Robust Feature Extraction Algorithm for Sarcasm

Detection in Debates
CPSC 503 e December 2014

Olivia Norton & Issam H. Laradji

University of British Columbia

Abstract

Sarcasm is a subjective vocal inflection that
is difficult for humans nsistently identify.
The task of detecting @sm in text with no
vocal cues is a complicated one. In this paper
we propose a scheme for identifying whether
a response to a statement in a debate is sar-
castic. We explore a diverse set of textual
features from low to high complexity to iden-
tify those that provide the most valuable infor-
mation for sarcasm detection. The scheme is
composed of four primary steps. First, we ex-
tract and select robust textual features. Sec-
ond, we perform a novel unsupervised fea-
ture extraction using extreme learning ma-
chine (ELM) autoencoders, which allow pro-
Jjection of a smaller set of features into a larger
dimensional space. Third, feature selection
is performed using chi-square and downsam-
pling is done to account for the imbalance be-
tween sar¢—=+= and non-sarcastic data. Fi-
nally, feati:%;lre classified as either sarcas-
tic or non-sarcastic using a simple logistic re-
gression classifier. Autoencoded TF-IDF tex-
tual fea re selected using chi-square and
classiﬁe%g simple logistic regression. We
found a fair accuracy of 82.4% for detecting
sarcasm using this configuration.

I. INTRODUCTION

Sarcasm in the field of NLP is a fairly young topic
while humor detection and generation has been un-
der the microscope for just a little longer (Mihalcea
and Strapparava, 2006). There has been recent in-
terest in using sarcasm in such applications as sum-
marization, dialogue systems, and review ranking
systems (Davidov et al., 2010). Most recently, the

US secret service has released a work tender (BBC,
2014) describing a social media analytics tool for
monitoring and visualizing various data. Specifi-
cally they have requested the ability to detect sar-
casm, in addition to sentiment analysis and influ-
encer identification. Previous approaches to humor
detection stress the importance of ambiguity in cre-
ating the humorous effect (Reyes et al., 2010) (Krik-
mann, 2006). For sarcasm specifically, there have
been attempts to use features such as the term “yeah-
right”, computing a measure of validity (vs. absur
dity), as well as both syntactic and pattern-based
features (Tsur et al., 2010), (Filatova, 2012). Tak-
ing advantage of changes wro by social media,
one group used the presence of hastags (#sarcasm)
to generate a corpus of author annotates sarcastic
Twitters comments.

In this paper we propose a system to identify sar-
castic responses in a debate context. We present a
diverse set of textual features of varying complexity
with the intention of identifying those that provide
the most valuable information for sarcasm detection.
The algorithm first extracts and selects robust tex-
tual features. We then perform unsupervised feature
extraction using extreme learning machine (ELM)
autoencoders (ELM-AE) which allow projection of
a smaller set of features into a larger dimensional
space. Features are then classified as either sarcastic
or non-sarcastic using a simple logistic regression
classifier.

This paper presents three main contributions:

e A quantized evaluation of the importance of

varying complexity features |

Giuseppe
Note
from your definition of sarcasm in the previous sentence, how can it be identified without vocal cues ?!

Giuseppe
Inserted Text
,

Giuseppe
Note
responses? -1

Giuseppe
Note
?!

Giuseppe
Note
??

Giuseppe
Note
?

Giuseppe
Note
isn't the opposite?
you project into a smaller dimensional space?!
-2

CPSC 503 e December 2014

* To apply unsupervised learning to extract more
robust features from textual features

¢ To achieve state-of-the-art score on the sarcasm
dataset.

I. Related Work

Automated recognition of sarcasm in text is a fairly
novel task, though extensive study has previously
covered the question of sarcasm in the context of lin-
guistics (Utsumi, 1996).

Identification of sarcasm in a spoken dialogue sys-
tem has been explored by (Tepperman et al., 2006).
Their methods relied on analysis of the qualities of
utterances including the statement ”yeah right”. In
particular, the authors looked at characterizing the
”yeah right” as either acknowledgment, agreemen-
t/disagreement, indirect interpretation or internal to
a phrase. This information in addition to a set of mu-
sical and spectral features is used to achieve strong
results. The dataset used for this paper consisted of
a set of recordings which included the phrase “yeah
right” Contextual features and spectral features com-
bined provide the highest result with and accuracy of
87%.

News articles have been looked at by means of sim-
ple lexical features by (Burfoot and Baldwin, 2009).
They were interested in identifying satirical vs. non-
satirical articles. They focused their classification on
three features types, headlines, the use of profanity,
and the use of slang. They achieved an f-score of
0.798 on the corpus of news wire and satirical docu-
ments.

(Polanyi and Zaenen, 2006) proposed a proof of con-
cept for improving results in negatjve ys. positive
sentiment analysis. They utilize tht itudinal va-
lence of lexical terms based on their context.
(Carvalho et al., 2009) investigated the ability to de-
tect ironic sentences using surface patterns. They
focus on positive predicates as they argue that these
are more likely to contain irony. The authors per-
form classification on a corpus of Portuguese news
articles and their associated comments. Particu-
larly positive results, 85.4% accuracy, were reported
when using ’laughter’ features. These features took
advantage of internet slang for laughter including
emoticons and acronyms like "LOL’.

(Kreuz and Caucci, 2007) hypothesized that prag-

matic and lexical factors have a part to play in the
identification of sarcastic statements. In particular
they focus on the presence of features related to ad-
verbs/adjectives, punctuation and interjections. A
corpus consisting of a collection of phrases selected
using a Google Book Search for the term ’said sar-
castically’ as well as ’said’, "he said’ and ’she said’
was used for this work. A large group of partici-
pants then provided feedback as to whether they be-
lieved an utterance to be sarcastic. This information
was combined with the annotations for adjectives,
adverbs, interjections and use of punctuation. The
results indicated that of the cues explored, only the
presence of interjections proved significant in pre-
dicting sarcasm.

(Gonzélez-Ibafiez et al., 2011) take advantage of
the changing social media environment to create an
author annotated corpus of sarcastic Twitter com-
ments. They rely on the use of hashtags such as
#sarcastic to identify and compile the corpus. They
then use a set of lexical and pragmatic features to
perform sarcastic utterance classification using lo-
gistic regressio support vector machine classi-
fiers. The mos‘t%gitive results were based on the
SVM classifier and basic unigram features with an
average accuracy of 65 .44@)% (Filatova, 2012)
employed Mechanical Turk Workers to help in iden-
tifying and reviewing a corpus of sarcastic and non
sarcastic product reviews on Amazon. The results of
these experiments were a corpus annotated for sar-
casm at both a sentence and document level.

(Tsur et al., 2010) and (Davidov et al., 2010) pre-
sented a semi-supervised sarcasm recognition sys-
tem based on pattern recognition and punctuation
and capital based features. Classification experi-
ments were performed on two dataset, a Twitter
dataset as well as a dataset composed of Amazon
product reviews. The authors report a high accu-
racy of sarcastic utterance classification of 82.1%,
though the recall and precision for that experiment
were 31.2% and 25.6% respectively. The approach
used by these authors to feature generg== is similar
to the approach explored in this work.

II. DATA

As is always the case when we begin exploration in
a new direction of NLP, the need for annotated cor-

Giuseppe
Note
why is this relevant? need to relate to you work -1

Giuseppe
Note
best

Giuseppe
Note
?!

Giuseppe
Note
in what way?
do they also use autoencoded TFIDF features?
-1

CPSC 503 e December 2014

Sarcasm Hand Engineered Automated Split Data
Corpus Textual Features 3| Feature 3| esting and
Extraction [Training
> Downsample Train Classifier Classify Test Data

Y
Y

Training Data

Figure 1: Sarcasm Recognition Framework

pora is of critical importance.

I. Corpus

A team out of the University of California Santa
Cruz (Walker et al., 2012) has put together a
corpus ! of quote and response pairs scraped from
online debate forums. It includes a set of 390,704
posts from 11,—800 discussions focused on high
controversy topics such as abortion, climate change,
evolution, gun control and gay marriage, among
others. The corpus was generated with the intention
of facilitating research in the arena of deliberation
and debate.

Corpus annotation was performed by Mechan-
ical Turk for the following characteristics:
Agree/Disagree, Fact/Emotion, Attack/Insult,
SarcasmNice/Nasty, Audience,Undercutting, Ne-
gotiate/Attack and Question/Assert. Each quote
response pair was annotated by five separate Turk-
ers. Analyses showed the task of analyzing for
these criteria was difficult. To minimize noise,
the authors used a two-level training and filtering
framework to ensure only those Turkers who had a
proven grasp of the language and the requirements
were invited to annotate the final threads. It is
important to note that previous work (Bryant and
Fox Tree 2002) indicates that non-experts appear
to group most forms of verbal irony into the single
term of sarcasm, meaning that the system proposed
below may, by proxy, also be capturing more than
what might strictly be considered sarcasm. Table 1
reports some details about the corpus.

"Found here: https://nlds.soe.ucsc.edu/iac

#Sarcastic Sam- | #Non-Sarcastic # BoW Features
ples Samples
1283 8694 33586
Table 1: Corpus information
III. HIGH-LEVEL IMPLEMENTATION

The scheme takes the following steps as shown in
Figure 1.

1. Extract hand-engineered features
2. Extract latent features using ELM autoencoder

3. Apply feature selection and down-sampling to
equalize the number of sarcastic samples with
the number of non-sarcastic samples.

4. Use logistic regression to classify the samples
into sarcastic and non-sarcastic.

These steps are explained in more detail in the fol-
lowing sections.

I. Extraction of Hand-Engineered Features

Verbal irony and sarcasm can be used in a multi-
tude of ways from pointed commentary to subtle re-
proach. Depending on the context, the speaker or
author may make it more or less obvious that the
statement they are making is in fact sarcastic. Sar-
casm, therefore, is a complicated affair. It gener-
ally requires a minimum level of universal or contex-
tual knowledge to understand the nuances of a sub-
tle statement, but other cues can and are often used
including intonation in speech, as well as body lan-
guage. As neither intonation, nor body language arg:

Giuseppe
Cross-Out

Giuseppe
Inserted Text

CPSC 503 e December 2014

easily read from text (with the exception of the con-
venient use of emoticons, emoticon_rolleyes), there
must be other lexical, syntactic, and structural pat-
terns which can aid in identification of text-based
sarcasm. In this section we described the hand-
engineered features explored in this paper. We se-
lect a subset of representative features of various
types-. This will allow us to identify the types of
patterns which have the most effect on a machines
ability to detect sarcasm. In the feature section, we
explored three main groups. The first is our base-
line, described below. The second is an extended
set of low and high complexity features which look
at quote-response similarity among other things, and
the third are robust TF-IDF features.

I.1 Baseline Features - BASE

1. Sentence Length
The measure of sentence length in number
of words provides a fairly simple way to
assess the pointedness of the comment we are
analyzing. As sarcasm generally manifests
as a sharp or cutting comment, it follows that
the shortness of the senten ay have some
bearing on the conversatiof%nortness of the
sentence as well.
This measure is used as part of our baseline
features.

Example

Quote: Since the mass fatal shooting at Vir-
ginia Tech in 2007, gun-rights advocates have
made an all-out effort to allow students to carry
hidden firearms - on the dubious theory that
students would be better protected from mass
killers. But 22 states saw the folly of this idea
and defeated it, even in strong gun-rights states
such as Louisiana, South Carolina, and Okla-
homa.

Response: So students don’t deserve their con-
stitutional rights?

2. Punctuation
Punctuation has been used as a marker for text
based sarcasm in previous works (Davidov
et al. 2010, Tsur et al. 2010, Carvalho et al.
2009). It has proven to be an important feature
in these cases and so we include it as part of

our classification as well. We focus on various
normalizey punctuation counts including ques-
tion and exclamation marks, and quotations.
Example

Quote: And why is it that animals who don’t
often change their environments are the very
same animals who havent “evolved” in mil-
lions of years...ie...crocodiles, sharks, bats, etc?

Response: LOL. ”Bats haven’t evolved
in millions of years”...

. Capitals

In text, we no longer use of vocal in-
flection to lend particular emphasis to certain
words and phrases. It is common for authors
the employ the creative and occasionally gratu-
itous use of capital letters to lend this vocal in-
flection to text based communications. In this
section, two specific “<s are utilized. The
first it the normalized er of capital letters
in a response. The second is the normalized
number of capitalized words in a sentence.

Example

Quote: If the christianists are dead set against
we gay people getting married then I say lets
let them keep marriage. Lets go on the attack
and attempt to destroy christainist hetero mar-
riages. We gay men need to suduce the men
and the lesbians need to suduce the women.
Lets see if we can drive those divorce rates up
to 60%, 75%, or even 90%.

Response: Oh, THANK YOU MATT!
You just effectively shot down every argument
I had in the ’indoctrinate our children’ thread.
See if I stick up for YOU publicly anymore.

Extended Features - EFEAT

. Punctuation

We extend the normalized punctuation counts
described in the baseline to include commas
and periods. The expectation is that these char-
acters will also lend information to the presence
or absence of sarcasm.

Example

Response: Obviously you have the answer t2

Giuseppe
Cross-Out

Giuseppe
Cross-Out

Giuseppe
Note
?

Giuseppe
Inserted Text
d

Giuseppe
Cross-Out

Giuseppe
Replacement Text
can!

Giuseppe
Note
percentage?

CPSC 503 e December 2014

this question, along with evidence that your an-
swer is correct and factual,cccoeee.....

. Word-Overlap

The word-overlap feature is a measure of
not only similarity, but also of ’parroting’.
Parroting in a response is the use of the exact
structure, and word choices of a previous
comment to make a pointed remark. This
feature is computed as the normalized count of
number of overlapping words between a quote
and response.

Example

Quote: How about a sin tax of $100 each time
you buy a gun and $10 each time you buy a
bullet? Its fair because it would help pay for
all the damage guns do to society. Rights come
with responsibilities.

Response: How about a sin tax of $100
dollars each time you log on and $10 dollars a
word for each time you speak one?

. Similarity Score

The intuition leading to the use of this feature
is base on the sarcastic utterances wherein
the response either re-iterates the thoughts of
the quote in a disbelieving way or completely
changes the subject by associating the actions,
or thoughts of their opponent to an event or
situation that is completely unrelated. In the
first case, we would expect to see fairly high
similarity between quote and response, while
the second case would lead to very dissimilar
subject contents.

We employed an LDA (Steyvers and Griffiths
2006)topic model over the entire corpus
with the topic number empirically set to 40
topics. Euclidean distance between quote and
response topics vectors was then computed and
normalized.

Example - Highly Similar

Quote: A few Bible studies, comparing it to
the flow of events, the nature of people, my
shortcomings, the shortcomings of science etc,
convinced me.

Response: So your biased reading of the
Bible coupled with your personal flaws and
your misunderstanding of science is the basis
of your religiosity? Somehow I don’t think
that’s something you’d really want to brag
about...

Example - Highly Dis-similar

Quote: Your reasoning of the effects of
abortion are correct. The liberals who see
abortion as a normal, acceptable, right to
choose abortion are aborting themselves into
extinction.

Response: How tolerant. Lets talk about
the Spanish Inquisition.

1.3 TF-IDF Features - TFIDF

For our scheme, we extract robust textual features
known as Term Frequency Inverse Document (TF-
IDF). For each quote or response, it first constructs a
feature vector that represents the count of each term
- like Bag of Words (Joachims, 2002). However,
stop words such as ‘a’ and ‘the’ are ignored. Next,
TF-IDF scales the term counts based on how many
times the terms appear in the corpus. More formally,
this is written as,

where doc; @ocument 1, d; denotes the feature
vector for doc;, T'F(w;, doc;) is a function that re-
turns how many times word (or term) w; appears in
doc;, | D| is the number of documents in the corpus,
and D F'(w;) returns the number of times w; appears
in the corpus. It is worth noting that the TF-IDF fea-
tures have been commonly used for text represen-
tation (Ramos, 2003). This feature representation
applies term weighting so that common words such
as ‘he’ and ‘went’ are given less weight and more
weight is assigned to less occurring words in the
collection. This avoids common words from over-
shadowing the feature values represented by more

distinguishing words.

Example
Quote: No they couldn’t.
Response: Oh, OK then. emoticon _rolleyes

Giuseppe
Note
here the response, right?
-1

Giuseppe
Note
in what sense this is an example?
because it does not contain any content word. unclear
-1

CPSC 503 e December 2014

I. Feature Extraction using ELM-AE

Extreme learning machines (ELMs) have the abil-
ity to train very quickly yet develop a robust non-
linear function (Huang et al., 2006). This makes it
appropriate for natural language processing datasets
that tend to be very large. Here we propose using an
ELM network, known as ELM-autoencoder (ELM-
AE), for feature extraction. It trains on the TF-IDF
features and extracts new features that are retained
in the hidden layer shown in Figure 2.

Bias

Output

Hidden
Features

Features

Figure 2: ELM-Autoencoder Network.

ELM-AE is described as follows. Given an in-
put matrix X € R"*™, a bias vector b € R, and
weight matrices W € R™*L and 8 € RL*™. Con-
sider a network containing m input neurons, L hid-
den neurons, and m output neurons. The function to
optimize is written as,

L(B) = mins 3] X — g(Xw +b)8]3+ ZAI8IB

(2)
where g(A) = max(0, A) which is the Rectified
Linear Unit Function (ReLU), and X, the target
value, is set as X. In other words, ELM-AE learns
to find features H = g(Xw + b) that can reconstruct

the original features X .
Matrix uniformly randomized between a

small range of values. Then, the hidden activations
H of the hidden layer are computed as,

H=g(X-W+0b) (3)

This gives us,

1, 5 1
L(8) = ming3||X ~ HBIB+ N8B @)

which can be solved using least squares. The goal
is to find § that minimizes equation 4. Taking the
derivative with respect to /3 for equation 4 and equat-
ing it to zero, we get,

HT(HB - X)+)3
=HTHB - HTX +)\p (5)
=(H"H+A)B-H'X =0

5 can then be solved with regularization as fol-
lows,
B=WN+HTH)'HTX (6)

where I is the identity matrix, and A is a constant
that controls the regularization term. Lower A leads
to learning a more linear function, as it increases
bias and becomes less affected by variations (such
as those caused by noisy data) in the dataset.

Finally, the new features F' are computed using
this equation,

F=g(Xx- 8" (7)

These new features represent interesting struc-

tural information about the input TF-IDF features.
Our results show that these features are robust
enough to allow linear models such as logistic re-
gression to perform as efficient as non-linear models
such as extreme learning machine classifier.
Note that there is a tuneable parameter describing
the number of hidden neurons used in the ELM au-
toencoder. A description of how this parameter is set
is included in section IV.I Experimental Setup.

III. Feature Selection using Chi-Square

TF-IDF tends to generate high-dimensional sparse
feature vectors for each response sentence which can
hurt generalization (Sun et al., 2012). To ameliorate
this, we use chi-square statistics to reduce the feature
space and retain those features that are best corre-
lated with the target value. The correlation between
feature k£ and the labels is computed as follows,

-9 (Ok—bg

Xk =% (®)

where,

Or =y’ - Fy)

Giuseppe
Note
why lower case?

Giuseppe
Note
Ek ?

-1

CPSC 503 e December 2014

(10)

1 n n
Ex= 0 v Fi
"o =

where y is the label vector, F} is the vector repre-
senting feature k, and Z}Ll F},; is the summation
over vector Fy. The features with the highest){kz
are retained.

The number of features to be selected is a tunable
parameter that we explore. In section IV.I (Experi-
mental Setup), we explain how we select that param-
eter.

IV. Logistic Regression Classification

Logistic regression is a fast, efficient classifier for
training datasets with large number of features. This
classifier minimizes the error that is assumed to fall
under the logistic function as depicted in eq. (6) and
Figure 3,

1
Pr(Y; =yl X;) = T+ exp v (11)
1
0.5
LI EE R

Figure 3: Logistic Curve

This generates a linear model for classification.
Since logistic regression requires a balanced ratio
between classes to preform efficiently, we down-
sampled the training set by randomly removing sam-
ples falling under the non-sarcastic label. With such
smaller training set and equal ratio of class sizes, lo-
gistic regression achieved state-of-the-art results for
our scheme.

IV. EXPERIMENTATION

I. Experimental Setup

Experiments were run on a machine with 3.6 GHz
quad-core CPU and 8 GB RAM operating a 64-bit
Windows 8. We evaluate our schemes through a
10-fold stratified cross-validation method where the
dataset is divided into 90% training and 10% testing

for each fold. As such, both sets have similar ratio
of positive samples to negative samples. The scores
are based on average accuracy, recall and precision.
In other words, the scores for the sarcastic class are
computed alone, and for the non-sarcastic class are
computed alone as well. The final score is the av-
erage between them. The reason for averaging the
scores between classes is because the dataset is im-
balanced as non-sarcastic samples highly outnumber
sarcastic samples.

The recall measure defines the ratio of the number
of correctly classified documents in the category to
the total number of documents in the category:

TP

Recall = m

(12)
The precision is the ratio of correctly classified doc-
uments in the category to the total number of docu-
ments classified in the category:

TP
Precision = ———— 1
recision TP+ FP (13)
The accuracy is calculated as,
TP+TN
A = 14
Uy = e PP+ FN+ TN 0P

For the benchmark, we evaluated the following
schemes,

1. Scheme 1: TFIDF + ELM-AE + LOG

TF-IDF feature extraction is performed. Fea-
tures undergo ELM auto-encoding to identify
latent structures. Feature selection is per-
formed using chi-square and downsampling is
applied to the data. Finally classification is per-
formed using a simple logistic regression clas-
sifier.

2. Scheme 2: TFIDF + LOG
TF-IDF feature extraction is performed. No
feature autoencoding is performed. Feature
selection is performed using chi-square and
downsampling is applied to the data. Finally
classification is performed using a simple lo-
gistic regression classifier.

3. Scheme 3: BASE + KNN
Baseline features per section 3.1.1.1 are ex-
tracted. No feature autoencoding or chi—squar%

CPSC 503 e December 2014

selection is performed. Data is down-sampled
and classified using a 5-Nearest-Neighbor clas-
sifier.

4. Scheme 4: BASE + LOG
Baseline features per section 3.1.1.1 are ex-
tracted. No feature autoencoding or chi-square
selection is performed. Data is down-sampled
and classified using a logistic regression classi-
fier.

5. Scheme 5: BASE + EFEAT + TFIDF + LOG
All features including baseline (3.1.1.1), ex-
tended (3.1.1.2) and TF-IDF (3.1.1.3) features
are extracted then undergo chi-square selection
and down-sampling. Data is then classified us-
ing a logistic regression classifier.

6. Scheme 6: BASE + EFEAT + TFIDF + KNN
All features including baseline (3.1.1.1), ex-
tended (3.1.1.2) and TF-IDF (3.1.1.3) features
are extracted then undergo chi-square selection
and down-sampling. Data is then classified us-
ing a logistic regression classifier.

Score

0 500 1000 1500 2000
Number of retained features

Figure 4: Effects of Varying Number Chi-Square Se-
lected Features on Accuracy.

There are two tuneable parameters in this algo-
rithm. In order to optimize algorithm results, simple
experiments varying the number of ELM hiddden
neurons and chi-square features wag, performed us-
ing a validation set that constitutes 20% of the train-
ing set. Figures 4 and 5 display the results. The
number of hidden neurons is therefore empirically

1000 2000 3000 4000 5000 6000
Number of hidden Neurons

Figure 5: Effects of Varying Number ELM Hidden
Neurons

| Scheme Acc. | Rec. | Prec.
1| TFIDF+ELM+LOG | 0.824| 0.819 | 0.824
2 | TFIDF+LOG 0.676 | 0.676| 0.676
3 | BASE+KNN 0.524 | 0.499| 0.498
4 | BASE+LOG 0.543| 0.539| 0.543
5 | BASE+EFEAT+LOG | 0.717 | 0.693 | 0.696
6 | BASE+EFEAT+KNN | 0.537 | 0.504 | 0.537

Table 2: Experimental Results

set to 6000, and the number of retained chi-square
features was set to 1500.

V. EVALUATION AND RESULTS

We performed several tests varying the combina-
tions of simple manually extracted features, and
classification methods to identify the particular com-
binations which provided the best results. We chose
a total of 6 evaluation schemes as described in the
previous section. Table 2 shows the results of these
tests. Figure 6 displays the accuracies of scheme
1 and 2 with respect to the number of features se-
lected by the chi-squared method. We see stabiliza-
tion of results around the 30 feature mark. The con-
fusion matrices of the two schemes are given in Ta-
ble 4 and Table 3, respectively. The combination of
simple TF-IDF features with an additional ELM-AE
feature extraction step and linear regression classifi-
cation resulted in the best outcome with an average

accuracy of 82.4 g

Giuseppe
Cross-Out

Giuseppe
Replacement Text
were

CPSC 503 e December 2014

0.85

— TF-IDF + ELM-AE

— TF-IDF

0.65F

0.601

0.55
10 20 30 40 50 60 70 80 90 100
Retained features by chi-square

Figure 6: Accuracy of TF-IDF feature extraction
with and without ELM autoencoding.

T-S | T-NS
C-S 90 | 38
C-NS | 44 | 83

Table 3: Confusion matrix representing results of
testing scheme 2. TF-IDF Features with no ELM au-
toencoder. T-S and T-NS are the true Sarcastic and
non-sarcastic labels respectively, and C-S and C-NS
show the results of our classification.

VI. DISCUSSION

We note fairly comparable results between schemes
2 and 5 which nicely demonstrates the competi-
tion between specific hand-engineered features, and
holistic statistical features. The ELM-AE step was
not used to project a subset of features into a larger
dimensional space for scheme 5 primarily due to the
limited number of features in this experiment. The
ELM-AE is particularly valuable when we have a

T-S | T-NS
C-S 111 | 17
C-NS | 31 | 98

Table 4: Confusion matrix representing results of
testing scheme 1. TF-IDF Features with ELM au-
toencoder. T-S and T-NS are the true Sarcastic and
non-sarcastic labels respectively, and C-S and C-NS
show the results of our classification.

large subset of features to begin with. As we know
that sarcasm components can be extremely compli-
cated, the superior performance of t wer level
auto-encoded TF-IDF features is not%jtive. TF-
IDF has been shown to be very capable of text rep-
resentation in other applications, and it has demon-
strated that ability again here.

The use of ELM autoencoding shows a significant
improvement in accuracy for extracted TF-IDF fea-
tures. ELM is able to discern robust structural fea-
tures in the data where input features are seem-
ingly correlated. The KNN classifier performs very
poorly. This is not unexpected as KNN is known to
have a high variance therefore weak results in a
high dimensional clacéjlation space (Weber et al.,
1998).

VII. CONCLUSION

A novel approach to classification of sarcastic state-
ments based on simple automatically extracted fea-
tures has been presented. Very positive fair accuracy
measure of 82.4 have been reported, providing con-
crete support for the ongoing use of simple features.
Extreme Learning machines have shown themselves
to be gxtremely valuable intermittent s llowing
the projection of a subset of features int igher di-
mensional space. These features are robust enough
to allow linear models to develop an efficient classi-
fication decision boundary for sarcasm detection.

1. Future Work

It would be very interesting to continue to look at
the results of extending the list of manually engi-
neered textual features. Two areas of specific inter-
est are the use of Part-Of-Speech information as well
as syntactic sentence structure to aid in the classifi-
cation of sarcasm. These types of features would ob-
viously require increased computational overhead,
and may prove themselves to be more expensive
than they are worthwhile. The debate corpus used
in this implementation certainly had good examples
of sarcasm for training and classification, but, as al-
ways, we wish for a domain independent solution
to sarcasm detection. It would be of value to ap-
ply the existing algorithm to an extend set of cor-
pora, and identify strengths and domain-dependent
weaknesses in the current approach. The TF-IDl;

Giuseppe
Note
?!

Giuseppe
Note
so why you didn't do TFIDF+ELM+KNN ?

Giuseppe
Inserted Text
an

Giuseppe
Note
again, maybe you are just phrasing this strangely, but my understanding is that autoencoders map a large set of features into a simpler lower dimensional space ?!

CPSC 503 e December 2014

weighting scheme could be improved upon by ex-
ploring class specific weighting. This type of ap-
proach would take advantage of which occur
more commonly in one specific clas of another.

REFERENCES

BBC. 2014. Us secret service seeks twitter sarcasm
detector. In http://www.bbc.com/news/technology-
27711109. BBC News.

Clint Burfoot and Timothy Baldwin. 2009. Automatic
satire detection: Are you having a laugh? In Proceed-
ings of the ACL-IJCNLP 2009 conference short pa-
pers, pages 161-164. Association for Computational
Linguistics.

Paula Carvalho, Luis Sarmento, Mario J Silva, and
Eugénio de Oliveira. 2009. Clues for detecting irony
in user-generated contents: oh...!! it’s so easy;-). In
Proceedings of the st international CIKM workshop
on Topic-sentiment analysis for mass opinion, pages
53-56. ACM.

Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010.
Semi-supervised recognition of sarcastic sentences in
twitter and amazon. In Proceedings of the Four-
teenth Conference on Computational Natural Lan-
guage Learning, pages 107-116. Association for
Computational Linguistics.

Elena Filatova. 2012. Irony and sarcasm: Corpus gen-
eration and analysis using crowdsourcing. In LREC,
pages 392-398.

Roberto Gonzalez-Ibafiez, Smaranda Muresan, and Nina
Wacholder. 2011. Identifying sarcasm in twitter: a
closer look. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies: short papers-Volume
2, pages 581-586. Association for Computational Lin-
guistics.

Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew.
2006. Extreme learning machine: theory and applica-
tions. Neurocomputing, 70(1):489-501.

Thorsten Joachims. 2002. Learning to classify text using
support vector machines: Methods, theory and algo-
rithms. Kluwer Academic Publishers.

Roger J Kreuz and Gina M Caucci. 2007. Lexical in-
fluences on the perception of sarcasm. In Proceedings
of the Workshop on computational approaches to Fig-
urative Language, pages 1—4. Association for Compu-
tational Linguistics.

Arvo Krikmann. 2006. Contemporary linguistic theories
of humour. Folklore: Electronic Journal of Folklore,
(33):27-58.

Rada Mihalcea and Carlo Strapparava. 2006. Technolo-
gies that make you smile: Adding humor to text-based
applications. Intelligent Systems, IEEE, 21(5):33-39.

Livia Polanyi and Annie Zaenen. 2006. Contextual va-
lence shifters. In Computing attitude and affect in text:
Theory and applications, pages 1-10. Springer.

Juan Ramos. 2003. Using tf-idf to determine word rele-
vance in document queries. In Proceedings of the First
Instructional Conference on Machine Learning.

Antonio Reyes, Davide Buscaldi, and Paolo Rosso. 2010.
The impact of semantic and morphosyntactic ambigu-
ity on automatic humour recognition. In Natural lan-
guage processing and information systems, pages 130—
141. Springer.

Zhongbin Sun, Qinbao Song, and Xiaoyan Zhu. 2012.
Using coding-based ensemble learning to improve
software defect prediction. Systems, Man, and Cyber-
netics, Part C: Applications and Reviews, IEEE Trans-
actions on, 42(6):1806-1817.

Joseph Tepperman, David R Traum, and Shrikanth
Narayanan. 2006. ” yeah right”: sarcasm recognition
for spoken dialogue systems. In INTERSPEECH.

Oren Tsur, Dmitry Davidov, and Ari Rappoport. 2010.
Icwsm-a great catchy name: Semi-supervised recogni-
tion of sarcastic sentences in online product reviews.
In ICWSM.

Akira Utsumi. 1996. A unified theory of irony and its
computational formalization. In Proceedings of the
16th conference on Computational linguistics-Volume
2, pages 962-967. Association for Computational Lin-
guistics.

Marilyn A Walker, Jean E Fox Tree, Pranav Anand, Rob
Abbott, and Joseph King. 2012. A corpus for research
on deliberation and debate. In LREC, pages 812-817.

Roger Weber, Hans-Jorg Schek, and Stephen Blott. 1998.
A quantitative analysis and performance study for
similarity-search methods in high-dimensional spaces.
In VLDB, volume 98, pages 194-205.

VIII. APPENDIX

The corpus is found here:
https://nlds.soe.ucsc.edu/iac
The source code is in the online copy.

10

Giuseppe
Note
?!

CPSC 503 e December 2014

I. Demo File
import nltk

import pandas as pd

import numpy as np

import sklearn.neural_network
import utilities as ut

import utilities_olivia as olivia

from sklearn.linear_-model import LogisticRegression

from sklearn.neighbors import KNeighborsClassifier

from sklearn.preprocessing import normalize

from sklearn.svm import SVC

from extreme_learning_machines import ELMRegressor, ELMClassifier
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.metrics import confusion_matrix

from sklearn.ensemble import RandomForestClassifier

from sklearn.cross_validation import train_test_split

from sklearn.feature_selection import chi2

from sklearn.feature_selection import SelectKBest

from sklearn.ensemble import AdaBoostClassifier

from sklearn.metrics import accuracy_score

from sklearn import cross_validation

from sklearn import preprocessing

from scipy import sparse

from sklearn.neighbors import KNeighborsClassifier

from sklearn import cross_validation

from sklearn.metrics import fbeta_score , make_scorer

from sklearn.cross_validation import StratifiedShuffleSplit

scorer = make_scorer(ut.fair_accuracy)

def plot_wrt_chisquare (X, y, chi_square_list=[2000], n_hidden_list=[6000], \
with_feature_extraction=False):

if len(chi_square_list) == 1:

score_list = np.zeros(len(n_hidden_list))
else:

score_list = np.zeros(len(chi_square_list))

for i, chi in enumerate(chi_square_list):
for j, n_hidden in enumerate(n_hidden_list):

X_, y- = ut.extract_ELM _features (X, y, with_feature_extraction ,
chi_square = chi,
n_hidden=n_hidden)

clf = LogisticRegression ()

score = np.mean(cross_validation.cross_val_score (clf, X_, f’f’ cv=10,)\

CPSC 503 e December 2014

scoring = scorer))
if len(chi_square_list) == 1:
score_list[j] = score
else:
score_list[i] = score

print score_list

def compute_score(X, y, chi_square=1500, n_hidden=6000, \
with_feature_extraction=False):

X_, y. = ut.extract_ELM _features (X, y, with_feature_extraction ,
chi_square = chi_square,
n_hidden=n_hidden)

clf = LogisticRegression ()

score = np.mean(cross_validation.cross_val_score(clf, X_, y_, cv=10,

scoring = scorer))

’

Read the ’'qr_meta.csv’ excel sheet containing the quote—response pairs
location = ”D:/ datasets/iac_vl.1/data/fourforums/annotations/” \
“mechanical_turk/”

chi_square_list = [5, 100, 500, 1000, 1500, 2000]

X, y = ut.read_dataset(location)

X, y = X[:8000], y[:8000]

y = y.flatten ()

transformer = TfidfVectorizer(stop_-words="english”, sublinear_tf =True)

X = transformer. fit_transform (X)

plot_wrt_chisquare (X, y, chi_square_list=chi_square_list, with_feature_extraction -
wgewqe

Results for TFIDF+ELM

chi_square_list = [10, 20, 30, 40, 50, 60, 80, 100]
X, vy = ut.read_dataset(location)

y = y.flatten ()

transformer = TfidfVectorizer(stop_-words="english”, sublinear_tf =True)

X = transformer. fit_transform (X)

#plot_wrt_chisquare (X, y, chi_square_list, with_feature_extraction = True)
#sadas

Results for TFIDF

chi_square_list = [10, 20, 30, 40, 50, 60, 80, 100] .

CPSC 503 e December 2014

X, y = ut.read_dataset(location)

y = y.flatten ()

transformer = TfidfVectorizer(stop_-words="english”, sublinear_tf =True)

X = transformer. fit_transform (X)

#plot_wrt_chisquare (X, y, chi_square_list, with_feature_extraction = False)

Results for TFIDF+ELM

n_hidden_list = [3000, 3400, 3600, 4000, 5500]

X, y = ut.read_dataset(location)

y = y.flatten ()

transformer = TfidfVectorizer(stop-words="english”, sublinear_tf =True)

X = transformer. fit_transform (X)

#plot_wrt_chisquare (X, y, n_hidden_list=n_hidden_list, with_feature_extraction

Results for BoW+ELM

n_hidden_list = [2000, 2400, 2600, 3000, 4500]

X, vy = ut.read_dataset(location)

y = y.flatten ()

transformer = CountVectorizer(stop-words="english”™)

X = normalize (transformer. fit_transform (X). todense ())

#plot_wrt_chisquare (X, y, n_hidden_list=n_hidden_list, with_feature_extraction
#A##RARBRARBRA#SH Accuracy, recall, precision

TF—IDF + EIM (Accuracy : 0.824)

X, vy = ut.read_dataset(location)

y = y.flatten ()

transformer = TfidfVectorizer (stop_.words="english”, sublinear_tf =True)
X = transformer. fit_transform (X)

print “TF-IDF_+_EILM”

compute_score (X, y, with_feature_extraction=True)

TF—IDF (Accuracy : 0.676)

X, y = ut.read_dataset(location)
y = y.flatten ()
transformer = TfidfVectorizer(stop_-words="english”, sublinear_tf =True)

X = transformer. fit_transform (X)
print “TF-IDEF”
compute_score (X, y, with_feature_extraction=False)

baseline + KNN (Accuracy : 0.524)

dataset , y = olivia.read_dataset_whole(location)
X = olivia.getBaselineFeatures (dataset)

y = y.flatten ()

clf = KNeighborsClassifier(n_neighbors=5, weights="distance)
score = np.mean(cross_validation.cross_val_score (clf, X, y, cv=3, \

scoring = scorer)) ;3

T

CPSC 503 e December 2014

print “baseline .+_KNN”
print score

baseline + logistic (0.543)

dataset , y = olivia.read_dataset_whole(location)

X = olivia.getBaselineFeatures(dataset)

y = y.flatten ()

X, y = ut.balance_dataset (X, y)

clf = LogisticRegression ()

score = np.mean(cross_validation.cross_val_score(clf, X, y, cv=3, \
scoring = scorer))

print “baseline_+_logistic”

print score

baseline + similarity features + logistic (Accuracy: 0.71659)

X = np.load(”1dafeatures_X .npy”)

y np.load(”1dafeatures_y .npy”)

y=y. flatten ()

X, y = ut.balance_dataset (X, y)

clf = LogisticRegression ()

score = np.mean(cross_validation.cross_val_score(clf, X, y, cv=3, \
scoring = scorer))

print “baseline _+_similarity.features.+_logistic”
print score

baseline + TF—IDF + similarity features + KNN (Accuracy: 0.537)

X = np.load(”1dafeatures_X .npy”)

y = np.load(”1ldafeatures_y .npy”)

y=y. flatten ()

clf = KNeighborsClassifier(n_neighbors=5, weights="distance)

score = np.mean(cross_validation.cross_val_score(clf, X, y, cv=3,\
scoring = scorer))

print “baseline .+_TF—IDF_+_similarity _.features .+_KNN”
print score

baseline + similarity features + logistic (Accuracy: 0.71659)
= np.load(”ldafeatures_X .npy”)

= np.load(”ldafeatures_y .npy”)

y=y. flatten ()

#X, y = ut.balance_dataset(X, y)

#compute_score (X, y, n_hidden=100, with_feature_extraction=True)

#
X
y

#print X

compute_score (X, y, with_feature_extraction=True)
#print score

14

CPSC 503 e December 2014

X, y = ut.read_dataset(location)
y = y.flatten ()
transformer = TfidfVectorizer(stop_-words="english”, sublinear_tf =True)

X = transformer. fit_transform (X)
II. ELM-AE File

»7”Extreme.Learning .Machines

999999

Author: Issam H. Laradji <issam.laradji@gmail.com>
Licence: BSD 3 clause

from abc import ABCMeta, abstractmethod

import numpy as np
from scipy import linalg

from sklearn.base import BaseEstimator, ClassifierMixin, RegressorMixin
from base import logistic , softmax, ACTIVATIONS

from sklearn.externals import six

from sklearn.preprocessing import LabelBinarizer

from sklearn.metrics import mean_squared_error

from sklearn.linear_model.ridge import ridge_regression
from sklearn.utils import gen_batches, check_random_state
from sklearn.utils.extmath import safe_sparse_dot

#from .. utils import check_array, check_X_y, column_or_Ild
from class_weight import compute_sample_weight

from sklearn.utils import atleast2d_or_csr, check_arrays

def _multiply_weights (X, sample_weight):
77” Return W=X_if _sample_weight_is._.not.None.
if sample_weight is None:
return X
else:
return X x sample_weight[:, np.newaxis]

999999

class BaseELM(six.with_metaclass (ABCMeta, BaseEstimator)):
”””Base._class._for EFIM.classification._and_regression.

coooWarning: _.This_class._.should._.not_be_used._directly.
woooUseoderived._.classes._.instead .

999999
[Er -

@abstractmethod
def __init__(self, n_hidden, activation, C, class_weight,

weight_scale , batch_size , verbose, warm_start, 5

CPSC 503 e December 2014

random_state):

self .C = C

self.activation = activation
self.class_weight = class_weight
self.weight_scale = weight_scale
self .batch_size = batch_size
self.n_hidden = n_hidden

self .verbose = verbose
self.warm_start = warm_start
self .random_state = random_state

def _init_weights(self, n_features):
”7””Initialize -.the _parameter_weights.
rng = check_random_state(self.random _state)

99999

Use the initialization method recommended by Glorot et al.
weight_init_bound = np.sqrt(6. / (n_features + self.n_hidden))

self.coef_hidden_. = rng.uniform(—weight_init_bound ,
weight_init_bound , (n_features ,
self .n_hidden))
self.intercept_hidden_. = rng.uniform(—weight_init_bound ,
weight_init_bound ,
self .n_hidden)
if self.weight_scale != 1:
self.coef_hidden_ %= self.weight_scale
self.intercept_hidden_ %= self.weight_scale

def _compute_hidden_activations (self, X):
”””Compute._the _hidden_activations.”””

hidden_activations = safe_sparse_dot(X, self.coef_hidden_)
hidden_activations += self.intercept_hidden._

Apply the activation method
activation = ACTIVATIONS|[self.activation]
hidden_activations = activation(hidden_activations)

return hidden_activations

def _fit(self, X, y, sample_weight=None, incremental=False):
»”” Fit.the._model_to._the_data._X_and._target._y.”””
Validate input params
if self.n_hidden <= 0:
raise ValueError(”’n_hidden._.must.be.>.0,.got . %s.” % self.n_hidden)
if self.C <= 0.0:
raise ValueError (”’C.omust.be.>.0,_.got . %s.” % self.C)

if self.activation not in ACTIVATIONS: 6

CPSC 503 e December 2014

raise ValueError(”The_activation %s.is.not.supported..Supported.’
“activation._are . %s.” % (self.activation ,
ACTIVATIONS))

Initialize public attributes
if not hasattr(self, ’“classes_’):

self.classes_ = None
if not hasattr(self, ’coef_hidden_’):
self.coef_hidden_. = None

Initialize private attributes
if not hasattr(self, *_HT_H_accumulated’):
self . HT_H_accumulated = None

X, y = check_arrays (X, vy)

This outputs a warning when a ld array is expected
#if y.ndim == 2 and y.shape[l] ==

y = column_or_1d(y, warn=True)

Classification

if isinstance(self, ClassifierMixin):

self.label_binarizer_.fit(y)

if self.classes_ is None or not incremental:

self .classes_ = self.label_binarizer_.classes_
if sample_weight is None:
sample_weight = compute_sample_weight(self.class_weight,
self.classes_, y)
else:
classes = self.label_binarizer_.classes_

if not np.all(np.inld(classes, self.classes_)):
raise ValueError(”‘y‘_has.classes_not_in.‘self.classes_ °

”Lself.classes_ ‘_has . %s..’y’ .has . %s.” %
(self.classes_, classes))

y = self.label_binarizer_.transform(y)

Ensure y is 2D
if y.ndim == 1:
y = np.reshape(y, (=1, 1))

n_samples, n_features = X.shape
self .n_outputs_. = y.shape[]]

Step (1/2): Compute the hidden layer coefficients
if (self.coef_hidden_ is None or (mnot incremental and

not self.warm_start)): .
7

B

ER]

CPSC 503 e December 2014

Randomize and scale the input—to—hidden coefficients
self. _init_weights (n_features)

Step (2/2): Compute hidden—to—output coefficients

if self.batch_size is None:
Run the least—square algorithm on the whole dataset
batch_size = n_samples

else:
Run the recursive least—square algorithm on mini—batches
batch_size = self.batch_size

batches = gen_batches(n_samples, batch_size)

(First time call) Run the least—square algorithm on batch 0
if not incremental or self. HT_H_accumulated is None:
batch_slice = next(batches)
H_batch = self. _compute_hidden_activations (X[batch_slice])

Get sample weights for the batch
if sample_weight is None:

sw = None
else:

sw = sample_weight[batch_slice]

beta_{0} = inv(H {0}"'T H{0} + (1. /7 C) = 1) = H{0}.T y_{0}

self.coef_output. = ridge_regression(H_batch, y[batch_slice],
1. / self.C,
sample_weight=sw).T

Initialize K if this is batch based or partial _fit
if self.batch_size is not None or incremental:
K {0} = H{0}'T « W « H.{0}
weighted_H_batch = _multiply_weights (H_batch, sw)
self. _HT_H_accumulated = safe_sparse_dot(H_batch.T,
weighted_H_batch)

if self.verbose:
y_scores = self. _decision_scores (X[batch_slice])

if self.batch_size is None:
verbose_string = ”"Training_mean_squared._error.="
else:

verbose_string = ”"Batch.0,_Training._mean_squared._error.="

print ("%s %f” % (verbose_string ,

mean._squared_error (y[batch_slice], y_scores,

sample_weight=sw)))

18

CPSC 503 e December 2014

Run the least—square algorithm on batch 1, 2, ..., n
for batch, batch_slice in enumerate(batches):
Compute hidden activations H.{i} for batch i

H_batch = self. _compute_hidden_activations (X[batch_slice])

Get sample weights (sw) for the batch
if sample_weight is None:

sw = None
else:

sw = sample_weight[batch_slice]

weighted _H_batch = _multiply_weights (H_batch, sw)

Update K {i+1} by H{i}'T = W = H{i}
self. HT_H_accumulated += safe_sparse_dot(H_batch.T,

weighted_H _batch)

Update beta_{i+1} by

K{i+1}{—1} =« H{i+I1}'T = W = (y_{i+1} — H{i+Il} = beta_{i})

y_batch = y[batch_slice] — safe_sparse_dot(H_batch,

self.coef_output_)

weighted_y_batch = _multiply_weights(y_batch, sw)
Hy_batch = safe_sparse_dot(H_batch.T, weighted_y_batch)

Update hidden—to—output coefficients
regularized HT_H = self._HT_H_accumulated.copy ()

regularized HT_H . flat [:: self.n_hidden + 1] += 1. / self.C

It is safe to use linalg.solve (instead of linalg.lstsq

which is slow) since it is highly unlikely that

projection of the first layer and C’ regularization being

#
#
regularized_ HT_H is singular due to the random
#
not dangerously large.

s

elf.coef_output. += linalg.solve(regularized_ HT_H , Hy_batch,
sym_pos=True, overwrite_a=True,

overwrite_b=True)
if self.verbose:
y_scores = self. _decision_scores (X[batch_slice])
print (”Batch %d, _Training .mean_squared._error.=_%f" %
(batch + 1, mean_squared_error(y[batch_slice],

y_scores ,

sample_weight=sw)))

return self

def fit(self, X, y, sample_weight=None):
””” Fit.the._model_to._the_data._X_and._target.y.

uuuuuuuu Parameters

19

CPSC 503 e December 2014

uuuuuuuu X._:_{array—like ,_sparse_matrix },_shape_(n_samples,_n_features)
cecuoooooeooeoTheoinputodata.

________ y.:oarray —like , .shape.(n_samples ,)
uuuuuuuuuuuu Target_values.

uuuuuuuu sample_weight.:_array—like ,_shape._(n_samples ,)
uuuuuuuuuuuu Per—sample._weights._Rescale_C.per_sample._Higher_.weights
uuuuuuuuuuuu force_the_classifier .to_put_.more_emphasis_on_these_points.

cuooooooReturns

coououooselfo:oreturnscactrained .ELM.ousable .for.prediction.

99999
uuuuuuuu

return self. _fit(X, y, sample_weight=sample_weight, incremental=False)

def partial_fit(self, X, y, sample_weight=None):
””” Fit.the_model_to_the_data_X_and._target._y.

uuuuuuuu Parameters

cecoooooXo:o{array —like ,_sparse._matrix },_.shape._(n_samples ,_.n_features)

uuuuuuuuuuuu Subset_of._training.data.

uuuuuuuu y.:.array—like , .shape.(n_samples ,)

____________ Subset_of_target_values.

________ sample_weight.:_array—like ,_shape_(n_samples ,)

uuuuuuuuuuuu Per—sample_weights._Rescale _C.per._sample._Higher_weights
uuuuuuuuuuuu force_the.classifier .to_put_more_emphasis_on_.these._points.
uuuuuuuu Returns

uuuuuuuu self_:_returns._a_trained .ELM.usable _.for._prediction.

999999
[A)

self. _fit(X, y, sample_weight=sample_weight, incremental=True)
return self

def _decision_scores (self, X):
»”” Predict._using.the _ELM.model

uuuuuuuu Parameters

uuuuuuuu X._:_{array—like ,_sparse_matrix },_shape_(n_samples,_n_features)
cecouooouoeeooTheoinput.odata.

20

CPSC 503 e December 2014

uuuuuuuu Returns
uuuuuuuu y_pred.:._array—like , . shape.(n_samples ,) .or.(n_samples ,.n_outputs)
uuuuuuuuuuuu The_predicted _values.

999999

#X = check_array (X, accept_sparse=[’csr’, 'csc’, ’'coo’])

if self.batch_size is None:

hidden_activations = self._compute_hidden_activations (X)

y_pred = safe_sparse_dot(hidden_activations , self.coef_output_)
else:

n_samples = X.shape[0]

batches = gen_batches(n_samples, self.batch_size)

y_pred = np.zeros ((n_samples, self.n_outputs_))

for batch in batches:
h_batch = self._compute_hidden_activations (X[batch])
y_pred[batch] = safe_sparse_dot(h_batch, self.coef_output_)

return y_pred

class ELMClassifier (BaseELM, ClassifierMixin):
»7””Extreme._learning .machine._classifier.

woooThe_algorithm_trains._.a.single —hidden.layer._.feedforward _network_by._computing
oooothe hidden.layer_values_using._.randomized _parameters ,_.then_solving
wooofor_the_output_.weights_using._least —square._solutions.._For_prediction ,
coooafter .computing .the .forward _pass,._.the_continuous._output_values._pass
wooothrough_.a_gate_function_.converting._them._to.integers._.that_represent._classes.

coo-This_.implementation._works_with._.data_represented._as._dense_and._sparse._numpy
woooarrays.of_floating _point_values_for_the_features.

~...Parameters

cewoCoiofloat ,_optional ,_default._100

________ A_regularization._term._that_controls._the_linearity _of_the_decision
uuuuuuuu function._Smaller_value_of_C.makes_the_decision._boundary_more_linear .

weooclass_weight_:_{dict,_."auto’,_None},_default_None

uuuuuuuu If."auto’,_.class_weights_will_be_given_inversely.proportional
uuuuuuuu to_the._frequency._of_the._class_in._the._data.

uuuuuuuu If _,a_dictionary.is.given,_keys_.are_the._class.labels._and_the
uuuuuuuu corresponding.values._are.the_class._weights.

uuuuuuuu If _\None._is.given,._then.no_.class_weights_.will_be_applied.

ceeoweight_scale.:_.float ,_.default._1. .

CPSC 503 e December 2014

cocoouoooInitializes candoscales the.input—to—hidden_weights.

uuuuuuuu The_weight_values_.will _range _between.plus._and._minus

cocoouoes sqrt(weight_scaleox.6../.(n_features.+.n_hidden))’ _.based._on.the
uuuuuuuu uniform.distribution .

cooon_hidden.:_int,_default_100
________ The _number_of _units_in.the_hidden._layer.

2

weooactivation.:.{ logistic ’,."tanh’,."relu’},_default.’relu’
uuuuuuuu Activation._function._for_the_hidden_layer.

cecoooooo—o logistic ’,.theologistic.sigmoid.function ,
uuuuuuuuuuuu returns .f(x).=o1o/o(1 c+oexp(x)).

uuuuuuuuu —."tanh ’,_the_hyperbolic.tan._function ,
____________ returns .f(x)_=_tanh (x).

_________ —. relu’,_the_rectified_linear_unit_function ,
uuuuuuuuuuuu returns .f (x)._=_max(0,_x).

wooobatch_size._:._int ,_optional ,_default_None
uuuuuuuu If _\None._is._.given,._batch_size._is_set_as_the_number_of_samples.

coouooooOtherwise , oitowill _beoset.as.the_given.integer .

woooverbose.:.bool, _optional ,_default_False
uuuuuuuu Whether_.to_print_the_training._score.

ceoeowarm_start.:._bool,_optional ,_default_False

________ When_set._to_True, _reuse._the_solution._of_the_previous
uuuuuuuu call .to_fit_as.initialization ,_otherwise ,_just_erase._the
uuuuuuuu previous._solution .

wwoorandom_state.:.int.or.RandomState ,_optional ,_.default_None
cocuoooodtatesof oroseed.for.random.number._generator .

cooo Attributes
wooo classes_ “L:coarray—list ,_shape.(n_classes ,)
uuuuuuuu Class.labels_for_each_output.

ceoo n_outputs_ ‘_:.int
uuuuuuuu Number_of._output_neurons.

wwowo ‘coef_hidden_ ‘.:_array—like ,_shape_(n_features ,_n_hidden)
cocoowoooTheoinput—to—hidden._.weights .
woowo ‘intercept_hidden_ ‘.:._array—like ,_.shape.(n_hidden ,)

uuuuuuuu The_bias._added._.to._.the_hidden_layer._neurons. -

CPSC 503 e December 2014

ceoo ‘coef_output_ ‘.:_array—like ,_shape.(n_hidden,_n_outputs_)
uuuuuuuu The_hidden—to—output_weights.

wooo ‘label_binarizer_ ‘_:_LabelBinarizer
uuuuuuuu A_LabelBinarizer_.object._trained _.on_the_training._set.

....References

-...Liang , Nan—Ying,._et._al.

uuuuuuuu "A_fast_and.accurate_online._sequential _learning._algorithm .for
uuuuuuuu feedforward .networks.” _Neural _.Networks , .IEEE_Transactions .on
uuuuuuuu 17.6.(2006): 1411 —-1423.

uuuuuuuu http ://www.ntu.edu.sg/home/egbhuang/pdf/OS—ELM-INN. pdf

coooZong, .Weiwei, .Guang—Bin._Huang, .and_Yiqiang _Chen.

uuuuuuuu ”Weighted _extreme._learning .machine_for_imbalance.learning.”

________ Neurocomputing .101.(2013):.229—-242.

wwooGlorot, .Xavier ,_.and._.Yoshua_.Bengio..”Understanding .the_difficulty .of
uuuuuuuu training .deep.feedforward .neural _networks.” _International .Conference
uuuuuuuu on.Artificial .Intelligence.and_.Statistics..2010.

999999
[Er -

def __init__(self, n_hidden=100, activation="relu’, C=1,
class_weight=None, weight_scale=1.0, batch_size=None,
verbose=False, warm_start=False, random_state=None):
super (ELMClassifier, self). __init__(n_hidden=n_hidden ,

activation=activation ,
C=C, class_weight=class_weight,
weight_scale=weight_scale ,
batch_size=batch_size ,
verbose=verbose ,
warm_start=warm _start ,
random_state=random_state)

self.label_binarizer_. = LabelBinarizer(—1, 1)

def partial_fit(self, X, y, classes=None, sample_weight=None):
””” Fit.the_model_to_the_data._X_and._target.y.

uuuuuuuu Parameters

uuuuuuuu X._:_{array—like ,_sparse_matrix },_shape_(n_samples,_n_features)
uuuuuuuuuuuu The_input._data.

uuuuuuuu y.:.array —like , .shape.(n_samples ,)

uuuuuuuuuuuu Subset_of_the._target._values.

23

CPSC 503 e December 2014
cucouooocClasses.o:oarray—like , shape_(n_classes ,)

uuuuuuuuuuuu List_of_all._the_classes._that._can_.possibly_appear_in_the._y.vector.
uuuuuuuuuuuu Must_be._provided_at_the_first.call_to_partial_fit ,_can_.be_omitted
____________ in_subsequent._calls.
________ sample_weight.:_array—like ,_shape._(n_samples ,)
uuuuuuuuuuuu Per—sample_weights._Rescale _C.per._sample._Higher_weights
uuuuuuuuuuuu force_the.classifier .to_put_more_emphasis_on._.these._points.
uuuuuuuu Returns
uuuuuuuu self_:_returns._a_trained .elm_usable._for._prediction.

999999

self .classes_ = classes

super (ELMClassifier, self). partial_fit(X, y, sample_weight)

return self

def decision_function(self, X):
”7”PDecision.function_of_the _elm_model

uuuuuuuu Parameters

uuuuuuuu X._:_{array—like ,_sparse_matrix },_shape_(n_samples,_n_features)
____________ The_input._data.

AR

uuuuuuuu y.:.array —like , .shape.(n_samples ,) ~or_.(n_samples ,_.n_classes)
uuuuuuuuuuuu The_predicted _values.

99999

AR

y_scores = self. _decision_scores (X)

if self.n_outputs. == 1:
return y_scores.ravel ()
else:
return y._scores

def predict(self, X):
»”” Predict._using .the _ELM.model

uuuuuuuu Parameters

uuuuuuuu X._:_{array—like ,_sparse_matrix },_shape_(n_samples,_n_features)
cecouooouoeeooTheoinput.odata.

24

CPSC 503 e December 2014

cuooouooReturns

coecoouoooyYotoarray—like ,.shape.(n_samples ,) cor.(n_samples ,_.n_classes)
uuuuuuuuuuuu The_predicted._classes ,_or_the_predicted _values.

y_scores = self. _decision_scores (X)

return self.label_binarizer_.inverse_transform(y_scores)

def predict_proba(self, X):
””” Probability _estimates .

uuuuuuuu Warning : .the _estimates._.aren’t_callibrated _since._.the_model_optimizes.a
cocoouooopenalized _least.osquares.objective _function._based.on.the _One_.Vs_Rest
uuuuuuuu binary.encoding._of_.the_class._membership.
uuuuuuuu Parameters
uuuuuuuu X._:_{array—like ,_sparse_matrix },_shape_(n_samples,_n_features)
uuuuuuuuuuuu The_input._data.
uuuuuuuu Returns
uuuuuuuu y_prob.:_array—like , _shape.(n_samples ,_n_classes)
cecoouoeooeowooTheopredicted oprobability cof .the._sample_for_.each.class.in._the
uuuuuuuuuuuu model , _-where_classes ._.are_ordered._as._they._are.in
____________ ‘self.classes_ °
99999
y_scores = self. _decision_scores (X)
if len(self.classes_) == 2:
y_scores = logistic(y_scores)
return np. hstack ([1 — y_scores, y_scores])
else:

return softmax(y_scores)

class ELMRegressor(BaseELM, RegressorMixin):
”7””Extreme._learning .machine_regressor.

woo.The_algorithm._trains._a.single —hidden_layer._feedforward._network._by.computing
wooothe _hidden._layer_values_using._.randomized._parameters ,.then_solving
eooofor_the_output_.weights_using._least —square._solutions.._For_prediction ,
~...ELMRegressor.computes.the _forward.pass_resulting._.in_continuous._.output
cooovalues.

coooThisoimplementation. works_with._.data_represented._as.dense_and_sparse._numpy

woooarrays.of_floating _point_values_for_the._features.
25

CPSC 503 e December 2014

~...Parameters

cewoCoiofloat ,_optional ,_default._100

________ A_regularization._term._that_controls._the_linearity _of_the_decision
uuuuuuuu function._Smaller_value_of_C.makes_the_decision._boundary_more_linear .

ceeoweight_scale.:_.float ,_.default._1.

uuuuuuuu Initializes .and_scales.the._input—to—hidden_weights.

uuuuuuuu The _weight_values._.will _.range _between._plus._and._minus

uuuuuuuu “sqrt(weight_scale.*.6._./_(n_features._+.n_hidden))’ .based._on_the
coecooooouniformodistribution .

wooon_hidden.:_oint ,_.default_.100
uuuuuuuu The _number_of _units_in._.the_hidden.layer.

weocactivation.:o{ logistic ’,."tanh’,_"relu’},_default.’relu’
________ Activation._function_for_the_hidden_layer.

uuuuuuuuu —."logistic ’,_the_logistic._sigmoid._function ,
uuuuuuuuuuuu returns .f(x).=c1o/o(1o+oexp(x)).

cocoouoeoo—o tanh’ L the_hyperbolic.tan._function ,
uuuuuuuuuuuu returns .f(x)._.=_tanh (x).

uuuuuuuuu —_."relu’,_the_rectified _linear_unit._function ,
____________ returns .f(x)._.=_.max(0,._x).

oooobatch_size.:.int ,_ optional ,_default_None
uuuuuuuu If _None._is._.given,._.batch_size_is_set._.as_the_number_of_samples.

uuuuuuuu Otherwise ,_it.will _be_.set_as_the._given._integer.

w.ooverbose.:._bool,_optional ,_default_False
coouoouooWhetherotooprintothe_training._score.

cooowarm_start.:.bool,_optional ,_default_False

uuuuuuuu When_set._to._True,._reuse._the_solution._of_the_previous
________ call _to_fit_as_initialization ,_otherwise ,_.just._erase_the
uuuuuuuu previous._solution .

cooorandom_state.:.int_or_.RandomState ,_optional ,_.default_None
uuuuuuuu State _of _or_.seed._for._random_number_generator .

coooAttributes

weowo ‘classes_ ‘_:_array—list ,_shape.(n_classes ,)
cocouowoClassolabels for.each._output.

26

CPSC 503 e December 2014

cooo n_outputs_ ‘o:.int
uuuuuuuu Number._of._output_neurons.

ceoo ‘coef_hidden_ “.:_array—like ,_shape_(n_features ,_n_hidden)
________ The _input—to—hidden_weights.

wooo ‘intercept_hidden_ ‘_:_array—like ,_shape.(n_hidden ,)
uuuuuuuu The_bias._added_to_the_hidden_layer._neurons.

ceoo ‘coef_output_ ‘_:_array—like ,_shape._(n_hidden,_n_outputs_)
uuuuuuuu The_hidden—to—output_weights.

-...References

w.ooLiang , _Nan—Ying,_et._al.

________ "A_fast_and_accurate_online_sequential _learning _algorithm.for
uuuuuuuu feedforward .networks .” _.Neural _Networks , .IEEE_Transactions .on
________ 17.6.(2006):.1411—1423.

uuuuuuuu http ://www. ntu.edu.sg/home/egbhuang/pdf/OS—ELM-TNN. pdf

coooZong, Weiwei, _Guang—Bin _Huang, _and_Yiqiang .Chen.
uuuuuuuu ”Weighted _extreme._learning .machine_for_imbalance.learning.”
uuuuuuuu Neurocomputing .101.(2013):.229—-242.

owoouGlorot , . Xavier ,.and.Yoshua_.Bengio..”Understanding._the_difficulty .of
uuuuuuuu training .deep.feedforward _.neural _networks.” .International .Conference
________ on.Artificial .Intelligence._and_Statistics._.2010.

999999
e

def __init__(self, n_hidden=100, activation="relu’, weight_scale=1.0,
batch_size=None, C=1, verbose=False, warm_start=False ,
random_state=None):
super (ELMRegressor, self). __init__(n_hidden=n_hidden ,
activation=activation ,
C=C, class_weight=None,
weight_scale=weight_scale ,
batch_size=batch_size ,
verbose=verbose ,
warm_start=warm _start ,
random_state=random_state)
def get_features(self, X, y):
elm = super (ELMRegressor, self). fit(X, y)
beta = elm.coef_output_

Apply the activation method

activation = ACTIVATIONS|[self.activation]
features = safe_sparse_dot(X, beta.T);
features = activation(features)

27

CPSC 503 e December 2014

return features

def predict(self, X):

y_pred = self._decision_scores (X)
if self.n_outputs_. == 1:

return y_pred.ravel ()
else:

return y_pred
III. Uulities Files

from __future__ import division
import numpy as np

import pandas as pd

import gensim as gs

import nltk

import re

import random

from scipy import sparse

from sklearn.metrics import accuracy_score , precision_score , recall_score
from sklearn.metrics import confusion_matrix

from sklearn.metrics.pairwise import cosine_similarity

from sklearn import preprocessing

from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.feature_selection import chi2

from sklearn.feature_selection import SelectKBest

def fair_accuracy(y_pred, y_test):
»”” Compute_.weighted _accuracy .
get indices for each class
sarcastic_indices = y_test == 1
non_sarcastic_indices = y_test == —1

99999

Fair Testing score
score = accuracy._score(y_pred[sarcastic_indices],
y_test[sarcastic_indices]) + \
accuracy_score (y_pred[non_sarcastic_indices],
y_test[non_sarcastic_indices])
return score / 2

def fair_recall(y_test, y_pred):
”»””Compute.recall . ”””

count len(y_test)
tp_sar= 0
tp_-nonsar= 0

28

CPSC 503 e December 2014

fn_sar = 0
fn_nonsar = 0
for j in range(0,count):
if y_test[j] == 1 and y_pred[j] == 1:
tp_sar += 1
if y_test[j] == 1 and y_pred[j] == —1:
fn_sar += 1
if y_test[j] == —1 and y_pred[j] == —1:
tp-nonsar += 1
if y_test[j] == —1 and y_pred[j] == 1:

fn_nonsar += 1

sarcastic = tp_sar / (tp_-sar + fn_sar)
nonSarcastic = tp_nonsar / (tp_nonsar + fn_nonsar)
return (sarcastic + nonSarcastic)/ 2

def fair_precision(y_test, y_pred):
”””Compute_precision . ”””

count = len(y_test)
tp-sar= 0
tp-nonsar= 0

fp_.sar = 0

fp_nonsar = 0
for j in range(0,count):

if y_test[j] == 1 and y_pred[j] == 1:
tp_-sar += 1

if y_test[j] == —1 and y_pred[j] == 1:
fp_sar += 1

if y_test[j] == —1 and y_pred[j] == —1:
tp-nonsar += 1

if y_test[j] == 1 and y_pred[j] == —1:

fp_nonsar += 1

sarcastic = tp_sar / (tp_sar + fp_sar)
nonSarcastic = tp_nonsar / (tp_nonsar + fp_nonsar)
return (sarcastic + nonSarcastic)/ 2

def balance_dataset(X, y):
”»”Balance_dataset_such._that_the_number_of_sarcastic._and_non—sarcastic
___________ responses._are._equal.

999999

get indices for each class
X _sarcastic = X[np.where(y == 1)]
y_sarcastic = y[np.where(y == 1)]

X _non_sarcastic X[np.where(y == —1)]
y_non_sarcastic = y[np.where(y == —1)]

29

CPSC 503 e December 2014
n_sarcastic = y_sarcastic.shape[0]

check if it’s a sparse matrix
if sparse.issparse (X):

X = sparse.vstack ([X_sarcastic, X_non_sarcastic[:n_sarcastic]])
else:

X

np.vstack ([X_sarcastic , X_non_sarcastic[:n_sarcastic]])
y = np.hstack ([y_sarcastic , y_non_sarcastic[:n_sarcastic]])
return X, y

def read_dataset(location):
”””Read._dataset._into._X.and_y.matrices.

Read the ’'qr_meta.csv’ excel sheet containing the quote—response pairs
qr = pd.read_csv(location + “qr_meta.csv”, encoding="utf’)

99999

Read the ’'gr_averages.csv’ excel sheet containing the average sarcasm de
sarcasm_table = pd.read_csv(location + “qr_averages.csv’,
encoding="utf’)

Join the two tables on the key column
dataset = qr.merge(sarcasm_table , on="key’)

Remove the rows where ’sarcasm’ value is NaN
dataset = dataset[pd.notnull(dataset[’sarcasm’])]

Extract sarcasm labels
y = np.array(dataset[[sarcasm’]])

Combine the two columns quote and response into a single column

dataset = dataset[”quote”] + 7.7 + dataset[”response’”]
X = np.array(dataset)

Threshold y such that values above 0.5
are set to 1, and the rest to —1I

yly >= 0.5] =1

yly < 0.5] = —1

return X, y

def analyze_dataset(X, y):
»”” Report.information._about_the._dataset.
get indices for each class
sarcastic_indices = =1
non_sarcastic_indices = = —1

999999

30

CPSC 503 e December 2014

print ’sarcastic’, np.sum(sarcastic_indices)
i non—sarcastic’, np.su non_sarcastic_indices
rint tic’ sum t d

def analyze_output(y_pred, y_test):
»7” Report.information _about_the_output.
get indices for each class

999999

cm = confusion_matrix(y_test, y_pred)
print ’Confusion_matrix ,.’
print cm

def FT_computeSim(dataset):
#Setup LDA Model
documents = dataset[”quote”] + 7.” 4+ dataset[”response’]

#empirically set num topics
numTopics = 40

texts = [[word for word in document.lower (). split ()] \
for document in documents]

#Create Dictionary
dictionary = gs.corpora.Dictionary (texts)
dictionary .save(’sarcasm.dict’) # store the dictionary , for future reference

remove common words, words that appear only once and tokenize
stoplist = nltk.corpus.stopwords.words(’english’)

stop_ids = [dictionary.token2id[stopword] for stopword in stoplist \
if stopword in dictionary.token2id]

once_ids = [tokenid for tokenid, docfreq in dictionary.dfs.iteritems())\
if docfreq == 1]

dictionary . filter_tokens (stop-ids + once_ids)

#create corpus

corpus = [dictionary .doc2bow(text) for text inm texts]

store to disk, for later use

gs.corpora.MmCorpus. serialize (’sarcasmCorpus.mm’, corpus)

lda = gs.models.LdaModel(corpus, id2word=dictionary , num_topics=numTopics, \
update_every=1)

transform corpus to LDA space and index it
index = gs.similarities.MatrixSimilarity (lda[corpus])
index .save(’sarcasm’)

topics [Ida[c] for c in corpus]
quotes = [dictionary.doc2bow (quote.lower (). split()) \

for quote in dataset[”quote”]] 31

CPSC 503 e December 2014

responses = [dictionary .doc2bow(response.lower (). split()) \
for response in dataset[”response”]]

#get topic distribution for all quotes and responses
quoteTopics = lda[quotes]
responseTopics = lda[responses]

quoteTopicVectors = []
responseTopicVectors = []

for item in quoteTopics:
quoteTopicVectors.append(item)

for item in responseTopics:
responseTopicVectors.append (item)

grSimilarity = [0]xlen(quoteTopicVectors)

#compute quote/response similarity
for i in range(0,len(quoteTopicVectors)):
iQuote = [0]*numTopics
iResponse = [0]xnumTopics
for topic in quoteTopicVectors[i]:
iQuote[topic [0]] = topic[1]
for topic in responseTopicVectors|[i]:
iResponse[topic[0]] = topic[1]
qrSimilarity[i] =cosine_similarity (iQuote, iResponse)[0][0]

return qrSimilarity
def FT_firstWord(documents):
#tokoenize document

tokens = [nltk.word_tokenize (document.lower()) for document in documents |

#create array of first words
array = np.array ([token[0O] for token in tokens])

#label and transform first words

le = preprocessing.LabelEncoder ()
le.fit (array)
array = le.transform (array)

binArray = label2binary (array)
return binArray

def FT_lastWord(documents):

#tokoenize document
32

CPSC 503 e December 2014

tokens = [nltk.word_tokenize (document.lower()) for document in documents]

#create array of first words
array = np.array ([token[len(token)—1] for token in tokens])

#label and transform first words

le = preprocessing.LabelEncoder ()
le.fit(array)
array = le.transform (array)

binArray = label2binary (array)
return binArray

def FT_capitalsBaseline (documents):
number of capitals
capitals = np.array ([len(re.findall ("[A-Z]”, document)) \
for document in documents])
#normalize counts
normalize (capitals)

#number of words in all capitals

allCapitals = np.array ([len(re.findall ("[A-Z][A—Z]+”, document)) \
for document in documents])

#normalize counts

normalize (allCapitals)

caps = np.column_stack ((capitals , allCapitals))
return caps

def FT_wordOverlap(quote, response):
#compute word overlap
quoteTokens = [nltk.word_tokenize(q.lower()) for q in quote]
responseTokens = [nltk.word_tokenize(r.lower()) for r in response]
overlap = [numlIntersect(responseTokens[i],quoteTokens[i])/\
numUnion(responseTokens[i],quoteTokens[i]) for i in range(0, len(quoteTokens))]
overlap = normalize(overlap)
return overlap

def FT_punct(responses):

quest = normalize ([len(re.findall(”\’”, response)) for response in responses])
peri = normalize ([len(re.findall(”.”, response))for response in responses])
comma = normalize ([len(re.findall(”,”, response)) for response in responses])
stack = np.column_stack ((quest, peri))

stack = np.column_stack ((stack , comma))

33

CPSC 503 e December 2014

def

def

def

def

def

return stack

FT_respLength(responses):
length = normalize ([len(response.split()) for response inm responses])

return length
FT _punctBaseline (responses):

#pulls baseline punctuation features
based on Davidov et. al 2010

exclam = normalize ([len(re. findall (”!”, response)) for response in responses])
quest = normalize ([len(re.findall (”\?”, response)) for response in responses])
quote = normalize ([len(re.findall (”\””, response))for response in responses])
stack = np.column_stack ((exclam, quest))

stack np.column_stack ((stack , quote))
return stack

FT_TFIDF (document, sarcasm):

sarcasm = sarcasm. flatten ()

transformer = TfidfVectorizer ()

TFIDF = transformer. fit_transform (document)

TFIDF = SelectKBest(chi2, k=1500).fit_transform (TFIDF, sarcasm)
TFIDF = TFIDF. toarray ()

return TFIDF

normalize (counts):
#normalize counts in input vector
maxCount = max(counts)
if maxCount>0 :
norm = [count/maxCount for count in counts]
else:
norm = counts
return norm

label2binary (array):
#Convert to binary
maxLabel = max(array)
maxLength = len(”{0:b}”.format(maxLabel))
binFormat = 0’ + str(maxLength) + b’
df = [format(num, binFormat) for num in array]
stack = np.array ([int(d[0]) for d in df])
for i in range(1,maxLength):
stack = np.column_stack ((stack ,[int(d[i]) for d in df]))

return stack
34

CPSC 503 e December 2014

def numlIntersect(a, b):
return len(list(set(a) & set(b)))

def numUnion(a, b):
return len(list(set(a) | set(b)))

def read_dataset_whole(location):
Read the ’qr_meta.csv’ excel sheet containing the quote—response pairs
qr = pd.read_csv(location + “qr_meta.csv”, encoding="utf’)

Read the ’'gqgr_averages.csv’ excel sheet containing the average sarcasm de
sarcasm_table = pd.read_csv(location + “qr_averages.csv’,
encoding="utf’)

Join the two tables on the key column
dataset = qr.merge(sarcasm_table , on="key’)

Remove the rows where ’sarcasm’ value is NaN
dataset = dataset[pd.notnull(dataset[’sarcasm’])]

Extract sarcasm labels
y = np.array (dataset[[sarcasm’]])

Threshold y such that values above 0.5
are set to 1, and the rest to —1I

yly >= 0.5] =1

yly < 0.5] = —1

return dataset, y

def rdm_data_split(y):
Get indices of sarcastic and non—sarcastic
sarcastic_indices = [i for i,x in enumerate(y) if x == 1]
non_sarcastic_indices = [i for i,x in enumerate(y) if x == —1]

#randomly assign half sarcastic comments to test/train
random . shuffle (sarcastic_indices)
random . shuffle (non_sarcastic_indices)

train_idx = np.hstack ((sarcastic_indices [:len(sarcastic_indices)//2],
non_sarcastic_indices [:len(sarcastic_indices)//2]))
test_idx = np.hstack((sarcastic_indices[len(sarcastic_indices)//2:],

non_sarcastic_indices[len(sarcastic_indices)//2:]))
return train_idx , test_idx

def getFeatures(dataset, y): 3

CPSC 503 e December 2014

FT = []

FT.append (FT_computeSim(dataset))

FT.append (FT _firstWord(dataset[’ ’response’]))

FT.append (FT_lastWord(dataset[response’]))

FT.append (FT_respLength(dataset[’response’]))
FT.append (FT_punct(dataset[’response’]))

FT.append (FT_punctBaseline(dataset[’ ’response’]))
FT.append(FT_capitalsBaseline (dataset[’ ’response’]))

FT.append (FT_TFIDF (np. array (dataset[”quote”] + ”.” + dataset[”response”]), y))

#vstack features into matrix
stack = np.column_stack ((FT[0], FT[1]))
for i in range(2, len(FT)):
stack = np.column_stack ((stack, FT[i]))

stack = SelectKBest(chi2, k=1500).fit_transform (stack, y)
return stack

def getBaselineFeatures (dataset):
FT = []
FT.append (FT_respLength(dataset[’response’]))
FT.append(FT_capitalsBaseline (dataset[’response’]))
FT.append (FT_punctBaseline(dataset[’response’]))

#vstack features into matrix
stack = np.column_stack ((FT[0], FT[1]))
return stack

def splitFeatures (allFeatures , y, train_idx , test_idx):

Xtrain = np.array ([allFeatures[i] for i in train_idx])
Xtest = np.array ([allFeatures[i] for i in test_idx])
ytrain = np.array ([y[i] for i im train_idx]). flatten ()
ytest = np.array ([y[i] for i in test_idx]). flatten ()

return Xtrain, ytrain, Xtest, ytest

from scipy import sparse

import numpy as np

import pandas as pd

import nltk

from sklearn.metrics import accuracy._score

from sklearn.metrics import confusion_matrix

import gensim

from gensim.models.ldamodel import LdaModel

from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer

from sklearn.feature_selection import SelectKBest 36

CPSC 503 e December 2014

from sklearn.feature_selection import chi2
from scipy.sparse import =
from extreme_learning_machines import ELMRegressor, ELMClassifier
from scipy.sparse import issparse
def balance_dataset (X, y):

”””Balance_dataset._such_that._the _number_of_sarcastic _and.non—sarcastic
___________ responses._are._equal.

999999
uuuuuuuu

get indices for each class

X _sarcastic = X[np.where(y == 1)]
y_sarcastic = y[np.where(y == 1)]
X_non_sarcastic = X[np.where(y == —1)]
y_non_sarcastic = y[np.where(y == —1)]
n_sarcastic = y_sarcastic.shape[0]

check if it’s a sparse matrix
if sparse.issparse (X):

X = sparse.vstack ([X_sarcastic, X_non_sarcastic[:n_sarcastic]])
else:

X = np.vstack ([X_sarcastic , X_non_sarcastic[:n_sarcastic]])

y = np.hstack ([y_sarcastic , y_non_sarcastic[:n_sarcastic]])

return X, y

def fair_accuracy(y_pred, y_test):
”””Compute .weighted _accuracy .
get indices for each class
sarcastic_indices = y_test == 1
non_sarcastic_indices = y_test == —1

999999

Fair Testing score
score = accuracy._score(y-pred[sarcastic_indices],
y_test[sarcastic_indices]) + \
accuracy_score (y_pred[non_sarcastic_indices],
y_test[non_sarcastic_indices])
return score / 2

def dumbo(y_pred, y_test):
”””To_test._scoring .
return 1

999999

def extract ELM features(X, y, with_feature_extraction=False, \
chi_square = 3000, n_hic

#transformer = TfidfVectorizer(stop_words="english”, sublinearS,tf =True)
7

CPSC 503 e December 2014
#X = transformer. fit_transform(X)
n_features = X.shape[l]
k = np.min([3000, n_features])

X = SelectKBest(chi2, k=k). fit_transform (X, y)
X, y = balance_dataset (X, y)

if with_feature_extraction:
reg = ELMRegressor(n_hidden=n_hidden, weight_scale=25, activation=
random_state =0)
#reg = ELMRegressor(n_hidden=50, weight_scale=5, activation="relu’
if issparse (X):
X = reg.get_features (X, X.todense ())
else:
X = reg.get_features (X, X)

#X = np. hstack([X_, X])

#chi_square = np.min([chi_square, n_features])
chi_square = np.min([chi_square, X.shape[1]])
X = SelectKBest(chi2, k=chi_square). fit_transform (X, y)
#print X.shape
#X, y = balance_dataset (X, y)
return X, y

def extract_ELM features_response_quote (X_quotes, X_responses, y):

transformer = TfidfVectorizer ()
X_quotes = transformer.fit_transform (X_quotes)
X _responses = transformer. fit_transform (X_responses)

X_quotes, y = balance_dataset(X_quotes, y)
X_responses , y = balance_dataset(X_responses, y)

X_quotes = SelectKBest(chi2, k=5000).fit_transform (X_quotes, y)
X _responses = SelectKBest(chi2, k=2000).fit_transform (X_responses, y)

reg = ELMRegressor(n_hidden=1000, weight_scale=1, activation="relu’, rando:
X reg.get_features (X_responses, X_responses.todense ())
X X_responses

return X, y

def lda(X, y):
»»” Extract_features_using._lda.

38

CPSC 503 e December 2014

999999
uuuuuuuu

X = CountVectorizer (stop-words="english’). fit_transform (X)
X = SelectKBest(chi2, k=1500). fit_transform (X, y)

X = coo_matrix (X)

corpus = gensim.matutils.Sparse2Corpus (X.T)

lda = LdaModel(corpus, num_topics=50,

update_every=0, passes=50, decay=0.8, chunksize=9000)
return gensim. matutils.corpus2csc(lda[corpus]).T

def tokenize_matrix (X):
»?”Extract.a_tokenized._version_of_the_matrix.”””
max_length = 0
n_samples = X.shape[0]
for i in range(n_samples):
max_length = max(max_length, len(nltk.word_tokenize (X[i])))

X_ = np.zeros ((n_samples, max_length), dtype=’object’)

for i in range(n_samples):
sentence = nltk.word_tokenize (X[1i])
token_length = len(sentence)
X_[1, :token_length] = sentence

return X_

def extract_tfidf_on_POS (X):
»7” Extracting otfidf _features _on_POS.”””
def tokenize(text):
tmp = nltk.pos_tag(nltk.word_tokenize (text))
return [tag for j, tag in tmp]

#this can take some time
tfidf = TfidfVectorizer(tokenizer=tokenize, stop_-words="english’)
X = tfidf . fit_transform (X)

return X

def read_dataset(location):
”””Read._dataset._into _X_.and._y.matrices.”””
Read the ’qr_meta.csv’ excel sheet containing the quote—response pairs
qr = pd.read_csv(location + “qr_meta.csv”, encoding="utf’)

Read the ’'gr_averages.csv’ excel sheet containing the average sarcasm de
sarcasm_table = pd.read_csv(location + “qr_averages.csv’,
encoding="utf’)

39

CPSC 503 e December 2014

Join the two tables on the key column
dataset = qr.merge(sarcasm_table, on="key’)

Remove the rows where ’sarcasm’ value is NaN
dataset = dataset[pd.notnull(dataset[’sarcasm’])]

Extract sarcasm labels
y = np.array(dataset[[sarcasm’]])

Combine the two columns quote and response into a single column

dataset = dataset[”quote”] + 7.” + dataset[”response’”]
X = np.array(dataset)

Threshold y such that values above 0.5
are set to 1, and the rest to —1I \
yly >= 0.5] =1

yly < 0.5] = —1

return X, y

def read_dataset_csv(location):
”7””Read._dataset_into _X.and._.y_matrices .
Read the ’'qr_meta.csv’ excel sheet containing the quote—response pairs
qr = pd.read_csv(location + “qr-meta.csv”, encoding="utf’)

999999

Read the ’'gr_averages.csv’ excel sheet containing the average sarcasm de
sarcasm_table = pd.read_csv(location + “qr_averages.csv’”,
encoding="utf’)

Join the two tables on the key column
dataset = qr.merge(sarcasm_table , on="key’)

Remove the rows where ’sarcasm’ value is NaN
dataset = dataset[pd.notnull(dataset[’sarcasm’])]

Extract sarcasm labels
y = np.array (dataset[[sarcasm’]])

Combine the two columns quote and response into a single column

dataset = dataset[”quote”] + 7.” + dataset[”response’”]
#X = np.array(dataset)

Threshold y such that values above 0.5
are set to 1, and the rest to —I \
yly >= 0.5] =1

yly < 0.5] = -1

return dataset, y 40

CPSC 503 e December 2014

def read_quote_response_independently (location):
»””Read._dataset.into._X.and.y._.matrices.”””
Read the ’'qr_meta.csv’ excel sheet containing the quote—response pairs
qr = pd.read_csv(location + “qr_meta.csv”, encoding="utf’)

Read the ’'gqgr_averages.csv’ excel sheet containing the average sarcasm de
sarcasm_table = pd.read_csv(location + “qr_averages.csv’”,
encoding="utf’)

Join the two tables on the key column
dataset = qr.merge(sarcasm_table , on="key’)

Remove the rows where ’sarcasm’ value is NaN
dataset = dataset[pd.notnull(dataset[’ sarcasm’])]

Extract sarcasm labels
y = np.array(dataset[[sarcasm’]])

Combine the two columns quote and response into a single column
X_quotes = np.array(dataset[”quote”])
X_responses = np.array(dataset[”’response”])

Threshold y such that values above 0.5
are set to 1, and the rest to —I \
yly >= 0.5] =1

yly < 0.5] = -1

return X_quotes, X_responses, Yy
def analyze_dataset (X, y):

?7”” Report.information._.about_the_dataset.”””
get indices for each class

sarcastic_indices =y == 1

non_sarcastic_indices =y == —1

print ’sarcastic’, np.sum(sarcastic_indices)

print ‘non—sarcastic’, np.sum(non_sarcastic_indices)

def analyze_output(y_pred, y_test):
”?”” Report_information._about_the_output.”””
get indices for each class

cm = confusion_matrix (y_test, y_pred)
print ’Confusion_matrix ,.’
print cm

41

