Semantic predictability and word sense disambiguation in spontaneous speech

Michael McAuliffe

April 15, 2012

Brief recap

- Words can vary in their production according to how predictable they are from context
 - The cow gave birth to the calf
 - She is glad Jane called about the calf
 - I have an ache in my calf
- Words in predictable contexts are reliably shorter (Clopper & Pierrehumbert, 2008; Scarborough, 2010)
- Word sense disambiguation should provide more reliable estimates of predictability

Semantic predictability

Key words (Kalikow, Stevens, & Elliott, 1977)

- Earlier words in the sentence can point to the identity of later words
- Operationalized as semantically related words
- Greater average relatedness of the context is more predictable
- Word-context relatedness (Pucher, 2003)

$$rel_W(w|C) = rac{1}{|C|} \sum_{w' \in C} rel(w, w')$$

Semantic relatedness

 One of the best measures is Extended Lesk (Pedersen, Patwardhan, & Michelizzi, 2004)

- Gloss overlaps
- Stop words removed
- N-word overlap scores n²
- Pairwise comparison of glosses and related senses' glosses
- Similar method used here
 - Bag of ngrams model
 - Same stop word list as Extended Lesk
 - Unigrams through five-grams extracted from glosses and related senses' glosses
 - Scored by summing their inverse document frequency in WordNet (Princeton University, 2010) and squaring

Comparison of measures

-

- Sentences from previous studies (Kalikow et al., 1977; Scarborough, 2010)
 - Annotated as high or low predictability (Sentence completion task)
- Model using bag of ngrams with IDF performs best

Measure	AIC	Probability of lowest AIC		
Extended Lesk	545.3	0.01		
Bag of words (IDF)	540.3	0.13		
Bag of words	547.4	0.003		
Bag of ngrams (IDF)	536.3	1.0		
Bag of ngrams	545.7	0.01		

Word sense disambiguation

- Simple Lesk (Kilgarriff, Rosenzweig, et al., 2000)
 - Overlap between words in context and WordNet gloss/example of all senses of a word
 - Weighted by IDF in WordNet
 - Window of +/-3 content words (Vasilescu, Langlais, & Lapalme, 2004)
 - Within 10 seconds on either side

Data

- Buckeye Corpus of spontaneous speech corpus (Pitt et al., 2007)
- Words to be analyzed
 - Content words (Noun, adjective, verb, adverb) according to CELEX (Baayen, Piepenbrock, & Gulikers, 1995)
 - Part of speech tagging of spontaneous speech is difficult (Kübler, Scheutz, Baucom, & Israel, 2010)
 - No adjacent pauses or disfluencies

Evaluation

- Linear mixed effects model
 - Random effects for Word and Speaker
 - Allows for Word Duration to vary between Words and Speakers
 - Random slopes for contextual factors
 - Allows for relationship between Word Duration and contextual factors to vary between Words and Speakers
- Three models
 - Control model (Gahl, Yao, & Johnson, 2012)
 - Lexical factors (frequency, neighbourhood density, phonotactic probability, length measures, POS)
 - Contextual factors (speaking rate before and after, conditional probability before and after, repetitions)
 - Speaker factors (age group, gender, average speaking rate)
 - Default sense model
 - Semantic predictability from relatedness using default senses
 - Disambiguated sense model
 - Semantic predictability from relatedness using disambiguated senses

Results - semantic predictability

- Control model performs best
- Default performs better than Disambiguated

Model	AIC	Pr
Control	1538	1.0
Default	1627	< 0.001
Disambiguated	1639	< 0.001

Results - word sense disambiguation

- Random slopes beneficial for Default model
- Random slopes detrimental for Disambiguated model

Model	AIC	Pr
Default	1627	1.0
Disambiguated	1639	0.002
Default (no random slopes)	1636	0.01
Disambiguated (no random slopes)	1635	0.01

Discussion - semantic predictability

- Adding semantic predictability terms of any kind resulted in worse performance
- Possible reasons
 - Poor part of speech tagging
 - POS acts a filter on possible word senses (Vasilescu et al., 2004)
 - Unnormalized measure
 - Raw semantic relatedness score similar to count of word occurrences
 - Given a particular context, there could be many or few possible related senses
 - Different senses have different numbers of realizations
 - Difference between previous laboratory research and this study
 - Already a number of contextual variables in the control model
 - Conditional probabilities based on previous and following word could be accounting for predictability effects

Discussion - word sense disambiguation

- Word sense disambiguation did have an interesting effect
 - Random slopes for predictability significantly improved default model but not disambiguated model
 - Disambiguation reduces variability of the relationship between word duration and predictability

Future directions

- Improved spontaneous speech POS tagging
- Normalization of semantic predictability
- More general models for probability of word occurrence

Thank you!

References I

- Baayen, R. H., Piepenbrock, R., & Gulikers, L. (1995). The CELEX lexical database (version release 2)[CD-ROM]. *Philadelphia, PA: Linguistic Data Consortium, University of Pennsylvania.*
- Clopper, C. G., & Pierrehumbert, J. B. (2008). Effects of semantic predictability and regional dialect on vowel space reduction. *Journal of the Acoustical Society of America*, 124(3), 1682–1688.
- Gahl, S., Yao, Y., & Johnson, K. (2012). Why reduce? Phonological neighborhood density and phonetic reduction in spontaneous speech. *Journal of Memory and Language*. (In press)
- Kalikow, D., Stevens, K., & Elliott, L. (1977). Development of a test of speech intelligibility in noise using sentence materials with controlled word predictability. *The Journal of the Acoustical Society of America*, 61(5), 1337–1351.

References II

Kilgarriff, A., Rosenzweig, J., et al. (2000). English SENSEVAL: Report and results. In Proceedings of the 2nd International Conference on Language Resources and Evaluation, LREC. Kübler, S., Scheutz, M., Baucom, E., & Israel, R. (2010). Adding context information to part of speech tagging for dialogues. In Proceedings of the Ninth International Workshop on Treebanks and Linguistic Theories (TLT) (pp. 115–26). Pedersen, T., Patwardhan, S., & Michelizzi, J. (2004). WordNet:: Similarity: measuring the relatedness of concepts. In Demonstration Papers at HLT-NAACL 2004 (pp. 38-41). Pitt, M. A., Dilley, L., Johnson, K., Kieslin, S., Raymond, W., Hume, E., et al. (2007). Buckeye Corpus of Conversational Speech (2nd release) [www.buckeyecorpus.osu.edu]. Columbus, OH: Department of Psychology, Ohio State University (Distributor).

References III

Princeton University. (2010). *WordNet*. (http://wordnet.princeton.edu)

Pucher, M. (2003). Performance evaluation of WordNet-based semantic relatedness measures for word prediction in conversational speech. In *Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics* (ACL 2007) (Vol. 18, pp. 129–132).

Scarborough, R. (2010). Lexical and contextual predictability: Confluent effects on the production of vowels. *Laboratory Phonology*, *10*, 557–586.

Vasilescu, F., Langlais, P., & Lapalme, G. (2004). Evaluating variants of the Lesk approach for disambiguating words. In Proceedings of the Conference of Language Resources and Evaluations (LREC 2004) (pp. 633–636).