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Introduction to ASR

End-to-End Automatic Speech Recognition

You probably use it already!

Google, Amazon, Apple have pioneered
applications
e Integrates with many other parts of NLP
o Question Answering

o  Summarization
o  State Detection / Emotion Detection




Features in ASR .
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o  Sound transform to better emulate human hearing
e Raw Wave files

o These work too! MFCC 200
o wav2vec uses these!
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https://github.com/pytorch/fairseq/tree/master/examples/wav2vec
https://librosa.github.io/librosa/generated/librosa.feature.mfcc.html
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Overview of Traditional ASR

Traditional Speech Recognition Model:

e Acoustic Model: Hidden Markov Model / Gaussian Mixture Model based
o DNN sometimes used instead of GMM (Training implications)

e |Language Model: n-gram
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E2E ASR

Can we avoid the downside in
annotating/aligning with a model trained
together?

Neural Model (CNN-RNN)
Connectionist Temporal Classification
(CTC) or Attention-Based approaches
Can improve with addition of LM and
decoding

Needs lots of data

Typical model family:
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Connectionist Temporal Classification

Since input is >
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labels Kamath, U., Liu, J., & Whitaker, J. (2019). Deep learning for nlp and speech
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e Calculate aloss

to backprop.
See:

https://pytorch.org/docs/stable/nn.html?highlight=ctc#torch.nn.
CTCLoss



https://pytorch.org/docs/stable/nn.html?highlight=ctc#torch.nn.CTCLoss
https://pytorch.org/docs/stable/nn.html?highlight=ctc#torch.nn.CTCLoss

Decoding

Generally CTC is bad off the bat
(see Deep Speech 2 restults),
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and much worse than traditiona - ST Y e Fo 7 33
HMM-GMM or HMM-DNN models Deep Speech 2 (4-gram LM, beam size of 512) 5.59
e.a. Kaldi TDNN). ESPnet (no decoding) 12.34
(€9 ) ESPnet (no LM, beam size of 20) 11.56
Kaldi TDNN (Chap. 8) 4.44

However decoding and
Language Models help bring itin Kamath, U., Liu, J., & Whitaker, J. (2019). Deep learning for nlp

line and speech recognition. Springer International Publishing.



Best Path

e “Greedy” Decoding
o  Always pick argmax of each time output.
e Can easily miss good results, especially due to
the properties of blanks in CTC ex:

o A_A, AA_and _AA should all count for same probability,
but what if all of these are lower than something else?



Beam Search
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Kamath, U., Liu, J., & Whitaker, J. (2019). Deep learning for nlp and speech
recognition. Springer International Publishing.



Improvements to ASR

e Language Models
o Big improvement by making sure that generated words exist in the language
e Attention
o Attention Methods can work together with CTC e.g. through Multi-task learning
o Listen attend and Spell (Chan, Jaitly, Le, and Vinyals, 2016) show that attention methods can
emulate the benefit of CTC.

e Embeddings
o Wav2vec and similar projects aim to emulate the power of word embeddings, but in the context
of sound.

e Transformers
o Newer models attempting to capitalize on better architecture (e.g. zhou., Dong, Xu, S., & Xu, B. 2018)
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