CPSC 503 - Final project presentation: Inferring history of Austronesian languages using language models

Yongliang (Vincent) Zhai

April 15, 2013

Abstract:

- In this project, we use language models, including edit distances and N -gram methods, to measure the dissimilarity of languages, in order to reconstruct a phylogenetic tree for the history of languages.
- We propose a new dissimilarity measure for the sound of words describing the same content in different languages based on N -grams.
- We show that this dissimilarity measure performs best in identifying the correct history of languages in our data analysis compared with other dissimilarity measures derived from edit distances.
- This work can be applied to larger number of languages to assist human annotators to classify word cognates and languages.

Method: Edit Distances for two words A and B

- Minimum Edit Distance: insertion (1), deletion (1), and replacement (2).

$$
d_{M E D}<I_{A}+I_{B}
$$

- Normalized Minimum Edit Distance:

$$
d_{N M E D}=\frac{d_{M E D}}{I_{A}+I_{B}}, \quad 0 \leq d_{N M E D} \leq 1
$$

- Levenshtein Edit Distance: insertion (1), deletion (1), and replacement (1).

$$
d_{L E D} \leq \max \left\{I_{A}, I_{B}\right\}
$$

- Normalized Levenshtein Edit Distance:

$$
d_{N L E D}=\frac{d_{L E D}}{\max \left\{I_{A}, I_{B}\right\}}, \quad 0 \leq d_{N M E D} \leq 1
$$

Method: N-grams model for two words A and B

- grams(A): all N-grams of characters in A.

For example, $A=a d d$.

$$
\operatorname{grams}(A)=\{\{a\},\{d\},\{a, d\},\{d, d\},\{a, d, d\}\}
$$

- $\operatorname{grams}(\mathrm{A}, \mathrm{B}):$ common grams of $\operatorname{grams}(A)$ and $\operatorname{grams}(B)$.

$$
\operatorname{grams}(A, B)=\{x \mid x \in \operatorname{grams}(A) \text { and } x \in \operatorname{grams}(B)\}
$$

- $d_{\text {grams }}$: dissimilarity of A and B.

$$
d_{g r a m s}=1-\frac{2 \times \operatorname{grams}(A, B)}{\operatorname{grams}(A)+\operatorname{grams}(B)}
$$

Therefore,

$$
0 \leq d_{\text {grams }} \leq 1
$$

Dissimilarity Matrix for Languages

- The dissimilarity of two languages L_{1} and L_{2} is defined as the average of dissimilarities of N words, i.e.,

$$
d_{L}\left(L_{1}, L_{2}\right)=\frac{\sum_{i=1}^{N} d\left(W_{i, 1}, W_{i, 2}\right)}{N}
$$

- The dissimilarity of M languages $L_{1}, L_{2}, \ldots, L_{M}$ forms a dissimilarity matrix \mathbf{D}, which is $M \times M$, and the (i, j) element of \mathbf{D} is

$$
d_{i j}=d_{L}\left(L_{i}, L_{j}\right)
$$

The diagonal elements of \mathbf{D} are set to 0 .

Constructing a Tree Using D

- Neighbour-Joining algorithm.
- Input: dissimilarity matrix D.
- Output: an unrooted bifurcating tree T.
- Guaranteed to return the "correct tree" under some conditions.

Data: Summary

- 14 languages are chosen.
- 87 items are annotated for all 14 languages.
- Some items are annotated with more than one sounds.
- Choose the last one if more than one annotations exist.

Table: Three different annotations for the item "to walk" in Fagani language.

ID	Item	annotation	notes	cognacy
137031	to walk	pwapwahe	walk	81
137032	to walk	sio	go down	38
137034	to walk	akau	go up	1

Data: Relations of the 14 Languages.

Table: Classification of 14 languages chosen.

Language	Classification
Rukai Tona	A:F:Rukai
Rukai Budai	A:F:Rukai
Ivasay	A:M:P:B:Ivatan
Isamorong	A:M:P:B:Ivatan
Babuyan	$\mathrm{A}: \mathrm{M}: \mathrm{P}: \mathrm{B}: I v a t a n$
Muna	$\mathrm{A}: \mathrm{M}: \mathrm{C}: \mathrm{E}: \mathrm{S}: \mathrm{M}: \mathrm{N}: \mathrm{M}: \mathrm{M}:$ Western
Wuna	$\mathrm{A}: \mathrm{M}: \mathrm{C}: \mathrm{E}: \mathrm{S}: \mathrm{M}: \mathrm{N}: \mathrm{M}: \mathrm{M}: W$ Western
Bonerate	$\mathrm{A}: \mathrm{M}: \mathrm{C}: \mathrm{E}: \mathrm{S}: \mathrm{M}:$ Tukangbesi-Bonerate
Popalia	$\mathrm{A}: \mathrm{M}: \mathrm{C}: \mathrm{E}: \mathrm{S}: \mathrm{M}: T u k a n g b e s i-B o n e r a t e$
Mouk	$\mathrm{A}: \mathrm{M}: \mathrm{C}: \mathrm{E}: \mathrm{O}: \mathrm{W}: \mathrm{N}: \mathrm{N}: \mathrm{V}: \mathrm{S}:$ Bibling
Aria	$\mathrm{A}: \mathrm{M}: \mathrm{C}: \mathrm{E}: \mathrm{O}: \mathrm{W}: \mathrm{N}: \mathrm{N}: \mathrm{V}: \mathrm{S}:$ Bibling
Megiar	$\mathrm{A}: \mathrm{M}: \mathrm{C}: \mathrm{E}: \mathrm{O}: \mathrm{W}: \mathrm{N}: \mathrm{N}: \mathrm{V}: \mathrm{B}: \mathrm{N}:$ Northern
Matukar	$\mathrm{A}: \mathrm{M}: \mathrm{C}: \mathrm{E}: \mathrm{O}: \mathrm{W}: \mathrm{N}: \mathrm{N}: \mathrm{V}: \mathrm{B}: \mathrm{N}:$ Northern
Fagani	$\mathrm{A}: \mathrm{M}: \mathrm{C}: \mathrm{E}: \mathrm{O}: \mathrm{C}: \mathrm{S}: \mathrm{M}:$ San Cristobal

Results:

4.Estimated tree using LED

2.Estimated tree using MED

5.Estimated tree using NLED

3.Estimated tree using NMED

6.Estimated tree using grams

Figure: The annotated tree and estimated trees using different language models.

Conclusions and Limitations

Conclusions:

- Edit distances can be used to infer history of languages, although not very accurate at some details.
- Our proposed N-grams model performs best in this analysis (but it may be too early to claim this is true in general).
Limitations and Future Work:
- Create a larger experiment to check the accuracy of the results automatically.
- Repeat the analysis on other languages
- Repeat the analysis with more languages.

Thank you!

