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Abstract

In this project, we focus on building a classifier
that can accurately detect human written text
from machine generated text. Such a classifier
can be used in mitigating the risks posed by ad-
versaries who can use the state-of-the-art lan-
guage models (e.g. GPT-2) to create misinfor-
mation (e.g. fake news). Existing work treat
the text to be detected as a flat sequence of to-
kens, thereby ignoring the sentence level struc-
tural information present in the text. We posit
that the features based on sentence-sentence
and paragraph-paragraph interactions can be
very useful for this task. To this end, we
employ various discourse coherence models,
ranging from entity grid based models (ba-
sic) to neural models (advanced). This report
presents our detection results and analysis.

1 Introduction

Neural language models (NLMs) have become
ubiquitous in the field of natural language process-
ing (NLP). NLMs are trained on large amounts of
naturally occurring text by predicting a word given
the surrounding words from a text sequence (e.g.,
sentence). NLMs have a wide range of use cases
such as a starting point for learning supervised mod-
els (Peters et al., 2018; Devlin et al., 2019), analysis
of dataset biases (Solaiman et al., 2019), generation
of radiology reports (Liu et al., 2019), aiding liter-
ary art (AIW) and code auto-completion (TabNine).
Unfortunately, NLMs are prone to misuse by ad-
versaries, such as generating fake news (Zellers
et al., 2019; Keskar et al., 2019), generating fake
product reviews (Adelani et al., 2020), impersonat-
ing others in email, automating spamming/phishing
and abusive social media content production (Rad-
ford). Hence, NLP researchers are focusing on
building automated methods to prevent such mis-
use of NLMs.

The popular approach to solve this problem is to

build automated ML based models that can detect
text generated by NLMs from human written text.
A good detector can help in removing harmful gen-
erated content in vulnerable platforms such as so-
cial media, email clients and e-commerce websites.
The detector can be built using four different ap-
proaches. First, a detector can be a simple classifier
(e.g., logistic regression) trained from scratch (So-
laiman et al., 2019). Second, a detector can use pre-
trained generative model to detect generations from
itself or similar models (e.g., using probabilities
assigned by the model to strings of text) without
additional training (Gehrmann et al., 2019; Zellers
et al., 2019). Third, a detector can be obtained
by finetuning a language model to detect itself or
similar models (Solaiman et al., 2019). Fourth, a
human can collaborate with an interpretable ML
detector to perform the classification.

Existing work on building detection models
treats the text to be classified as a flat sequence
of tokens, throwing away the sentence level struc-
tural information. We believe that the sentence
level cues are valuable for this problem as they cap-
ture how NLMs handle coherency. In this project,
we unpack these sentence level cues by employ-
ing discourse coherence models. We experiment
with both non-neural based approaches (such as
entity grid (Barzilay and Lapata, 2008) and en-
tity graph (Guinaudeau and Strube, 2013)) and
neural based approaches (such as sentence aver-
age model, paragraph sequence model (Lai and
Tetreault, 2018)). We work with the publicly avail-
able dataset containing the text generated by the
state-of-the-art neural text generation model, GPT-
2 (Radford et al., 2018) 1 and subset of human
written articles from WebText (collection of on-
line articles). We compare our discourse coher-
ence based approaches with competitive baseline

1https://github.com/openai/
gpt-2-output-dataset

https://github.com/openai/gpt-2-output-dataset
https://github.com/openai/gpt-2-output-dataset
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models such as BERT (Devlin et al., 2019) and
GPT-2 (Radford et al., 2018) (to detect itself). We
present our detection results, analysis and future
directions. The main contribution of our work is
to explore discourse coherence based approaches
to build useful features for the task of detecting
machine generated text from human written text.

The report is organized as follows. Section 2
discusses the related work in building text genera-
tion models and detection models. Section 3 pro-
vides the description of the problem and the data
used in this study. Section 4 presents the details of
the discourse coherence based models employed
in this project. Section 5 provides the settings of
the baseline models, coherence models and our ex-
perimental results. We analyze our results further
in Section 6 and jot down the lessons learned in
this project. Section 7 concludes the report and
lists interesting future research directions towards
building accurate detection models.

2 Related Work

Our project deals with neural language models
(NLMs), decoding techniques to generate text from
NLMs and detectability of generative models. In
this section, we will cover the key research works
done in each of these sub fields.

2.1 Neural language models

Generative Pre-Training 2 (GPT-2) model (Rad-
ford et al., 2018) is the state-of-the-art NLM typi-
cally used to generate coherent paragraphs of text.
Apart from coherency, the generated text exhibits
other desirable properties such as grammaticality,
consistency and usage of world knowledge. GPT-
2 model can be used as a code auto-completion
tool (TabNine), poetry generation tool (Solaiman
et al., 2019), fake product reviews creator (Ade-
lani et al., 2020) and so on. The main drawback
with GPT-2 model as a text generator is that it
does not provide knobs to control the aspects of a
text (e.g. topic, sentiment). The authors of Zellers
et al. (2019) present a controllable text generation
model, called GROVER, that can generate a news
article given the metadata of the news article (such
as headline, author and date). They show that the
GROVER model can create fake news that is harder
for humans to identify than human-generated fake
news. Similar to the spirit of the GROVER model,
the CTRL model is developed to overcome the
weakness of the GPT-2 model by allowing users to

easily control particular aspects of the generated
text. The CTRL model is a NLM that exploits
naturally occurring control codes (like URL for a
news article) to condition the text (e.g. news article
body). These control codes govern style, content,
and task-specific behavior.

2.2 Decoding text from NLM
Given a NLM and a prefix (e.g. starting of a news
article), generating the text, that is computing the
optimal continuation is not tractable. We gener-
ally use approximate deterministic or stochastic
decoding technique to generate continuations. The
two most commonly used deterministic decoding
techniques are greedy search and beam search. In
greedy search, we select the highest probability to-
ken at each time step. On the other hand, beam
search maintains a fixed-size set of partially de-
coded sequences, called hypotheses. At each time
step, beam search creates new hypotheses by ap-
pending each token in the vocabulary to each ex-
isting hypothesis, scoring the resulting sequences.
Thus, greedy search can be seen as a special case of
beam search. In practice, these deterministic decod-
ing techniques depend highly on underlying model
probabilities and suffer from generating degenerate
continuation (uninteresting text often with repet-
itive tokens). In stochastic decoding techniques,
we sample from a model-dependent distribution
at each time step. We prevent sampling from low
probability tokens by limiting sampling to a subset
of the vocabulary at each time step. The two most
effective stochastic decoding techniques are top-k
sampling (Fan et al., 2018) and top-p (or nucleus)
sampling (Holtzman et al., 2020). The top-k sam-
pler limits sampling to the k most-probable tokens.
On the other hand, the nucleus sampler limits sam-
pling to the smallest set of tokens with total mass
above a threshold p ∈ [0, 1].

2.3 Detection models
Given the importance of detecting malicious text
generated from NLMs, there has been a flurry of
works recently from both NLP and ML communi-
ties to build accurate detectors. GLTR (Gehrmann
et al., 2019) is a tool which consists of a suite of
baseline statistical methods that can detect genera-
tion artifacts from NLMs such as the GPT-2 model.
The tool lets human (including non-experts) study
a piece of text by visualizing per-token probabil-
ity, per-token rank in the predicted distribution and
entropy of the predicted distribution. These sim-
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ple tests rely on the assumption that text genera-
tion models over generate from a limited subset
of the true distribution of natural language. The
main advantage of GLTR is that it can facilitate un-
trained humans to accurately detect synthetic text
(from 54% to 72% in terms of accuracy). The main
weakness of this work is that the generative mod-
els can get better at producing good quality text
that lacks statistical anomalies, which can make
GLTR to be ineffective. Ippolito et al. (2019) con-
ducts a thorough study on how choices such as
sampling method, length of the text excerpt can
impact the performance of human raters as well as
automatic detection methods. They find that au-
tomatic detectors perform significantly better than
human raters (similar to the result of the GLTR
work). Notably, text generated through longer text
excerpts are easier to identify for both automated
and human raters. Automatic detectors are im-
perfect as they are poorly calibrated statistically
and have very low correlation with expert human
raters. The effectiveness of the automatic detector
is highly dependent on the sampling method used
to generate its training set, while some choices of
sampling method leads to generalization as poor as
random guessing.

3 Problem Description and Data

NLMs can be used by (low-skilled) adversaries
for malicious use cases like generating fake news,
impersonating others in email, automating spam-
ming/phishing and abusive social media content
production (Solaiman et al., 2019). Zellers et al.
(2019) shows that NLM can be used to create
fake news automatically and humans find fake
news written by NLM to be more trustworthy than
human-written fake news. Spammers can misuse
NLMs to create fake product reviews (Adelani
et al., 2020) that might bypass the traditional spam
filters as the text generated using NLM closely
matches human distribution. Weiss (2019) shows
that NLM can be used to create fake comments in
a federal public comment website that cannot be
distinguished from human comments. To combat
the threats posed by such adversaries, we need to
build accurate models that can identify text gen-
erated by NLM from human written text. Such a
model can be used to moderate content in vulner-
able platforms such as social media, email clients
and e-commerce websites.

Our task can be defined as follows. Given a

set of human written articles and articles gener-
ated by a state-of-the-art NLM (like GPT-2), the
goal is to build a binary classifier that can detect
human written article from machine generated arti-
cle. We use the publicly available corpora provided
by OpenAI 2. The corpora contains 250K articles
from WebText (collection of human written arti-
cles). The corpora also contains text generated by
GPT-2 model, specifically 250K articles each from
three different stochastic sampling techniques such
as pure sampling (no truncation), top-k sampling
and nucleus sampling. Thus, the corpora allow us
to frame three binary classification tasks:

• Detecting WebText articles from articles gen-
erated using pure sampling (PURE)

• Detecting WebText articles from articles gen-
erated using top-k sampling (TOPK)

• Detecting WebText articles from articles gen-
erated using nucleus sampling (NUCLEUS)

OpenAI also separately provide 5K examples each
for creating validation and test set.

Given the large size of the dataset, we use only
sample from the original dataset for our experi-
ments, specifically 15K, 1.5K and 1.5K for creat-
ing training, validation and test set respectively for
each class.

4 Proposed Approach

Gehrmann et al. (2019) reports that while humans
would vary expressions in real texts, GPT-2 model
rarely generate synonyms or referring expressions
for entities, which does not follow the theory of
centering in discourse analysis (Grosz et al., 1995).
In our manual analysis of GPT-2 generation, we
observe that the salient entity in sentences to be
switching back and forth between multiple entities,
which might indicate that the text is not locally co-
herent. Existing detection models treat the text to
be classified as a flat sequence of tokens, ignoring
the sentence level structural information present
in the text. We hypothesize in the project that the
sentence level cues can help us model how NLMs
handle coherence. This in turn can act as useful fea-
tures in the detection task. To this end, we propose
to model the detection task using models from dis-
course coherence (Lai and Tetreault, 2018), which

2https://github.com/openai/
gpt-2-output-dataset
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can capture how sentences are connected in a doc-
ument as well as how a document is organized. We
assume the human written text is coherent in gen-
eral while the machine generated text is incoherent
in general. In other words, we are casting the detec-
tion problem as a task of identifying if the text is
coherent (human written) or incoherent (machine
generated). Below we will list down the discourse
coherence models we have employed in this project.
These discourse coherence models range from ba-
sic models that model entity centric coherence to
advanced models based on neural networks that
capture richer interactions (sentence-sentence and
paragraph-paragraph interactions). 3

4.1 Entity Grid (EGRID)

The entity grid model (Barzilay and Lapata, 2008)
works on the assumption that the distribution of
entities (noun phrases) in locally coherent texts
exhibits certain regularities. 4 The entity grid is a
two-dimensional matrix that tracks the distribution
of entity mentions across sentences. Each row of
the grid correspond to sentences and each column
correspond to entities in the document. Each cell
in the grid contains the syntactic role of an entity
in a sentence. From this grid, we can extract the
patterns of local entity transitions by considering
continuous subsequences of each column. Each
transition will have a certain probability in a given
grid. We represent the document as a distribution
over transition types. We treat the distribution as a
feature vector and train a random forest classifier
to perform the coherence prediction.

4.2 Entity Graph (EGRAPH)

The main disadvantages of EGRID model are data
sparsity, domain dependence and computational
complexity, especially in terms of feature space
issues when building the model. Additionally,
EGRID model is restricted to capture transition
between adjacent sentences only. The entity graph
model (Guinaudeau and Strube, 2013) overcomes
the above-mentioned challenges by representing
the information in entity grid in a graph. 5 In the
graph, each node is a sentence in the document

3The authors of Lai and Tetreault (2018) provided us the
implementation for all the models over email.

4We use dependency and constituency parser from Stan-
ford CoreNLP tool (Manning et al., 2014) to get the syntactic
roles and noun constituents respectively.

5We use the same tokenization, parsing tools used in
EGRID model.

and edge exists between two nodes if the two sen-
tences share at least one entity. Edge weights are
computed based on the number of entities shared,
the syntactic roles of the entities, or the distance
between sentences. The coherence score of a docu-
ment is based on the average outdegree of its graph
(a centrality measure). This measure is computa-
tionally easier to calculate and captures the degree
to which the sentences in a document are connected,
that is, higher the outdegree, higher the coherence
is. We use logistic regression by treating this mea-
sure as a feature to perform classification.

4.3 Sentence Averaging (SENTAVG)

We employ neural network based coherence mod-
els that is trained end-to-end on this classification
task. In general, these models can capture richer
interactions between sentences and paragraphs in a
document. We experiment with the sentence aver-
aging model proposed in Lai and Tetreault (2018)
that can help us in investigating the importance of
sentence order in the classification task by ignoring
the sentence order. 6 Essentially, the model consists
of a single LSTM that emits a sentence embedding
(the last output embedding) by utilizing a sequence
of GloVe word embeddings to represent the words
in the sentence. The document embedding is ob-
tained by averaging over all sentence embeddings
in that document. The document embedding is then
passed through a linear layer followed by a soft-
max layer to perform end-to-end classification. We
choose this model as it helps us to measure the im-
portance of sentence structure in detecting machine
generated text from human written text.

4.4 Paragraph Sequence (PARSEQ)

We believe the role of paragraphs is crucial in our
detection task as we find text generated by GPT-2
model tends to have more number of longer para-
graphs than a human typically writes (as discussed
in Section 6). To leverage the paragraph-paragraph
interactions (in addition to sentence-sentence inter-
actions) in a document, we employ the hierarchi-
cal document model, namely paragraph sequence
model proposed in Lai and Tetreault (2018). 7 This
model contains three LSTMs. The first LSTM
takes a sequence of GloVe word emebddings to

6We use nltk toolkit for sentence segmentation and tok-
enization.

7We use line breaks to identify paragraphs in the document
and use nltk toolkit for sentence segmentation and tokeniza-
tion.
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produce a sentence vector. The second LSTM takes
a sequence of sentence embeddings to produce a
paragraph embedding for each paragraph in the
document. The final LSTM takes a sequence of
paragraph embeddings to produce a document em-
bedding. Similar to SENTAVG model, we pass
the document embedding through a linear layer fol-
lowed by a softmax layer to perform end-to-end
classification.

5 Experimental Setup and Results

In this section, we will lay out the details of our
baseline models and coherence models (discussed
in the previous section). We will also present our
detection results. We make the code used in our
experiments publicly available for reproducibility. 8

5.1 Baseline models
We use the following baseline models to compare
with existing work.

5.1.1 NGRAM model
NGRAM is a simple baseline model provided by
OpenAI that represents a document using tf-idf rep-
resentation (with unigrams and bigrams) and uses a
logistic regression model to perform classification.
We use the original code provided by OpenAI to
implement this baseline model. 9 The document is
tokenized using a white space tokenizer.

5.1.2 BERT model
BERT model (Devlin et al., 2019) is a strong base-
line model that is pre-trained for bidirectional rep-
resentations from large amounts of unlabeled text.
The representation learned by BERT model has
been shown to be useful for a diverse set of down-
stream NLP tasks including question answering,
text classification, paraphrase detection. We use
the implementation of BERT model provided by
Hugging Face to build our detection classifier 10.
We make use of the bert-large-uncased variant
of BERT model that consists of 24 layers, each hav-
ing a hidden size of 1024 and 16 attention heads
(340M parameters) pre-trained on lower-cased En-
glish text. We finetune the pre-trained model on
our task for 3 epochs, with learning rate of 2e-5
and batch size of 32.

8https://tinyurl.com/y9acnnzu
9https://github.com/openai/

gpt-2-output-dataset/blob/master/
baseline.py

10https://github.com/huggingface/
transformers

5.1.3 GPT-2 model
We use the GPT-2 model (Radford et al., 2018) as
a baseline model to detect generation produced by
itself. Zellers et al. (2019) shows that detectors
based on NLMs are better at detecting their own
generation as they know the tail of the distribution
well. Similar to our BERT model setup, we use the
implementation of GPT-2 model provided by Hug-
ging Face to build our detection classifier. We make
use of the gpt2-medium variant of GPT-2 model
that consists of 24 layers, each having a hidden size
of 1024 and 16 attention heads (345M parameters),
which is of similar capacity to BERT model except
that the representations learned by GPT-2 model
are unidirectional (left to right) and pre-trained on
a collection of online articles, WebText. Note that
human written text for our detection task is taken
from the test set of WebText.

5.2 Coherence models

We will now discuss the configuration for our co-
herence models. For EGRID and EGRAPH mod-
els, we assign each noun form to one of the three
syntactic properties - subject (S), object (O) or mis-
cellaneous (X) and noun forms used in different
roles in a single sentence will be resolved in the fol-
lowing order of preference: S (most preferred), O
and X. For EGRAPH model, we choose a weighted
syntax-sensitive graph without discounting for the
distance between sentences and the role weights
for S, O and X are set to 3, 2 and 1 respectively. For
neural models such as SENTAVG and PARSEQ,
we use the validation set to tune the model hyperpa-
rameters such as hidden size of a LSTM cell (100,
300), word embedding size (100, 300) and dropout
rate (0.1, 0.5). We use a batch size of 32 and train
each model for 10 epochs.

5.3 Results

Table 1 furnishes the detection results of all our
models in this study. Unsurprisingly, the pre-
trained language models such as BERT, GPT-2 per-
forms very well as their internal representations (ex-
cept the linear classification layer) are pre-trained
on large amounts of data. GPT-2 excels in PURE
and TOPK tasks while BERT outperforms GPT-2
by a small margin in NUCLEUS task. This result is
consistent with that of Zellers et al. (2019), where
they show that GROVER model is best at detect-
ing itself than BERT discriminator. We believe
using the largest model of GPT-2 (gpt2-xl vari-

https://tinyurl.com/y9acnnzu
https://github.com/openai/gpt-2-output-dataset/blob/master/baseline.py
https://github.com/openai/gpt-2-output-dataset/blob/master/baseline.py
https://github.com/openai/gpt-2-output-dataset/blob/master/baseline.py
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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model PURE TOPK NUCLEUS

Baseline models
NGRAM 66.2 86.5 66.86
BERT (Devlin et al., 2019) 75.27 90.77 70.33
GPT-2 (Radford et al., 2018) 76.2 92.8 69.2

Entity based coherence models**
EGRID (Barzilay and Lapata, 2008) 68 61 57
EGRID (with unigrams, bigrams) 64 70 56
EGRAPH (Guinaudeau and Strube, 2013) 57.04 63.64 52.6
EGRAPH (with unigrams, bigrams) 67.09 84.8 62.38

Neural based coherence models
SENTAVG (Lai and Tetreault, 2018) 51 37.03 40.83
PARSEQ (Lai and Tetreault, 2018) 60.3 76.8 59

Table 1: Accuracy percentage of baseline, entity based and neural based coherence models. **The performance
of entity based models are not comparable with the rest of the models as nearly 50% of the documents resulted in
parsing errors and are excluded from the training, validation and test set.

ant) might have resulted in strong performance of
GPT-2 model over BERT model as the generation
indeed comes from the largest model of GPT-2. In
practice, we might not have access to the param-
eters of the original NLM whose generated text
we wish to detect. Additionally, classifiers based
on BERT and GPT-2 models are not interpretable
and hence might not be able to guide humans in
detecting fake text reliably.

We face parsing errors with 50% of the docu-
ments in the dataset, which prevents us from di-
rectly comparing the numbers obtained for our en-
tity based coherence models with other models
considered in this study. Nevertheless, entity based
models throws light on the coherence characteris-
tics of the text generated using different sampling
techniques. Strikingly, text generated using nu-
cleus sampling are much harder to detect by the
coherence based models in general. As seen in
the next section, this result is due to the fact that
the nucleus generations (compared to generations
obtained through other sampling methods) are as
coherent as human written text, which makes the
coherence based detector easily confuse a machine
generated text for human written text. EGRAPH
model with n-gram features outperforms similar
variant of EGRID model, mainly due to the rich-
ness of sentence-sentence interactions captured by
the former. SENTAVG model performs the worst
among other models, which clearly indicates that
sentence structure plays a vital role in our detection
task. However, neural based coherence models are
not effective for this detection task, as these mod-
els are outperformed by NGRAM model by a large
margin.

WebText PURE TOPK NUCLEUS

#para 12.11 14.69 13.05 15.43
#sentlen 19.61 20.41 21.67 18.87
#paralen 18.14 19.67 22.1 18.39

Table 2: Discourse statistics such as average number
of paragraphs in a document (‘#para’), average length
of the sentence in a document (‘#sentlen’) and average
length of the paragraph in a document (‘#paralen’) for
different datasets in our study.

6 Analysis and Discussion

In this section, we provide extended analysis of the
detection results along with the lessons we learned
in this project.

6.1 EGRAPH Outdegree Scores

One of the key assumption of our approach of em-
ploying coherence based models for detecting ma-
chine generated text from human written text is that
machine generated text is highly incoherent in gen-
eral compared to human written text. To validate
this assumption, we plot the histogram of the out-
degree scores obtained using EGRAPH model on
WebText, text generated using pure sampling, top-k
sampling and nucleus sampling. As seen from the
figure 1, we observe that the histogram obtained for
nucleus sampling and WebText are highly similar
(compared to other sampling), thereby highlight-
ing that efficient sampler can make NLM generate
text that is as coherent as human written text. This
result is consistent with the results presented in ta-
ble 1 that generations using nucleus sampling is
harder to detect by coherence based models.
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(a) WebText (b) PURE Sampling (c) TOPK Sampling (d) NUCLEUS Sampling

Figure 1: Histogram of average outdegree score obtained through EGRAPH model for different datasets.

PURE TOPK NUCLEUS

uni+bi 62.5 81.4 64.03
#para 50.63 52.33 53.33
#sentlen 52.57 58.3 50.37
#paralen 52.47 50.27 51.2
uni+bi+#para 62.23 81.23 63.67
uni+bi+#sentlen 61.93 81.67 63.93
uni+bi+#paralen 62 81 63.83
all 63.3 80.73 63.73

Table 3: Accuracy percentage of detection models with
features based on unigrams (uni), bigrams (bi), average
number of paragraphs in a document (‘#para’), average
length of the sentence in a document (‘#sentlen’) and
average length of the paragraph in a document (‘#par-
alen’).

6.2 Discourse Statistics

Another motivation for us to make the detector
model coherency interactions such as sentence-
sentence and paragraph-paragraph interactions is
based on our observation through manual analysis
that text generated by NLM tends to prefer more
number of paragraphs and longer paragraphs in
general than typical human writings. This obser-
vation is quantified in table 2 where we present
three statistics for a dataset such as average num-
ber of paragraphs in a document (‘#para’), average
length of the sentence in a document (‘#sentlen’)
and average length of the paragraph in a document
(‘#paralen’). Inspired by this striking phenomenon,
we use these statistics as features to build detectors.
As seen from table 3, we find that detectors based
on these statistics in isolation performs at chance
level. We augment the feature space of the detector
with unigram and bigram features. In comparison
to NGRAM baseline model, the detector with all
the features performs well for PURE task while
the detector with n-gram and ‘#sentlen’ feature per-
forms well for TOPK task.

6.3 Lessons Learned

We will now list the lessons we learned through
this project.

• Utilizing coherency based features for a detec-
tor is questionable, especially if the sampling
technique used by the generator is efficient
(e.g., nucleus sampling) as those generated
texts are highly likely to be coherent and can
confuse the detector.

• NGRAM models exhibit strong detection per-
formance than the neural based coherence
models despite its simplicity.

• Detector based on the parameters of the model
to be detected outperforms strong discrimina-
tors such as BERT model.

• EGRAPH model is better than EGRID model,
only when the feature space also contains uni-
grams and bigrams. 11

• Text generated by NLM tends to prefer more
number of paragraphs and longer paragraphs
in general than typical human writings.

7 Conclusion and Future Directions

In this report, we presented our experiences in em-
ploying coherence based models to detect machine
generated text from human written text. To the
best of our knowledge, our work is the first to ex-
plore discourse coherence based approaches for
this task. In future, we plan to experiment with ad-
vanced coherence models such as entity grid with
convolutions (Tien Nguyen and Joty, 2017), lexical
coherence graph (Mesgar and Strube, 2016), dis-
course parsers (e.g. RST parser) to extract useful
features for this task. We also plan to focus on

11This might also be due to the difference in the ML model
as EGRID model uses random forest classifier while EGRAPH
model uses logistic regression based classifier.
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building an interpretable detector, which is also ac-
curate and can help in aiding humans in detecting
the generation from NLM.
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