hamiltonian. When the Hamiltonian changes the wave
functions no longer satisfy Brillouin’s theorem for the new
Hamiltonian. In such cases, a full expansion may be needed
for an accurate wave function. This can be seen from table 4
where the difference in energy of the natural and CAS
expansions for an n = 3 orbital set is shown for +U90 . For this
highly charged ion, the difference is significant, although for
the neutral He atom, the differences were negligible to the
digits displayed.

4.5. Nonrelativistic MCHF orbitals with a relativistic
Hamiltonian

A complementary low-order relativistic approach, also based
on CI, consists of diagonalizing the Dirac–Coulomb-Breit
Hamiltonian (20) interaction matrix to get a relativistic ASF
representation (124) in a jj-CSF basis (55) built on Dirac
spinors (11) whose large and small radial components are
calculated from nonrelativistic MCHF radial functions, using
the Pauli approximation (28) [64, 66, 158]

( ) ( )

( ) ( ) ( ) a k
=

+

k

k ⎜ ⎟⎛
⎝

⎞
⎠

P r P r

Q r
r r

P r

,

2

d

d
. 131

n nl

n nl

MCHF

MCHF

These orbitals are then orthonormalized. This method, based
on the use of a relativistic CI approach in the Pauli
approximation, labelled RCI-P, provides an interesting way

of checking the reliability of independent MCHF-BP
calculations [153, 159].

4.6. Extended MCDHF methods

Just as for the MCHF method, the MCDHF method can be
extended to simultaneously determine wave functions for
many states. Again, the variational principle is applied to a
weighted linear combination of functionals of the individual
states and the energies and expansions coefficients are
obtained as the corresponding eigenvalues and eigenvectors
of the Hamiltonian matrix for the given symmetry [160].
Normally, wave functions for fine structure states of a given
term are determined together. When determining wave
functions for many states (up to a few hundred), calculations
are often done by parity, meaning wave functions for all even
states are determined in one calculation and wave functions
for all odd states are determined in another [161–163].

In GRASP2K, an extended MCDHF method is referred
to as an extended optimal level calculation. In an extended
average level calculation only the diagonal elements of the
interaction matrix are included in the variational process.

4.7. Eigenvector representation and jj to LSJ coupling
transformations

The BP and MCDHF methods are both relativistic methods
that clearly differ in a number of significant ways. One of
these is the order of the coupling of the orbital quantum
numbers. A BP calculation uses LSJ-coupling and radial
functions of the orbitals that depend only on nl-quantum
numbers. As in all expansions where the basis CSFs form an
orthonormal set, the square of the expansion coefficient
represents the fraction of the composition of wave function
accounted for by the given CSF. This information is used to
determine the classification of the state. When relativistic
effects are small, a specific LS value will account for most of
the wave function composition and ideally is a single CSF. In
the atomic spectra database (ASD) [164] at the National
Institute of Standards and Technology the designation of a
level is usually associated with the CSF with the largest
composition. But such a scheme does not guarantee unique
labels for all ASFs [143, 165]. The simplest, but unique
labeling scheme, provided all the levels up to a given level
were known, would be use a POS index designating the
position of the ASD energy for a given symmetry, much in

Table 4. Comparison of total energies (in Eh) of the U90 ground state for reduced and CAS expansions from CI calculations for different
Hamiltonians when radial functions are computed for the reduced expansion.

Hamiltonian Reduced CAS Diff.

DC −9637.3780508 −9637.3780509 0.0000000
DCB −9625.5384609 −9625.5959163 −0.0674554
DCB+VP −9632.4011947 −9632.4491848 −0.0479901
DCB+VP+SE −9606.0571813 −9606.1052038 −0.0480225
DCB+VP+SEa −9606.0571795 −9606.1052020 −0.0480225

a
Computed perturbatively.
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the way orbitals are designating by a principal quantum
number n and orbital quantum numbers.

For the above reasons, it is often convenient to express
results from an MCDHF calculation performed in jj-coupling
in terms of LSJ notation. The JJ2LSJ code in GRASP2K does
this by applying a unitary transformation to the MCDHF CSF
basis set which preserves orthonormality. The unitary trans-
formation selected is the coupling transformation that changes
the order of coupling from jj to LSJ, a transformation that
does not involve the radial factor, only the spin-angular
factor.

As illustrated in section 3.2.1 for the 3d 4 configuration,
each nonrelativistic nl-orbital (except for ns) has associated
with it two relativistic orbitals º = l j l 1 2. In the
transformation of the spin-angular factor ∣ a ñl LSw into a jj-
coupled angular basis, two subshell states, one with

º = --l j l 1 2 and another one with º = ++l j l 1 2
may both occur in the expansion. This shell-splitting

∣ ⟶ (∣ ∣ ) ( )an n nñ ñ ñ- +l LS l J l J, , 132w w w
1 1 2 2

1 2

obviously conserves the number of electrons, provided ( =w
+w w1 2), with ( ) =w lmax 21 and ( ) ( )= +w lmax 2 12 .
Making use of this notation, the transformation between

the subshell states in LSJ- and jj-coupling can be written as

∣ ∣( )
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´ á ñ
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w w w
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w w w w w

1 1 2 2

1 1 2 2

1 1

1 1

which, in both cases, includes a summation over all the
quantum numbers (except of n, -l , and +l ). Here,
∣( )n n ñ- +l J l J J,w w

1 1 2 2
1 2 is a coupled angular state with well-

defined total angular momentum J which is built from the
corresponding jj-coupled subshell states with = =-j l1

-l 1

2
, = = ++j l l2

1

2
and the total subshell angular

momenta J1 and J2 , respectively.
An explicit expression for the coupling transformation

coefficients

( ) ∣
∣( ) ( )

( )

( )

n n an

an n n

á ñ

= á ñ
- +

-

- +
-

l J l J J l LSJ

l LSJ l J l J J

,

, 135

w w w w

w w w w

1 1 2 2

1 1 2 2

1 1

1 1

in (133) and (134) can be obtained only if we take the
construction of the subshell states of w equivalent electrons
from their corresponding parent states with -w 1 electrons
into account. In general, however, the recursive definition of
the subshell states, out of their parent states, also leads to a
recursive generation of the transformation matrices (135).
These transformation coefficients can be chosen real: they
occur very frequently as the building blocks in the
transformation of all symmetry functions. The expressions
and values of these configurations are published in [166].

5. Correlation models

5.1. Electron correlation

HF is an approximation to the exact solution of Schrödingerʼs
equation. Neglected is the notion of ‘correlation in the motion
of the electrons’; each electron is assumed to move inde-
pendently in a field determined by the other electrons. For this
reason, the error in the energy was defined by Löwdin in 1955
[167], to be the correlation energy, i.e.

( )= -E E E . 136corr exact HF

In this definition, Eexact is the exact energy eigenvalue of
Schrödingerʼs equation. In line with the definition we will
refer to electron correlation as effects beyond the HF
approximation. Electron correlation can be thought of as
consisting of two parts; static correlation and dynamic
correlation [168, 169].

5.1.1. Static electron correlation. Static correlation is the
long-range re-arrangement of the electron charge distribution
that arises from near degeneracies of the HF energies. Static
correlation can be accounted for by including in the wave
function a set of important CSFs that define the so called
multireference (MR) set. Static correlation can also be
interpreted in terms of Z-dependent perturbation theory
where the CSFs of the MR set are built from orbitals with
the same principal quantum numbers as the ones that occupy
the reference state and where we may think of orbitals with
the same principal quantum numbers as being degenerate. In a
more general setting we can say that the static correlation is
described by a set of CSFs that have large expansion
coefficients and account for the major correlation effects.

5.1.2. Dynamic electron correlation. Dynamic correlation is a
short-range effect that arises from the singularity of the r1 ij

electron–electron interaction near points of coalescence where
=r 0ij and has a cusp condition associate with it [52]. These

are not isolated points, but include the entire region of space.
The more likely regions are those where the probability of
finding a pair of electrons is the highest.

It has been shown that by extending expansions to
include CSFs with higher l-quantum numbers, the accuracy of
the wave function improves [170]. For the helium ground
state, a total energy accurate to seven (7) decimal places is
estimated to require expansions up to l = 100 [91]. Wave
function expansions in terms of CSFs built from central-field
orbitals form a non-local basis that is non-zero over the region
of space. If, instead, the CSFs are built from a B-spline basis,
which is non-zero over only a ‘local’ subregion, the
contributions to expansions with higher l, have been shown
to cluster around the =r r1 2 region [58]. This becomes
evident when noting that

( )=<
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+

>
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This factor, appearing in all Slater integrals, clearly shows the
rapid decrease away from the diagonal (r r,1 2) region with
increasing k.

In some instances, symmetry plays an important role. A
total wave function of a many-fermion system must be
antisymmetric with respect to the interchange of any two of
the fermions in order to satisfy the Pauli exclusion principle.
For the sns1 3S systems the spin function is symmetric so that,
by the Pauli exclusion principle, the radial factor for the HF
wave function must be antisymmetric, namely

[ ( ) ( ) ( ) ( )] ( )-P r P r P r P r r r2 .s ns ns s1 1 2 1 1 2 1 2

This factor is zero for all r1 and r2 whenever =r r1 2 and
includes the points where =r 012 . Thus even at the HF level
the two electrons are kept away from each other by the
symmetry requirements and the effects of dynamic electron
correlation are fairly minor.

For many-electron systems the largest contributions to
electron correlation come from pairs of electrons which
occupy the same region in space. Thus there are large
contributions from each doubly occupied orbital with smaller
additions from orbital pairs that occupy different shells. Just
as for the static correlation the dynamic correlation can be
accounted for by expansions over CSFs and the effect should
be to mimic the cusp behavior of the exact wave function at
points of electron coalescence. Perturbative arguments are
used to define classes of CSFs that are important in this regard
and this is the topic of the next section.

5.2. Z-dependent perturbation theory

Let us introduce a new variable r = Zr , which in effect
changes the unit of length. Then the nonrelativistic Hamil-
tonian becomes

( ) ( )( ) = + -Z Z V , 1382 0 1

where
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Schrödinger’s equation now reads

( ) ( ) ( )( ) + Y = Y- -Z V Z E . 1400 1 2

In this form, the Z1 appears as the natural perturbation
parameter. If we assume

( )( ) ( ) ( ) Y = Y + Y + Y +- -Z Z 1410 1 1 2 2

in the ρ unit of length, and

( ) ( )( ) ( ) ( ) ( ) = + + + +- - -E Z E Z E Z E Z E 1422 0 1 1 2 2 3 3

we may insert these expansions in (140) to obtain equations
for ( )Y k and ( )E ;k

( )
( ) ( )
( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )





- Y =
- Y = - Y
- Y = - Y + Y

E

E E V

E E V E

0,

,

.
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0 0 0

0 0 1 1 0

0 0 2 1 1 2 0

The solutions of the first equation are products of hydrogenic
orbitals.

Let ∣{ }g ñnl LS be a CSF constructed from products of
hydrogenic orbitals. Here { } { }= ¼nl n l n l n l, , , N N1 1 2 2 is the
set of N principal and orbital quantum numbers that define the
configuration (39) and γ denotes the complete set of the
coupling tree quantum numbers specifying unambiguously
the considered configuration state (see (50)). Then

∣{ } ∣{ } ( )( ) ( ) g gñ = ñnl LS E nl LS 1440 0

with ( )E 0 being the sum of the hydrogenic energies

( )( ) å= -
=

⎛
⎝⎜

⎞
⎠⎟E

n

1

2
. 145

i

N

i

0

1
2

Since ( )E 0 is independent of the orbital quantum numbers, it is
now clear that different configurations may lead to the same

( )E ;0 that is, ( )E 0 is degenerate. According to first-order
perturbation theory for degenerate states [105, 171], ( )Y 0 is a
linear combination of the degenerate CSFs ∣{ }g¢ ¢ ñnl LS ; the
coefficients are components of an eigenvector of the
interaction matrix, { } ∣ ∣{ }g gá ¢ ¢ ñnl LS V nl LS and ( )E 1 is the
corresponding eigenvalue. Then

∣{ } ( )( ) å gY = ¢ ¢ ñ
g

g
¢ ¢

¢ ¢c nl LS . 146
l

l
0

But only configurations with the same parity interact and so
the linear combination is over all CSFs with the same set of
principal quantum numbers and the same parity. This set of
CSFs is referred to as the complex by Layzer [172]. The
relativistic versions of Layzer’s complex can be found in
[173, 174].

The first-order correction ( )Y 1 is a solution of (143)
orthogonal to ( )Y 0 . It can be expanded as a linear combination
of normalized intermediate CSFs ∣g ñLSv belonging to ( ) 0 ,
but outside the complex. Then

∣ ∣ ∣ ( )( )
( )

( )å
g g

Y =
ñá Y ñ

- g

LS LS V

E E
, 147

v

v v

LS

1
0

0
v

where ∣ ∣( )g g= á ñgE LS LSLS v v
0

v
. Substituting equation (146)

into (147) and interchanging the orders of summation, we find

∣ ∣ ∣{ } ( )( )
( )å å

g g g
Y =

ñá ¢ ¢ ñ
-g

g
g¢ ¢

¢ ¢c
LS LS V nl LS

E E
. 148

l
l

v

v v

LS

1
0

v

In other words, the mixing coefficient, g¢ ¢cl , is a weight factor
in the sum over intermediate CSFs ∣g ñLSv interacting (having
non-zero matrix elements) with CSFs in the complex.

5.2.1. Classification of correlation effects. The zero-order
wave function ( )Y 0 is obtained as a linear combination of
CSFs in the complex. It describes the many-electron system
in a general way and accounts for the major part of the long-
range static electron correlation. The first-order correction

( )Y 1 is a linear combination of CSFs that interact with the
CSFs in the complex and it accounts for additional long-range
electron correlation and the major part of the short range
dynamic correlation. Assume for simplicity that there is only
one CSF ∣{ }g ñnl LS in the complex. The CSFs interacting
with ∣{ }g ñnl LS are of two types: those that differ by a single
electron (single substitution S) and those that differ by two
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electrons (double substitution D). The former can be further
subdivided into

(i) Those that differ from ∣{ }g ñnl LS by one principal
quantum number but retain the same spin and orbital
angular coupling. These configuration states are part of
radial correlation.

(ii) Those that differ by one principal quantum number and
also differ in their coupling. Often the only change is
the coupling of the spins, in which case the configura-
tion states are part of spin-polarization.

(iii) Those that differ in the angular momentum of exactly
one electron and are accompanied by a change in orbital
angular coupling of the configuration state and possibly
also the spin coupling. The latter represent orbital
polarization.

The sums over CSFs that differ in two electrons can also
be classified. Let { }a b c, , ,.. be occupied orbitals in
∣{ }g ñnl LS and { }¢v v, ,.. be orbitals in a so called active set
(AS). Then the double replacement  ¢ab vv generates CSFs
in the expansion for ( )Y 1 . The function defined by CSFs from
all double replacements from ab is called a pair-correlation
function (PCF) and it corrects for the cusp in the wave
function associated with this electron pair. The PCFs from all
electron pairs correct for the main part of the dynamic
correlation. There is another and more general classification
that takes into account if the orbital replacements are from
valence or core orbitals:

(i) If ab are orbitals for outer electrons the replacement
represents outer or valence correlation.

(ii) If a is a core orbital but b is an outer orbital, the effect
represents the polarization of the core and is referred to
as core–valence (CV) correlation.

(iii) If both orbitals are from the core, the replacement
represents core–core (CC) correlation.

5.3. CSF expansions for energy

Z-dependent perturbation theory is not appropriate for prac-
tical calculations, but it is a very useful guide for how the
initial HF approximation can be improved in MCHF or CI
calculations in order to capture most of the correlation energy.
The zero-order wave function ( )Y 0 accounting for the major
part of the static correlation is an expansion over CSFs with
large interactions with the CSF of interest, either those that
are nearly degenerate or those with a large interaction matrix
element (see section 4.1.1). These CSFs define the MR set
and an associated MR function space. In addition, in order to
account for dynamic correlation, the wave function Ψ should
include CSFs generated by SD replacements of orbitals from
each CSF of the MR set, with orbitals in an AS. For a first-
order correction, the included CSFs should interact with at
least one CSF of the MR set.

As an example we look at s s S1 22 2 1 . For infinite Z,
s s S1 22 2 1 is degenerate with s p S1 22 2 1 and degenerate per-
turbation theory needs to be applied. Here, for finite Z, the
zero-order wave function is an expansion over the two CSFs

{∣ ∣ }ñ ñs s S s p S1 2 , 1 22 2 1 2 2 1 that define the MR set. For Be I
we have

∣ ∣
( )

( )Y = ñ + ñs s S s p S0.9500344 1 2 0.3121452 1 2
149

0 2 2 1 2 2 1

and we see that both the CSFs of the MR wave function have
large expansion coefficients (generally with a weight ∣ ∣ci

2

greater than a few per cent). Valence correlation is accounted
for by considering CSFs obtained from  ¢ ¢s s nln l2 2
replacements from the first CSF and  ¢ ¢p p nln l2 2 replace-
ments from the second. CV correlation is accounted for by
considering CSFs obtained from  ¢ ¢s s nln l1 2 and

 ¢ ¢s p nln l1 2 replacements from, respectively, the first and
second CSF. Core correlation in the n = 1 shell accounted for
by considering CSFs obtained from  ¢ ¢s s nln l1 1 replace-
ments from both CSFs. In a first-order calculation, all the
generated CSFs should interact with at least one CSF.
Included in the general expansions above are also the CSFs
obtained by single replacements, although there is no clear
classification in valence, CV or core correlation effects.

The generation of the CSF expansions is a very important
step in atomic structure calculations. In the ATSP2K and
GRASP2K program packages there are flexible program
modules for generating CSF expansions based on rules for
orbital replacements from an MR set to an AS of orbitals
[175, 176].

5.3.1. Correlation and spatial location of orbitals. In the
MCHF and MCDHF methods the location and shape of the
correlation orbitals depend on the energy functional or CSFs
expansion used to derive the MCHF or MCDHF equations
[49, 177]. To illustrate this we again consider the ground state
of Be I. Figure 2 displays orbitals from MCHF calculations
based on CSFs expansions describing valence-, CV and core
correlation, respectively. One clearly sees the contraction of
the correlation orbitals when going from a valence to a core
correlation calculation.

Orbitals in the valence region are ill suited to describe
correlation in the core region and vice versa. Since
calculations due to orthogonality constraints are based on
one orbital set, this must often be large to saturate all
correlation effects. This is especially true for large systems
with many subshells. To overcome these problems the
partitioned correlation function interaction (PCFI) method
has been developed [177, 178]. The PCFI method uses a
biorthonormal transformation method [179] to relax the
orthogonality constraint of the orbitals and correlation effects
can be described by several non-orthogonal sets of correlation
orbitals, each set being optimally localized for the considered
correlation effect. The PCFI method captures correlation
effects more efficiently than do the ordinary MCHF and
MCDHF methods [51].

5.4. CSF expansions for energy differences

Often we are interested in determining energy separations
between different levels. In these cases we may, in the first
approximation, define closed inner subshells as inactive and
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consider correlation only between the outer valence electrons.
The rationale for this is that the correlation energy in the core,
although large in an absolute sense, to a great extent cancels
when computing energy level differences or the energy rela-
tive to the ground state. However, the presence of outer
valence electrons polarizes the core. The effect of this
polarization is represented by CV correlation where CSFs are
obtained by orbital replacements  ¢ab vv from the CSFs of
the MR set, with a and b, respectively, being core and valence
orbitals, as shown in studies for Ca I and Ca II [180]. The CV
correlation reduces the energy and increases the binding of
the valence electrons to the core. In case of a single electron
the increase in the binding is reflected in a contraction of the
orbital which has a large effect on other computed properties.

Generally, energy separations are much improved if CV
correlation is included. For larger atomic systems it is not
always clear which subshells should be inactive and which
should be part of the active core for which CV effects are to
be considered. For each new system this needs to be sys-
tematically investigated. Somewhat counter intuitive there are
several examples where CV correlation effects are larger for
more inner subshells than for more outer subshells [19]. A
good starting point for analyzing the situation is to plot the
radial part of the core and valence orbital and look at the
overlap between the different orbitals. If the overlap is large
then CV effects are likely to be important.

To illustrate the discussion above we look at the
separation between s s p s S1 2 2 32 2 6 2 and s s p p P1 2 2 3 o2 2 6 2 in
Na I. We systematically include CSFs obtained from

( )

 ¢ ¢  ¢ ¢  ¢ ¢
 ¢ ¢  ¢ ¢  ¢ ¢
 ¢ ¢  ¢ ¢  ¢ ¢

pv nln l p p nln l sv nln l

s p nln l s s nln l sv nln l

s p nln l s s nln l s s nln l

2 , 2 2 , 2 ,

2 2 , 2 2 , 1 ,

1 2 , 1 2 , 1 1 , 150

replacements from the ∣ ñs s p s S1 2 2 32 2 6 2 and ∣ s1 22 s2

ñp p P2 3 o6 2 reference CSFs to an AS that was extended to
principal quantum numbers n = 9 and orbital quantum
numbers l = 5 leading to energy contributions that are
reasonably well converged with respect to the orbital set. Here
v denote the s3 or p3 valence orbital. The accumulated
contributions to the total energy of the two states as well to

the energy difference is from the CSFs obtained from the
replacements are displayed in table 5.

From this table we see that CSFs obtained by orbital
replacements  ¢ ¢pv nln l2 , accounting for the CV correlation
with p2 , have a relatively small influence on the total ener-
gies. The CSFs are however very important for the energy
differences. CSFs obtained by orbital replacements

 ¢ ¢p p nln l2 2 account, by far, for most of the correlation
energies in the two states. These contributions largely cancel
and the change in the energy difference is rather small, of the
same order as the effect of the  ¢ ¢sv nln l2 replacements the
describe the CV electron correlation with s2 . Also the cor-
relation between s2 and p2 described by the  ¢ ¢s p nln l2 2
replacements are important for both the total energies and the
energy differences.

5.5. Capturing higher-order correlation effects

Z-dependent perturbation theory defines the structure of the
zero-order wave function and the first-order correction. The
structure of higher-order corrections for energies, as well as
other properties, can be derived in a similar way. For ener-
gies, higher-order corrections are captured by including CSFs
that interact with the CSFs in the zero- and first-order wave
function. In practice this is the same as including some of the

Figure 2. Contraction of the correlation orbitals from valence, core–valence and core–core correlation MCHF calculations of Be s s S1 22 2 1 .
The two thick red lines correspond to the spectroscopic s1 (no node) and s2 (one node) orbitals. Other lines represents the radial distributions
of the correlation orbitals of the n = 4 active set. Note the location of the maxima of the different types of orbitals.

Table 5. Energies (in Eh) for s3 2S and p3 Po2 of Na I as more
correlation types of CSFs are added to the wave function expansion.

Corr. ( )E S2 ( )E Po2 DE

HF −161.858580 −161.786286 0.072293
pv2 −161.866176 −161.788935 0.077241
p p2 2 −162.076793 −161.999811 0.076981
sv2 −162.077481 −162.000103 0.077378
s p2 2 −162.158012 −162.081373 0.076639
s s2 2 −162.169542 −162.093022 0.076520
sv1 −162.169625 −162.093066 0.076558
s p1 2 −162.193467 −162.117022 0.076445
s s1 2 −162.199039 −162.122580 0.076460
s s1 1 −162.238215 −162.161813 0.076402
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CSFs that can be generated by single, double, triple, and
quadruple (SDTQ) orbital replacements  ¢ ¢¢ ¢¢¢abcd vv v v
from the CSFs of the MR set. The number of CSFs increases
very rapidly with the increasing number of orbitals in the AS
and thus general SDTQ or SDT orbital replacements are
feasible only for few-electron systems [181, 182]. A way to
include the most important higher-order correlation effects is
to increase the MR set by adding CSFs for a certain portion
= åa aÌp cMR

2 of the wave function composition [183, 184].
The overall accuracy of the wave function increases as the
MR set accounts for a larger portion of the wave function. In
fact, if the MR space represents the portion p of the total wave
function and -E EMR the amount by which the SD excita-
tions have lowered the energy, then an estimate of the error in
the energy is ( )( )- -E E p p1MR [185, 186].

5.6. Valence and CV correlation in lanthanides

In a relatively simple system, it may be sufficient to have a
balanced SD process applied similarly to the odd and even
parity states and a common fixed core. But complex, heavy
atoms require more care. Consider a ground state calculation
for the odd 4f5d6s2 configuration of Ce I, a lanthanide ele-
ment, with a nearby interacting 4f5d26s configuration. The
lowest even parity configuration is the f s4 62 2 configuration
fairly high in the spectrum. Variational calculations for this
spectrum have not been investigated, to our knowledge, but,
would raise a number of issues.

It is not obvious what the core should be. Configurations
are specified by listing open subshells in order of energy of
the electrons or possibly a closed, outer s2 subshell. In the
case of Ce I, inner closed subshells are s s p1 2 22 2 6

s p d s p d s p3 3 3 4 4 4 5 52 6 10 2 6 10 2 6. Notice that both the n = 4 shell
and the n = 5 shells are unfilled as well as the n = 6 shell.
The notation implies the occupied subshells, f d s4 , 5 , 6 are
outside the core but the figure 3 shows that the mean radius of
the f4 orbital is close to that of d4 and that, from the point of
view of ‘correlation in the motion of the electrons’ there may
well be more -d f4 4 interaction than, say -p f5 4 . It is
possible that f4 should be considered part of the core, so that
its main role is to define the screening of the outer orbitals. It
would imply that 4f 26s6p, for example, should be considered

as a system with a larger core, with its own set of outer
correlation orbitals, non-orthogonal to those of 4f5d6s2.

For the lanthanides, it is not clear how the concept of
core and valence electrons can be applied. For the ground
configuration of Ce I, the complex theory would require
s p d s5 , 5 , 5 , 6 to be occupied valence orbitals and possibly
also other orbitals depending on the strength of interactions
between CSFs in the {1}2{2}8{3}18{4}19{5}9{6}2 complex.
We could make the assumption that correlation within the
n = 4 shell is the same for all levels and cancels in an energy
difference but could be included as part of CC correlation.
This leads so to the concept of three types of orbitals:

(i) An inactive core— s s p s p d1 , 2 , 2 , 3 , 3 , 3
(ii) An active core— s p d f4 , 4 , 4 , 4
(iii) Valence orbitals— s p d s5 , 5 , 5 , 6 .

In addition to difficulties in defining the core, calcula-
tions for the lanthanides suffer from the fact that the number
of CSFs generated by SD replacements from an MR set
rapidly grow unmanageably large in GRASP2K. Configura-
tions, however, can be ranked according to their interaction
strength [187]. Retaining only the most important configura-
tions reduces the number of CSFs, but still calculations strain
computational resources and only a few correlation studies
have been reported. Examples include the 4f 2 configuration
of Pr IV [188] and the ground state of Lawrencium [189].

6. Estimating uncertainties

The accuracy of a calculation depends on the MR set, the
orbital set, the rules for substitutions which define the cor-
relation model, and finally, the inactive core orbitals. Acc-
uracy should improve when the first two are increased in such
a fashion that the smaller set is included in the larger. For
example, if {MR} denotes the initial MR set and {MR*} the
expanded set, then {MR} ⊂ {MR*}. At the same time, with
less constraints on the substitutions and with a smaller inac-
tive core, all other things being equal, the results should be
more accurate.

Figure 3. HF and DHF radii of orbitals of some configurations of Ce I.
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To estimate the uncertainties in computed atomic para-
meters these parameters should be varied in a systematic way.
This can be done in a number of ways and in practice there is
always a balance between the available computational
resources and desired accuracy. The following steps can be
followed:

(i) Increase the orbital set systematically and monitor the
convergence of the desired property. Expansions by
‘layers’ (adding one new orbital of a given symmetry)
are a commonly used process for which results can be
extrapolated.

(ii) Expand the MR set so that SD substitutions are applied
to a larger portion of the wave function. Since the wave
function expansion is normalized, = åa aÌp cMR

2

represents a larger fraction of the wave function used
in the SD process. Clearly, the most efficient way of
increasing the MR set is to promote the CSFs with the
largest expansion coeffients in the wave function to the
MR set.

(iii) relax constraints on the substitutions and make the
inactive core smaller.

Systematic MCHF and MCDHF calculations have been
performed for many systems. Depending on the calculated
properties and the complexity of the atomic structure the steps
of the calculations differ, but the general idea of a systematic
enlargement of the CSF space remains. Examples of these
types of calculations are given in [190, 191], where the
convergence of allowed and intercombination transitions in
C II, C III and Mg-like ions, respectively, are studied as the
orbital sets are enlarged within a correlation model and where
the initial valence correlation models are extended to suc-
cessively include also CV and core correlation. Systematic
calculations allowing for uncertainties to be estimated are also
discussed and exemplified in [45–47, 49, 192].

6.1. A systematic approach

Lithium has been a much studied system due to the possibility
of systematically exploring and understanding different cor-
relation effects and convergence properties of the variational
solution. For lithium there also are a number of highly
accurate Hylleraas variational calculations for comparison.
The nonrelativistic total energies for the latter calculations are
essentially exact. Tong et al [46] studied the convergence of
the total energy for s s S1 22 2 in Li I for nl-expansions, similar
to partial wave expansions. The generation of the CSFs can be
described by

∣




¼
¼

ñ

l l l L
n n n N

n l n l n l S

For , , 0, 1, ,
For , , 1, 2, ,

Include CSFs of the form ,

1 2 3

1 2 3

1 1 2 2 3 3
2

where L and N are upper limits on l l l, ,1 2 3 and n n n, ,1 2 3

respectively. The result is displayed in table 6. The column
headed n denotes the largest n of the current l column and for
>l 0, the calculation includes all the orbitals of the previous

columns. Thus the calculations for = =n l2, 1 includes all
CSFs that can be generated by SDT replacements of orbitals
in the 1s22s reference with orbitals in the AS
{ }¼s s s p1 , 2 , ,13 , 2 . The row denoted ¥ contains extrapo-
lated values for each l. The extrapolated values can be
obtained using the fact that ratio of the energy differences
= D D -r E En n n 1 where D = - -E E En n n 1 is almost con-

stant and in the range 0.5–0.6. This leads to a geometric series
for the correction which sums up to

( )D
-

⎛
⎝⎜

⎞
⎠⎟E

r

r1
. 151n

n

n

With rn in the above range the correction is similar to the last
corrections DEn to the energy. The row denoted dl shows the
correction between the extrapolated values and the last energy
computed for the partial wave. When starting the calculations
for a new partial wave l the correction d -l 1 from the previous

Table 6. Total energies (in Eh) from nl-expansions for s s S1 22 2 in Li I as a function of the maximum values of n and l (from [46]).

n l = 0 l = 1 l = 2 l = 3 l = 4

2 −7.432 726 93 −7.469 941 45
3 −7.447 567 56 −7.471 977 24 −7.476 040 54
4 −7.448 476 36 −7.473 217 44 −7.476 483 19 −7.477 263 40
5 −7.448 610 63 −7.473 628 47 −7.476 610 99 −7.477 406 14 −7.477 667 73
6 −7.432 644 19 −7.473 765 36 −7.476 695 98 −7.477 455 71 −7.477 725 20
7 −7.447 656 86 −7.473 809 59 −7.476 734 50 −7.477 477 01 −7.477 748 59
8 −7.448 662 54 −7.473 824 87 −7.476 751 83 −7.477 491 03 −7.477 759 33
9 −7.448 664 96 −7.473 830 96 −7.476 760 26 −7.477 498 88 −7.477 764 96
10 −7.432 666 06 −7.473 833 71 −7.476 764 37 −7.477 503 03 −7.477 768 82
11 −7.447 666 61 −7.473 835 09 −7.476 766 47 −7.477 505 39 −7.477 771 22
12 −7.448 666 90 −7.473 835 86 −7.476 767 61 −7.477 506 78 −7.477 772 64
13 −7.448 667 06 −7.473 836 26 −7.476 768 26 −7.477 507 61 −7.477 773 50
14 −7.473 836 52 −7.476 768 66 −7.477 508 12 −7.477 774 08

¥ −7.448 667 26 −7.473 836 90 −7.476 769 24 −7.477 508 95 −7.477 775 17
dl −0.000 000 20 −0.000 000 38 −0.000 000 58 −0.000 000 83 −0.000 001 09
d+ −7.448 667 26 −7.473 837 10 −7.476 769 82 −7.477 510 11 −7.477 777 16
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wave needs to be added (for details see the original article). The
table shows that the energy converges well within a given
partial wave. However, to obtain the total energy the
contributions from the high-l partial waves must be estimated.
Assuming a similar asymptotic behavior with respect to l as was
for two-electron systems D = - -E E El l l 1, where El is the
limit for the l partial wave, is fitted to an expression of the form

( )+ + + + +
- - -

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠a l a l a l

1

2

1

2

1

2
. 1520

4

1

5

2

6

The remainder is obtained by summing the above expression
over l. This gives the final nonrelativistic total energy for
s s S1 22 2 in Li I

( )= -E E7.478 059 6 . 153nr h

Similar detailed and systematic convergence studies of
energies have been done for other Li-like systems [50] as
well as for Be- and B-like systems [48, 49, 51, 177], adding to
our understanding of correlation effects and how they can be
accounted for in multiconfiguration methods.

6.2. Relativistic calculations for light atoms

For light elements with 12–18 electrons, many BP calcula-
tions have been performed for all the lower levels of a
spectrum up to certain level (see http://nlte.nist.gov/MCHF).
These calculations, though relativistic, did not include CV or
CC correlation.

With the computer resources now available GRASP2K
calculations have been performed for Mg-like elements for a
range of Z values [193]. Odd and even orbital sets were
optimized separately. For each parity, the MR set was from
the set of CSFs that included all ¢l l3 3 CSFs, all

= ¼snl nl s g3 , 4 5 , all = ¼pnl nl s f3 , 4 4 , and all
= ¼dnl nl s f3 , 4 4 . SD expansions up to n = 8 for VV

correlation and limited CV were used in that at most one s2 or
p2 orbital was allowed in the substitution. The range of J
values was 0–5 for both parities and the number of eigen-
values for each parity was 79. For each parity the expansions
consist of 6 blocks (one for each J). From 3 to 23 eigenvalues
per blocks were required. The results of this calculation were
treated as the zero-order approximation. Added to these cal-
culations were the CSFs obtained from SD substitutions from
all the core subshells of the CSFs in the MR. The CSFs
obtained in this way account for CC correlation and constitute
the first-order correction as presented in section 4.1.2. As in
perturbation theory, the matrix ( )H 11 was replaced by the
diagonal matrix denoted by ( )Hii

11 and the Davidson algorithm
as implemented in GRASP2K [131] was used for computing
all the needed eigenvalues and eigenvectors for a given block.
It is interesting to see the size of the expansions:

Parity VV+CV VV+CV+CC

Even 644 342 5 624 158
Odd 630 502 6 214 393

Thus including substitutions from all core subshells greatly
increases the size of the expansion and, on average, the VV

+CV+CC expansion is 10 times that of VV+CV. The
assumption that ( )H 11 is a diagonal matrix, greatly reduces the
angular data needed. The calculation including CC correlation
required about 20 h on a cluster with 10 nodes.

Table 7 shows the energies relative to the ground state (in
cm −1) for the two calculations and compares the results with
values, derived from observation, reported in the ASD [164]
for Fe XV, but limited to only snl3 energy levels. Note that
some levels are not present in ASD making the spectrum
information incomplete. Some are misclassified as, for
example, s s3 5 3S.

For comparison, BP results [148] that were state-of-the-art
a decade ago are included for a few values. Considerable
improvement has been achieved for lower levels. For the more
highly excited states,DE for +VV CV is typical of the earlier
BP calculations and others when CC correlation is omitted.
Generally, lower levels are in better agreement
with observation than excited levels. Note that including
CC correlation has reduced the discrepancy for higher levels by
a factor of 2–3. The mean error in + +EVV CV CC is 0.023%.

The computer resources needed by such a calculation can
be greatly reduced by a restructuring the computational pro-
cedure. GRASP2K was designed for expansions of a few
hundred CSFs in mind. When the SD expansions are gener-
ated from orbital sets with multiple layers of orbitals, CSFs
should be replaced by partial waves where each partial wave
has only one spin-angular symmetry and can be structured.
When expansions are in the millions, it actually is faster to
generate the expansion than to read it from a file. Angular
data can then be expressed in terms interactions with partial
waves and advantage taken of the fact that angular expres-
sions are independent of the principal quantum number.
Advantage can also be taken of the fact that excitations differ
by at most two orbitals. In a study of Helium where the wave
function was expanded in a tensor product of B-spline func-
tions, the partial wave of a pair correlation function of a given
summary was treated as an array and very little angular data
was needed, In fact, the energy matrix was not stored in
memory. An iterative method for solving the wave equation
was devised for parallel computation that only requires a
sequence of values of Hc, where H is the interaction matrix
and c is an approximate eigenvector.

6.3. Relativistic calculations for highly charged ions

Though the effect of correlation on atomic properties of light
elements has been analyzed extensively using nonrelativistic
theory, the same is not true for heavy elements. In these
elements the many-body effects are relativistic (as distinct
from nonrelativistic with a correction as in BP) and the
magnetic Breit, QED, and finite nuclear corrections need to be
considered when comparing results with observation. Total
energies are a good benchmark although they cannot be
compared directly with experiment.

In table 8 the trends of the different contributions to the
Be-like ground state energy are shown. The DHF value is the
total energy for the s S2 2 1

0 CSF. DC is the reduction in the
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total energy due to correlation when the orbital set is
expanded systematically by n. As expected, the correlation
energy contribution (DC) converges slowly, becoming more
negative with n. It should be noted that, as n increases, an
orbital with a new angular momentum is introduced into the
orbital set, namely = -l n 1. For large n, this orbital has the
largest generalized occupation number and this contributes to
the slow convergence. The TP (Breit) correction raises the
total energy and converges more slowly than correlation. At
some point, the change in the TP correction is larger than the
change in DC which seems counter intuitive. Orbitals with a

high angular momentum seem to play a role in this obser-
vation. It is important to remember that the Breit operator is a
first-order operator, that Breit evaluated the operator as a
perturbative correction [195]. Possibly higher order correc-
tions are needed.

The systematic GRASP2K calculations reported in
table 8 were carried out until the generalized occupation
numbers of orbitals in the last layer were less than about
´ -5 10 8 which happens to be close to the accuracy of the s1

orbital energy. On that basis, it is clear that correlation con-
verges more rapidly when Z increases.

Table 7. Comparison of calculated and observed excitation energies (in cm−1) in Fe XV. (i) EASD: observed energies from the ASD database
[164], ii) +EVV CV: energies from MCDHF calculations that account for valence and core–valence correlation, (iii) + +EVV CV CC: energies that
account for valence and core–valence correlation and where core–core electron correlation effects have been included perturbatively, (iv)
EBP(VV): Breit–Pauli energies from valence correlation calculations [148], (v) DE : difference between computed and EASD value.

State EASD +EVV CV DE + +EVV CV CC DE EBP DE

s S3 2 1
0 0 0 0 0 0 0

s p P3 3 o3
0 233842 233828 −14 233928 86 232595 −1248

s p P3 3 o3
1 239660 239668 8 239741 81 238542 −1118

s p P3 3 o3
2 253820 253829 9 253773 −47 252751 −1069

s p P3 3 o1
1 351911 352169 258 352091 180 349866 −2045

s d D3 3 3
1 678772 678954 182 678329 −443 680377 1655

s d D3 3 3
2 679785 679986 201 679381 −404 681111 1326

s d D3 3 3
3 681416 681603 187 680952 −464 683029 2613

s d D3 3 1
2 762093 762729 636 762176 83 762218 125

s s S3 4 3
1 1763700 1764876 1176 1763699 −1

s s S3 4 1
0 1787000 1788455 1455 1787322 322

s p P3 4 o3
0 1883187 1882236

s p P3 4 o3
1 1883595 1882588

s p P3 4 o3
2 1890703 1889632

s p P3 4 o1
1 1889970 1891051 1081 1890042 72

s d D3 4 3
1 2031310 2032907 1597 2031683 373

s d D3 4 3
2 2032020 2033653 1633 2032413 393

s d D3 4 3
3 2033180 2034880 1700 2033623 443

s d D3 4 1
2 2035280 2036318 1038 2035053 −227

s f F3 4 o3
2 2108520 2109821 1301 2108281 −239

s f F3 4 o3
3 2108620 2110029 1409 2108503 −117

s f F3 4 o3
4 2108880 2110327 1447 2108798 −82

s f F3 4 o1
3 2123150 2124654 1504 2123180 30

s s S3 5 3
1 2544800 2512036 −32764 2510852 −33948

s s S3 5 1
0 2520681 2519752

s p P3 5 o3
0 2568582 2567624

s p P3 5 o3
1 2568791 2567639

s p P3 5 o1
1 2567000 2571834 4834 2570733 3733

s p P3 5 o3
2 2572157 2570743

s d D3 5 3
1 2640100 2641400 1300 2640247 147

s d D3 5 3
2 2639900 2641630 1730 2640442 542

s d D3 5 3
3 2640300 2642072 1772 2640870 570

s d D3 5 1
2 2643981 2642888

s f F3 5 o3
2 2676400 2677360 960 2675889 −511

s f F3 5 o3
3 2676400 2677455 1055 2675988 −412

s f F3 5 o3
4 2676600 2677594 994 2676123 −477

s f F3 5 o1
3 2782700 2682597 −100103 2681155 −101545

s g G3 5 3
3 2687368 2685680

s g G3 5 3
4 2687556 2685877

s g G3 5 3
5 2687777 2686099

s g G3 5 1
4 2690506 2688841
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When Etotal energies are compared with the perturbation
theory results reported by Malyshev et al [194], the n = 8
energies are in remarkable agreement with GRASP2K for Ca
(Z = 20) and n = 6 for Xe (Z = 45). On the other hand, U
(Z = 92) is problematic and more information is needed to
explain the difference. For this case, the various nuclear cor-
rections are not equated with ISO since, unlike previous cases
where there was good agreement, there is now a factor of two
difference implying some difference in the treatment of the
nucleus. Whereas in GRASP2K, the DHF total energy is a fairly
good approximation to the energy (accurate to 1 in 326)
the perturbation theory calculations start with a zero-order
energy that is far less accurate and, as a consequence, the
equivalent correlation energy is much larger. Since there is an
interaction between Breit and correlation, the equivalent value
for TP does not even have the same sign, even for the lightest
element.

Perturbation theory calculations rely on orbitals from a
given potential and use the ‘no-pair Hamiltonian’ in which

states from the negative energy sea are omitted. Malyshev
et al report results from three different potentials and it is
impressive to see how the sum of contributions for the many-
body effects that include the Breit correction (the first ‘Sum’

in table 8) agree to essentially two decimal places. This is not
exactly a proof of accuracy since all calculations may have
omitted the same contribution (i.e., contributions from orbi-
tals with higher angular momenta, a range that is not specified
in their paper) but it is reassuring. The difference in sign of
the TP (Breit) correction in all cases is unexpected.

From the GRASP2K perspective, it would be interesting
to see similar results starting from the same variational DHF
potential as given in equation (128). The recent DBSR-HF
code [196] not only performs variational calculations in a
B-spline basis, but can also provide the complete set of
orbitals for positive and negative states of DHF potential for
an orbital of given symmetry which can be used for RMBPT
calculations [16, 129]. Such a comparison might illuminate
many questions.

Table 8. Trends in different contributions to the total energy (in eV) of Be-like ground state as a function of the orbital set compared with
values from the diagrammatic methods of Malyshev et al [194]. For Ca, n = 4, 5 values are omitted.

Ca (Z = 20, A = 40)
n = 2 n = 3 ¼ =n 6 n = 7 n = 8 [194]

DHF: −12842.650 −12842.650 −12842.650 −12842.650 −12842.650 −11782.120a

DC: −6.194 −7.374 −7.780 −7.802 −7.814 −1056.673
TP: 3.268 3.152 3.095 3.090 3.080 −8.574
Sum: −12945.577 −12846.871 −12847.335 −12847.362 −12847.384 −12847.367
VP: −0.278 −0.278 −0.278 −0.278 −0.278
SE: 3.745 3.746 3.744 3.744 3.744
QED: 3.467 3.467 3.466 3.466 3.466 3.455
ISO: 0.177 0.179 0.179 0.179 0.179 0.177
Etotal: −12841.932 −12843.225 −12843.691 −12843.718 −12843.740 −12843.735

Xe (Z = 54, A = 131)
n = 2 n = 3 n = 4 n = 5 n = 6 [194]

DHF: −101129.81 −101129.81 −101129.81 −101129.81 −101129.81 −98000.517a

DC: −9.68 −10.99 −11.26 −11.37 −11.42 −3058.046
TP: 71.15 69.95 69.66 69.37 69.18 −13.521
Sum: −101068.34 −101070.84 −101071.41 −101071.81 −101072.04 −101071.804
VP: −16.43 −16.39 −16.39 −16.39 −16.39
SE: 115.28 115.27 115.27 115.27 115.27
QED: 98.85 98.88 98.88 98.88 98.88 98.434
ISO: 0.44 0.45 0.45 0.45 0.45 0.499
Etotal: −100969.04 −100972.48 −100972.08 −100972.48 −100972.70 −100972.922

U (Z = 92, A = 238)
n = 2 n = 3 n = 4 n = 5 [194]

DHF: −327628.00 −327628.00 −327628.00 −327628.00 −321276.02a

DC: −10.82 −12.38 −12.72 −12.86 −5933.84
TP: 406.57 400.22 399.29 398.15 −17.92
Sum: −327232.25 −327240.16 −327241.43 −327242.70 −327227.78
VP: −218.07 −217.36 −217.38 −217.42
SE: 842.17 842.20 842.40 842.02
QED: 624.10 624.84 625.02 624.60 616.97
Recoil: 2.18
ISO: 1.02 1.02 1.02 1.00
Etotal: −326607.13 −326614.30 −326615.58 −326617.07 −326608.63

a
The value reported is the zero-order energy from the potential referred to as PZ in [194].
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7. Concluding remarks

In this review we have presented the basic theory for gen-
erating multiconfiguration wave functions using variational
methods that optimize an energy expression in both non-
relativistic and relativistic frameworks. Conceptually, such
wave functions could be sufficiently accurate for predicting
any atomic property. But the many-body aspects often limit
the accuracy of a calculation. Predictions can be improved
with expansions that take into account the atomic property
under investigation.

Applications that have been extensively investigated are
spectrum calculations for all levels up to a designated excited
level, allowed and forbidden transitions [54, 143, 148,
197, 198], isotope shifts [184, 199–203], hyperfine structures
[159, 204–206], nuclear effects on transition rates and spectra
[26, 207], magnetic field-induced transitions [20, 208, 209],
to name a few. A comprehensive list of relativistic calcula-
tions and theoretical studies can be found in the RTAM
bibliography database [210]. The methods described in this
review are important for the calculation of target states for R-
matrix calculations, BSR [211, 212] for nonrelativistic and
DBSR [196, 213] for relativistic versions, that describe col-
lision, excitation, and scattering processes such as those
needed for plasma diagnostics. Another review paper focus-
ing on the applications is being considered.
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