
Bias in Algorithm Portfolio Performance Evaluation

Chris Cameron, Holger H. Hoos, Kevin Leyton-Brown
University of British Columbia, 201-2366 Main Mall, Vancouver, BC, CANADA

{cchris13,hoos,kevinlb}@cs.ubc.ca

Abstract

A Virtual Best Solver (VBS) is a hypothetical algo-
rithm that selects the best solver from a given portfo-
lio of alternatives on a per-instance basis. The VBS
idealizes performance when all solvers in a portfolio
are run in parallel, and also gives a valuable bound
on the performance of portfolio-based algorithm se-
lectors. Typically, VBS performance is measured by
running every solver in a portfolio once on a given
instance and reporting the best performance over all
solvers. Here, we argue that doing so results in a
flawed measure that is biased to reporting better per-
formance when a randomized solver is present in an
algorithm portfolio. Specifically, this flawed notion
of VBS tends to show performance better than that
achievable by a perfect selector that for each given
instance runs the solver with the best expected run-
ning time. We report results from an empirical study
using solvers and instances submitted to several SAT
competitions, in which we observe significant bias
on many random instances and some combinatorial
instances. We also show that the bias increases with
the number of randomized solvers and decreases as
we average solver performance over many indepen-
dent runs per instance. We propose an alternative
VBS performance measure by (1) empirically ob-
taining the solver with best expected performance
for each instance and (2) taking bootstrap samples
for this solver on every instance, to obtain a confi-
dence interval on VBS performance. Our findings
shed new light on widely studied algorithm selection
benchmarks and help explain performance gaps ob-
served between VBS and state-of-the-art algorithm
selection approaches.

1 Introduction
For many computational problems with important practical
applications, there has been considerable research into high-
performance algorithms. As in the case of the prominent sat-
isfiability problem in propositional logic (SAT), practitioners
often have access to many solvers for their particular problem
and must make decisions about which solver(s) to run. Most

often, this process begins with empirically evaluating avail-
able solvers on a representative set of problem instances. It is
common in practice to choose a Single Best Solver (SBS) that
minimizes mean performance over the instance set. However,
the SBS can underperform in situations where different solvers
work well on different instances. In such cases, dramatic im-
provements can be achieved by methods based on algorithm
portfolios—either selecting an algorithm from the portfolio at
runtime or running multiple algorithms in parallel. To mea-
sure the potential of such approaches, a Virtual Best Solver
(VBS) is used as an idealized state-of-the-art (SOTA) solver
that identifies the best algorithm from a given portfolio on a
per-instance basis. The VBS is an idealized representation of
the performance achievable by running all solvers in a given
portfolio in parallel, and it also bounds the performance of any
portfolio-based algorithm selector.1

The notion of portfolio-based algorithm selection was in-
troduced as a way to exploit multiple uncorrelated algo-
rithms in practice by combining their strengths [Rice, 1976;
Kotthoff, 2012]. In the model-based algorithm selection ap-
proach, a model is learned to map informative instance features
to choices of algorithms and the model is queried online to
select solvers for execution on a per-instance basis. There has
been much research on portfolio-based algorithm selectors,
and state-of-the art approaches achieve notable performance
gains over their component solvers, especially in applications
to NP-hard combinatorial search problems (e.g., SAT, TSP)
[Nudelman et al., 2003; Xu et al., 2008; Malitsky et al., 2013;
Kotthoff et al., 2015]. In the algorithm selection literature,
it is common to present portfolio performance in the context
of VBS performance (see citations below), using the perfor-
mance gap between the best existing portfolio-based selector
and the VBS bound used as a measure of the potential for
further improvement. To practitioners considering the merit
of algorithm selection for an application, the performance gap
between SBS and VBS performance can be a good indicator
for the potential merit of using an instance-based selection
approach. Especially in settings where strong features do not
yet exist, the size of the gap may help to determine whether a
feasibility performance study is worthwhile.

1This bound can be loose, e.g., due to variation in running time
not captured by instance features, insufficient training data and the
cost of computing instance features.

The concept of a VBS as described above has been used for
over a decade. Sutcliffe and Suttner [2001] were among the
first to introduce the concept with their idea of a “state-of-the-
art (SOTA) system” able to solve any problem that at least one
of many existing Automated Theorem Proving (ATP) systems
could tackle. Leyton-Brown et al. [2003] measured perfor-
mance against an “ideal portfolio where algorithm selection
is performed perfectly and with no overhead”. Gagliolo and
Schmidhuber [2006] and Xu et al. [2008] refer to this ideal
portfolio as an “oracle” which runs the best algorithm for a
given problem instance. To our knowledge, the term VBS orig-
inated in the 2009 SAT Competition, defined as an oracle that
selects the submitted solver that most efficiently solves a given
instance [Le Berre et al., 2015]. The concept of VBS is still
widely used in the more recent literature [Stern et al., 2010;
Kadioglu et al., 2011; Malitsky et al., 2011; Berthold, 2013;
Lindauer et al., 2015].

With very few exceptions, VBS performance is evaluated
by running every solver in a portfolio once on a given instance
and reporting the minimum performance over all solvers, as
in the SAT competitions. Gagliolo and Schmidhuber [2006]
reran each solver in their portfolio on every instance for every
iteration of their dynamic learning procedure and report 95%
confidence intervals based on VBS performance evaluations
(as defined above) from every iteration. Kotthoff et al. [2015]
report VBS performance for an instance as the minimum of
the median performance over 10 samples from each solver.
Their work investigated algorithm selection for two state-of-
the-art TSP solvers. Due to high variance in the running times
of these underlying solvers, they performed 10 independent
runs per solver on every instance. However, their protocol was
not motivated by bias in VBS performance estimation, nor
did they estimate the statistical stability of their performance
estimates.

In this work, we show how the standard computation of
VBS performance produces optimistically biased estimates in
the presence of randomized solvers. To the best of our knowl-
edge, no previous work has identified this bias; we thus fear
that it has led to errors in the evaluation of portfolio perfor-
mance. We show that this bias can be overcome by considering
a notion of VBS that chooses the algorithm with best expected
performance on each instance. More specifically, we estimate
VBS performance by (1) empirically identifying the solver
with best expected performance on each instance based on
many random samples; and (2) using bootstrap resampling
to estimate a confidence interval for this performance esti-
mate. Gathering many samples for a solver on each instance
is computationally more expensive than current practice; how-
ever, we show that doing so can lead to qualitatively different
results.

The remainder of this paper is organized as follows: Sec-
tion 2 gives a detailed description of bias in VBS evaluation.
Section 3 reports results from an empirical study on solvers
and instances submitted to the SAT competitions and SAT
races between 2007 and 2014, showing evidence of bias in
VBS evaluation on sets of random and “hard combinatorial”
instances; this bias increases with the number of randomized
solvers and decreases as we average solver performance over
many random samples. We summarize our findings in Section

4, where we also discuss implications of this research and
outline directions for future work.

2 Problem Description
When a portfolio consists entirely of deterministic solvers,
high-confidence estimates of a component algorithm’s perfor-
mance can usually be obtained from a single run per problem
instance.2 In contrast, randomized solvers often exhibit highly
variable running times across multiple independent runs on
the same instance; many samples are thus required to accu-
rately estimate mean performance. It is current practice to
estimate VBS performance as the minimum of a set of single
samples from each randomized solver’s running time distri-
bution. This approach tends to underestimate the amount of
time that would be required to run the selected solver again on
each given instance. The resulting bias in VBS performance
can be interpreted as the difference between runs of the solver
with best expected performance and the best of the single runs
performed for every solver in a given portfolio.

We now show more formally how the problem arises. Let
X

i,j

be a random variable representing the running time of
solver i on instance j, and let X1:n,j(min) be the random
variable representing the minimum of single samples from
each of X1,j , X2,j , . . . , X

n,j

. As all samples are independent,
the probability of at least one solver solving an instance j at
time t is 1�

Q
n

i=1(1�P (X

i,j

< t)). Let the CDF of X
i,j

be
F

X

i,j

(t), and let the CDF of X1:n,j(min) be F

X1:n,j

(min)(t).
We can write the CDF of the minimum in terms of the CDFs
of all the randomized solvers in the portfolio,

F

X1:n,j

(min)(t) = 1�
nY

i=1

(1� F

X

i,j

(t)). (1)

The solver with the best expected performance on instance j

is Sj

best 2 argmax

s

E[X
s,j

].
We will now show how the distributions of X

S

j

best,j
and

X1:n,j(min) can differ. We restrict our investigation to mini-
mizing the running time of a combinatorial search procedure –
the scenario for which portfolio-based algorithm selection has
been most prominent; however, we would also expect this type
of VBS bias to arise in other contexts, such as combinatorial
optimization, where X

i,j

would represent the solution quality
of solver i on instance j for fixed running time. Substantial re-
search effort has been expended on characterizing the running
time distributions (RTDs) of randomized solvers for combi-
natorial search problems, particularly to inform restart strate-
gies. It is common to model the RTDs of randomized, DPLL-
type algorithms without restarts as heavy-tailed [Gomes et al.,
1997]. The RTDs of DPLL-type solvers enhanced with restart
strategies have been modelled as fat-tail distributions, such as
Weibull or log-normal distributions [Gomes and Selman, 2001;
Gomes et al., 2008]. Local-search-based solvers are unlikely
to exhibit fat-tail running time distributions; Hoos and Stützle
[1999] and Kroc et al. [2010] have demonstrated that their

2Of course, the running time of a deterministic solver is still a
random variable, due to interaction with other processes running on
the same machine, cache effects, etc.

RTDs typically closely resemble exponential distributions. In-
deed, such exponential distributions appear to closely fit the
RTDs of the randomized solvers considered in our portfolios
of SAT solvers (see Section 3).

We therefore consider two idealized scenarios: one in which
randomized solvers are characterized by exponential RTDs,
and the other where the RTDs correspond to Weibull distribu-
tions. The CDFs of exponential and Weibull distributions are
as follows:

CDF-Exponential(x,�) = 1� e

��·x
;

CDF-Weibull(x,�,k) = 1� e

�(x

�

)k
.

Using Equation 1, we can write the CDF of the minimum of n
samples from each distribution as follows:

CDF-Exponential-min-n(x, �) = 1�
nY

i=1

1� (1� e

�x·�
)

= 1� e

�n·x·�

= CDF-Exponential(x, n · �);

CDF-Weibull-min-n(x, �, k) = 1�
nY

i=1

1� (1� e

�(x

�

)k
)

= 1� e

�n·(x

�

)k
.

We now consider the extreme example of portfolios consisting
of many copies of the same solver. (Obviously, in this case,
the VBS does not outperform the portfolio-based algorithm
selector consisting of only one copy of the solver, meaning that
any performance difference is solely due to bias in estimating
VBS performance.) Figures 1a and 1b show the analytically
determined RTDs of the traditionally calculated VBS in these
cases. Note that the RTDs shift towards increasingly optimistic
estimates as we take the minimum running times over 2, 3, 5,
10, and 20 identical, randomized solvers. The same qualitative
effect occurs for the Weibull distribution, albeit with a smaller
magnitude when k > 1.

3 Experimental Setup and Results
We now present an empirical study demonstrating that op-
timistically biased estimates of VBS performance occur in
practice. We focus on the SAT competition, which has been
one of the most prominent testbeds for research into algorithm
portfolios and the development of their constituent algorithms.
Indeed, SAT is probably the most studied NP-complete de-
cision problem and is also very important in practice, e.g.,for
hardware and software verification [Prasad et al., 2005] as
well as for radio spectrum repacking [Fréchette et al., 2016].

We began by gathering all runnable solvers submit-
ted to SAT competitions from 2007 to 2014 in the
Hard-combinatorial SAT+UNSAT, Application
SAT+UNSAT, and Random SAT+UNSAT tracks.3 We ran
each solver once on a large compilation of instances from the

3We say that a solver was not runnable when we encountered
technical problems trying to run it (e.g., missing runtime libraries,
runtime errors that were not fixed by recompilation). A majority of
solvers (88%) were runnable, including all medalists.

(a) Exponential distribution with � = 1/700.

(b) Weibull distribution with k = 1.5, � = 700.

Figure 1: RTD of VBS for portfolios with increasing numbers

of randomized solvers with identical, idealized yet realistic

RTDs.

2012 – 2014 SAT competitions and SAT races. All runs were
performed on the 544-node Westgrid cluster Orcinus (each
of whose nodes is equipped with two 6-core, 2.66 GHz Intel
Xeon X5650 CPUs and 24GB memory, running Red Hat En-
terprise Linux Server 5.3). Every solver was given a cutoff
time of 5000 CPU seconds to solve each instance; our whole
experiment took 19.29 CPU years.

To determine whether the standard VBS performance esti-
mate was optimistically biased on this data, we must compare
with our improved notion of VBS. Going forward, we use
the term VBS to denote the traditional (biased) VBS and the
term VBS⇤ to denote our new notion of VBS that chooses the
algorithm with best expected empirical performance.

Estimating the performance of VBS⇤ is more computation-
ally expensive, because it requires performing many runs of
each randomized solver to obtain an empirical measure of ex-
pected performance on a given instance. To mitigate this cost,

we can start by considering an upper bound on potential bias:
the proportion of VBS gap to which randomized solvers con-
tribute. We illustrate the marginal contribution of randomized
solvers to the VBS in Figures 2 and 3, by showing CDFs for
the VBS with and without randomized solvers for all instances
solved by at least one solver. We expect deterministic solvers
to make at most a minimal contribution to bias, since they
exhibit virtually no variation in running time.

For the Application SAT+UNSAT and Hard-
combinatorial SAT+UNSAT tracks in Figures 2a and
2b, the small shift in the CDF after adding randomized solvers
indicates that there is very little scope for VBS bias in these
datasets.4 In contrast, for Random SAT+UNSAT in Figure
3a, the shift is substantial, giving scope for considerable bias
in the VBS estimate. Indeed, it is well known that randomized
solvers are considerably more important for top performance
in the Random SAT+UNSAT track (constituting 81% of
VBS solvers) compared to the Application SAT+UNSAT
(4%) and Hard-combinatorial SAT+UNSAT (21%)
tracks. We also investigated different categories of in-
stances within the Application SAT+UNSAT and
Hard-combinatorial SAT+UNSAT tracks where
randomized solvers made significant contribution to the
VBS. We found that on sgen5 instances (a subset of
Hard-combinatorial SAT+UNSAT) in Figure 3b,
there was also a large shift in estimated VBS performance af-
ter adding randomized solvers. We thus focus our attention on
the Random SAT+UNSAT and Hard-combinatorial
SAT+UNSAT-sgen benchmarks.

We ran the 21 randomized solvers from Random
SAT+UNSAT on 50 randomly sampled instances from
the Random SAT+UNSAT track and the 12 randomized
solvers from the Hard-combinatorial SAT+UNSAT
on all 44 sgen instances from the Hard-combinatorial
SAT+UNSAT track. The solvers are listed in Table 1. We ran
each solver 50 times on every instance with distinct pseudo-
random number seeds and with a per-run cutoff time of 5000
CPU seconds (as used in the 2014 SAT Competition). Due
to the large number of runs required for our experiment and
the dependency of CPU access on the memory requests of
jobs, we elected to allocate different amounts of memory for
different solvers, depending on their memory requirements.
We profiled each solver’s memory usage over all instances
and allocated to each solver its maximum RAM usage plus a
small buffer: between 1GB and 3GB in total, depending on the
solver. We used the Orcinus cluster as described previously.
This experiment required 7.88 CPU years to complete.

We estimated VBS performance as follows. In order to
quantify the uncertainty in our estimates (due to the limited
number of independent runs per solver on each instance), we
used bootstrap resampling of the given instance sets. We drew
10 000 bootstrap samples of 50 and 44 instances (uniformly at

4We removed some so-called random-fixed-forced-shape in-
stances from Hard-combinatorial SAT+UNSAT on which
randomized solvers performed well, because upon further inspection,
we found that these instance better fit the Random SAT+UNSAT
than the Hard-combinatorial SAT+UNSAT category.

5sgen is a generator for small, difficult SAT+UNSAT bench-
marks

(a) Application SAT+UNSAT dataset.

(b) Hard-combinatorial SAT+UNSAT dataset

Figure 2: CDFs of running times over instances sets

comparing VBS performance with and without ran-

domized solvers for Application SAT+UNSAT and

Hard-combinatorial SAT+UNSAT datasets. Cutoff =

5000 CPU seconds.

random, with replacement) from our Random SAT+UNSAT
and sgen instance sets, respectively. For each instance and
solver, we selected one of our 50 runs uniformly at random,
resulting in 21 solver runs on Random SAT+UNSAT and 12
solver runs on sgen per instance. We then determined the
VBS estimate of performance for that instance as the minimum
time required by any of the solver runs, and determined the
CDF of VBS performance over the instances in that bootstrap
sample, resulting in 10 000 CDFs.

We estimated VBS⇤ performance based on the full set of 50
runs per instance as follows. First, we determined the solver
with the best PAR10 performance over the 50 runs for each
instance in our sets. (PAR10 represents penalized average
running time, counting runs that did not produce a solution,
due to solver crashes or timeouts, at 10 times the cutoff time of

(a) Random SAT+UNSAT dataset

(b) Hard-combinatorial SAT+UNSAT - sgen dataset

Figure 3: CDFs of running times over instances sets compar-

ing VBS performance with and without randomized solvers

for Random SAT+UNSAT and Hard-combinatorial
SAT+UNSAT: sgen datasets. Cutoff = 5000 CPU seconds.

5000 CPU seconds.6) Finally, we used bootstrap resampling
as before and thus obtained CDFs of VBS⇤ performance for
each of 10 000 bootstrap samples.

Figure 4 shows the bundles of CDFs obtained by bootstrap
sampling for VBS and VBS⇤ performance estimates for our
two datasets. The difference between the estimates is clearly
visible, as is the sizable uncertainty associated with both esti-
mates, given our relatively small number of instances and 50

6Our study investigates whether PAR10 VBS performance can
be estimated in an unbiased way. Separately, we note that PAR10
itself is not an unbiased estimate of uncapped running time. While
the best solver as identified by PARk may change with different
choices of k, the direction of the bias depends on the RTDs of the
constituent solvers. This problem is inherent in capping of running
time, is already well understood, and is not one we consider further
in this work.

Random Hard-Combinatorial

adaptnovelty 2007 CCAnrplusglucose 2014
BalancedZ 64-bit V2014 GlucoRed
CCA2014 2.0 gNovelty+GCa 1.0
CSCCSat2014 SC2014 gNoveltyplusGCwa 1.0
csls pnorm 8cores 2011 priss 2011
dimetheus 2.100 RSeq2014 v1.1
EagleUP-1.565.350 2011 RSeq
gnoveltyplus2 2009 sattimeRelbackSeq 2013
gNoveltyplus T 2009 SGSeq 1dot0
gNoveltyplusGCwa 1.0 SparrowToRiss 2014
hybridGM3 2009 SparrowToRiss SC13
iPAWS 2009 varsat crafted 2009
march br satplusunsat
Nccaplus v1.05
probSAT sc14
sapsrt 2007
sattime2014r 2014r
SGSeq 1.0
sparrow2011 2011
TNM 2009
YalSAT 03l

Table 1: Randomized solvers from Random SAT+UNSAT
and Hard-combinatorial SAT+UNSAT tracks used for
our VBS empirical study.

runs per algorithm and instance. Overall, we observe that the
VBS estimate was substantially optimistic: it expected about
10% more instances to be solved across a large range of run-
ning times for both datasets. For the Random SAT+UNSAT
benchmark, this finding explains a substantial portion of the
performance gap previously observed between VBS perfor-
mance and state-of-the-art portfolio-based algorithm selectors.
Specifically, the PAR10 score averaged over all bootstrap sam-
ples was 5 961 CPU seconds for VBS and 8 367 CPU seconds
for VBS⇤, while the single best solver (SB) had a PAR10 score
of 21 350 CPU seconds. Therefore, VBS⇤ demonstrates that
the SB-VBS gap was overestimated by ⇡ 15%. We now look
at how much of the gap state-of-the-art algorithm selectors can
close on the most recent SAT Random benchmarks from the
literature: by 95% and 26% on SAT Random 2011 and SAT
Random 2012 datasets, respectively [Lindauer et al., 2015].
However, observe that we cannot infer that the VBS bias would
be identical on these other benchmarks; for example, while our
SAT Random dataset contains all the solvers from these 2011
and 2012 datasets, it also includes many other powerful, recent
solvers, such as dimetheus (winner of SAT Random track
of the 2014 SAT Competition).

In conclusion, our VBS⇤ performance estimates give a much
more realistic bound on the performance of portfolio-based
selectors; using this improved bound, we are able to observe
that the performance achieved by state-of-the-art algorithm
selection systems, such as SATzilla [Xu et al., 2012], is much
closer to optimal than was known previously.

We next investigate the magnitude of the VBS bias as a
function of the number of solvers. We already saw analyti-

(a) SAT Random SAT+UNSAT

(b) SAT Hard-combinatorial SAT+UNSAT: sgen

Figure 4: Bootstrap CDFs comparing performance of VBS

(traditional biased VBS) and VBS

⇤
(VBS that chooses the

algorithm with best expected empirical measure of perfor-

mance).

cally, in Section 2, that expected bias in estimated VBS per-
formance grows with the number of identical solvers. Here
we investigate what happens when solvers exhibit heteroge-
neous performance. To do this, we again used bootstrap sam-
pling. We first obtained a bootstrap sample for VBS⇤ as before.
Then, we gathered a VBS bootstrap sample for k solvers as
follows. First, we sampled 50 instances with replacement.
Then, for each instance, we determined the minimum running
time of a single run taken uniformly at random from each of
k� 1 randomly selected randomized solvers in addition to the
solver with best expected performance. We then computed the
PAR10 performance of the VBS⇤ and VBS bootstrap samples.
For every portfolio of size k, we took 1 000 bootstrap sam-
ples. These distributions are presented as boxplots in Figure
5. The y-axis indicates the ratio between PAR10 performance
estimates of VBS⇤ and VBS. The top and bottom boundary

(a) Random SAT+UNSAT

(b) sgen

Figure 5: Trend in bias of VBS performance evaluation with

increasing number of solvers used to compute VBS. The y-

axis is a measure of bias defined as the ratio between VBS

⇤

and VBS bootstrap sample performance estimates. For a given

instance in a bootstrap sample of k solvers, VBS performance

is computed as the minimum of a single random sample from

each of k � 1 randomly sampled solvers and the solver with

best expected performance. Boundaries of box plots represent

the 25 and 75 percentiles of the bootstrap samples.

of each box represent the 25th and 75th percentiles of the
ratios between bootstrap sample performance estimates. We
note large variability in bias, depending on which solvers were
sampled, but observe a clear trend that bias increases with
portfolio size.

Our experiments were computationally expensive to con-
duct: we ran every randomized solver 50 times on every in-
stance. Such exhaustive studies may not always be possible
in practice. Thus, it is important to understand how many
random samples are actually required to obtain relatively un-
biased estimates of VBS performance. To do this, we once
more employed bootstrap resampling. For every bootstrap

sample, we first obtained the PAR10 performance of a VBS⇤

bootstrap sample as before. Then, we calculated the PAR10
performance of a VBS bootstrap sample as follows. First, we
sampled 50 instances with replacement. Next, for each in-
stance, we determined the running time of the minimum over
the means of j random samples from each of k � 1 randomly
selected solvers in addition to the solver with best expected
performance.

Figure 6 demonstrates how VBS bias decreases as we av-
erage performance over more runs. The y-axis indicates the
ratio between PAR10 performance estimates of the VBS⇤ and
VBS procedures. Note that we see less bias as we restrict
ourselves to fewer randomized solvers (here: 3) than found in
our full datasets.

4 Conclusions and Future Work
In this work, we have demonstrated that a traditional, widely
used approach for estimating the performance of a so-called
Virtual Best Solver (VBS) is optimistically biased in the pres-
ence of randomized solvers. We established this fact analyt-
ically and demonstrated empirically that the problem arises
in practice. Employing bootstrap sampling to quantify un-
certainty in our estimates, we showed that substantial bias
arises on the Random SAT+UNSAT dataset and on the sgen
instances from the Hard-combinatorial SAT+UNSAT
dataset of the SAT competition, and that this bias increases
with the number of randomized solvers. We also showed
that an asymptotically unbiased estimate of VBS performance
can be calculated by repeatedly sampling solver running time
on each instance, and demonstrated how bias decreases with
the number of such samples. We hope that our findings will
prompt researchers to change their thinking regarding the gap
between (biased estimates of) VBS performance and the per-
formance of portfolio-based algorithm selectors. Our results
clearly indicate that this gap originates at least in part from
the bias inherent in traditional VBS performance estimates
rather than entirely from systematic shortcomings of algorithm
selection methods.

It is worth commenting briefly on parallel algorithm portfo-
lios. In such settings, selection techniques are still applicable
when the number of candidate solvers exceeds the number of
CPU cores. The VBS bias we have identified will still arise
in such settings but to a lesser extent, due to the VBS being
defined in terms of a larger set of solvers.

In future work, it would be worthwhile to quantify the
size of this effect for other realistic scenarios. Furthermore,
it would be interesting to examine in detail how close the
performance of state-of-the-art algorithm selectors, such as
SATzilla or CSHC, is to that of unbiased estimates of VBS
performance, and hence how much room for improvement still
remains for research attempting to improve upon the algorithm
selection techniques used in these systems.

Acknowledgements
This work was supported by Compute Canada through the
use of the Westgrid cluster Orcinus, by an NSERC Steacie
Fellowship, and by two NSERC Discovery Grants.

(a) Random SAT+UNSAT

(b) sgen

Figure 6: Trend in bias of VBS performance evaluation with

increasing number of seeds used to compute VBS. The y-axis

is a measure of bias defined as the ratio between VBS

⇤
and

VBS bootstrap sample performance estimates. The trend in

bias is shown with 3 solvers and the complete set of solvers

for the respective datasets. For a given instance in a bootstrap

sample of k solvers and j seeds, VBS is computed by: for

each instance, selecting k � 1 randomly sampled solvers in

addition to the solver with best expected performance. Then

performance was reported as the minimum over the means of

j random samples for each of the k solvers. Boundaries of

box plots represent the 25 and 75 percentiles of the bootstrap

samples.

References
[Berthold, 2013] T. Berthold. Measuring the impact of primal

heuristics. Operations Research Letters, 41(6):611–614,
2013.

[Fréchette et al., 2016] A. Fréchette, N. Newman, and
K. Leyton-Brown. Solving the station repacking problem.
In Conference on Artificial Intelligence (AAAI), 2016.

[Gagliolo and Schmidhuber, 2006] M. Gagliolo and
J. Schmidhuber. Learning dynamic algorithm portfo-
lios. Annals of Mathematics and Artificial Intelligence,
47(3-4):295–328, 2006.

[Gomes and Selman, 2001] C. P. Gomes and B. Selman. Al-
gorithm portfolios. Artificial Intelligence, 126(1-2):43–62,
2001.

[Gomes et al., 1997] C. P. Gomes, B. Selman, and N. Crato.
Heavy-tailed distributions in combinatorial search. In
Principles and Practice of Constraint Programming-CP97,
pages 121–135. Springer, 1997.

[Gomes et al., 2008] C. P. Gomes, H. Kautz, A. Sabharwal,
and B. Selman. Satisfiability solvers. Foundations of Artifi-
cial Intelligence, 3:89–134, 2008.

[Hoos and Stützle, 1999] H. H. Hoos and T. Stützle. Towards
a characterisation of the behaviour of stochastic local search
algorithms for sat. Artificial Intelligence, 112(1):213–232,
1999.

[Kadioglu et al., 2011] S. Kadioglu, Y. Malitsky, A. Sabhar-
wal, H. Samulowitz, and M. Sellmann. Algorithm selection
and scheduling. Number 6876, pages 454–469, 2011.

[Kotthoff et al., 2015] L. Kotthoff, P. Kerschke, H. Hoos, and
H. Trautmann. Improving the state of the art in inexact TSP
solving using per-instance algorithm selection. In Learn-
ing and Intelligent Optimization, pages 202–217. Springer,
2015.

[Kotthoff, 2012] L. Kotthoff. Algorithm selection for com-
binatorial search problems: A survey. arXiv preprint
arXiv:1210.7959, 2012.

[Kroc et al., 2010] L. Kroc, A. Sabharwal, and B. Selman. An
empirical study of optimal noise and runtime distributions
in local search. In Theory and Applications of Satisfiability
Testing–SAT 2010, pages 346–351. Springer, 2010.

[Le Berre et al., 2015] D. Le Berre, O. Roussel, and L. Si-
mon. The international SAT competitions web page.
www.satcompetition.org, 2015. Accessed: 2015-11-16.

[Leyton-Brown et al., 2003] K. Leyton-Brown, E. Nudelman,
G. Andrew, J. McFadden, and Y. Shoham. A portfolio
approach to algorithm selection. In Proc. IJCAI, pages
1542–1543, 2003.

[Lindauer et al., 2015] M. Lindauer, H. H. Hoos, F. Hutter,
and T. Schaub. Autofolio: Algorithm configuration for
algorithm selection. In Workshops at the Twenty-Ninth
AAAI Conference on Artificial Intelligence, 2015.

[Malitsky et al., 2011] Y. Malitsky, A. Sabharwal, H. Samu-
lowitz, and M. Sellmann. Non-model-based algorithm port-
folios for sat. In Theory and Applications of Satisfiability
Testing-SAT 2011, pages 369–370. Springer, 2011.

[Malitsky et al., 2013] Y. Malitsky, A. Sabharwal, H. Samu-
lowitz, and M. Sellmann. Algorithm portfolios based on
cost-sensitive hierarchical clustering. In Proceedings of the
Twenty-Third international joint conference on Artificial
Intelligence, pages 608–614. AAAI Press, 2013.

[Nudelman et al., 2003] E. Nudelman, K. Leyton-Brown,
G. Andrew, C. Gomes, J. McFadden, B. Selman, and
Y. Shoham. Satzilla 0.9. Solver description, International
SAT Competition, 2003.

[Prasad et al., 2005] M. R. Prasad, A. Biere, and A. Gupta. A
survey of recent advances in SAT-based formal verification.
International Journal on Software Tools for Technology
Transfer, 7(2):156–173, 2005.

[Rice, 1976] J. R. Rice. The algorithm selection problem.
Advances in Computers, 15:65–118, 1976.

[Stern et al., 2010] D. H. Stern, H. Samulowitz, R. Herbrich,
T. Graepel, L. Pulina, and A. Tacchella. Collaborative
expert portfolio management. In AAAI, pages 179–184,
2010.

[Sutcliffe and Suttner, 2001] G. Sutcliffe and C. Suttner.
Evaluating general purpose automated theorem proving
systems. Artificial intelligence, 131(1):39–54, 2001.

[Xu et al., 2008] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-
Brown. SATzilla: portfolio-based algorithm selection for
SAT. JAIR, 32:565–606, 2008.

[Xu et al., 2012] L. Xu, F. Hutter, J. Shen, H. H. Hoos, and
K. Leyton-Brown. Satzilla2012: Improved algorithm selec-
tion based on cost-sensitive classification models. 2012.

