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Abstract

In  this  paper  we  present  the  results  of  some 
initial  experiments  performed in  developing an 
unsupervised  Parts-of-Speech  (POS)  tagger  for 
the Bangla language. We start with mentioning 
some of the work done in this area, and present 
the  rationale  for  trying  an  unsupervised 
approach.  We then describe  the resources  used 
for  the  project,  the  underlying  mechanism  for 
unsupervised  learning  and  present  some of  the 
primary results.  The paper  then suggests  future 
directions of work in this area.

1 Introduction

Part-of-Speech  (POS) tagging is  the process  of 
assigning each word of a text with an appropriate 
parts of speech tag. The significance of part-of-
speech  (also  known  as  POS,  word  classes, 
morphological  classes,  or  lexical  tags)  for 
language  processing  is  the  large  amount  of 
information  they  give  about  a  word  and  its 
neighbours.  POS  tags  often  signify  the 
morphological,  phonological  and  contextual 
properties  of  a  word,  and  also  provide 
information about neighbour words. POS tagging 
can  be  used  in  Text  to  Speech  applications, 
information  retrieval  and  extraction,  shallow 
parsing, linguistic research for corpora and also 
as  an  intermediate  step  for  higher  level  NLP 
tasks such as parsing, semantics, translation, and 
many more.  POS tagging,  thus,  is  a  necessary 
application for advanced NLP applications in any 
language.
Bangla is one of the top ten most widely spoken 
languages  in  the  world,  with  more  than  200 
million  native  speakers  all  around  the  globe. 

Along with languages like Hindi and Telugu, the 
grammar and morphological rules for Bangla is 
derived  from  Sanskrit,  an  ancient  language 
which  was  the  primary  language  of  written 
discourse  in  south-east  Asia  up  until  the 
beginning of the 20th century. In addition, a lot of 
words in Bangla have been absorbed from other 
foreign languages, and the original Bangla words 
have passed out of common usage. Despite the 
long  tradition  and  the  wide  number  of  people 
who use Bangla as their first language, there has 
still not been significant research in the area of 
natural language processing for Bangla.
We start this paper by giving an overview of the 
different  approaches  to  POS  tagging,  and 
describe what has been done so far for Bangla. 
We then compare the previous approach to what 
we propose to do in this study. Then we describe 
our  POS tagset  and  the  corpus  used.  Next  we 
describe  the  toolkit  we  decided  to  use  for  the 
purpose of our experiments, and explain in detail 
the  algorithm  that  this  toolkit  is  supposed  to 
execute on the dataset. Finally we conclude with 
the results of our study and suggest what could 
be possible future steps for further work on this 
problem.

2 Literature Review

POS tagging can be seen as a learning task, and 
hence the approaches to the task can be divided 
into  two  broad  categories  –  supervised  and 
unsupervised  learning.   Within  each  of  these 
branches,  there  are  further  sub-divisions  based 
on  the  finer  details  of  how they  approach  the 
problem. The following figure gives an 
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overview of  the different  POS tagging  models, 
which is then followed by short descriptions of 
how each model works.

2.1 Supervised Models

The  supervised  approach  to  POS  tagging 
requires human knowledge of the domain, often 
in  the  form  of  a  corpus  that  has  been  hand-
annotated by human experts. This is referred to 
as  the  training  corpus.  This  corpus  is  used  to 
learn  information  about  the  tagset,  word-tag 
frequencies,  rules  etc.  The  performance  of 
supervised approaches depends on the size and 
annotation quality of the training corpus.
In  case  of  the  rule-based  approach,  the  tagger 
tries to assign tags to each word based on a set of 
hand-crafted rules. These rules could specify, for 
instance, that a word following a determiner and 
an  adjective  must  be  a  noun.  This  approach 
requires that the set of rules be properly written 
and  checked  by  human  experts.  This  makes 
design of the rule-based taggers time-consuming 
and  expensive.  The  stochastic  approach  uses  a 
training  corpus  to  pick  the  most  probable  tag 
given a word. These stochastic methods could be 
based on simple N-gram based methods,  or on 
the  First  or  Second  order  Hidden  Markov 
Models.  Finally,  the  transformation  based 
approach combines the rule-based and stochastic 
approach.  It  picks  the  most  likely  tag  given  a 
word  based  on  the  training  corpus.  Then  it 
applies  a  set  of  rules  to  see  whether  the  tag 
should be changed to something else. This can be 
thought of as adding progressively finer details at 
each  run  of  the  rule-application  steps,  and  the 
process  halts  when  there  is  insufficient 
improvement  between  two  consecutive 
iterations. It saves any new rules it has learnt in 
the process  for  future  use.  One example of  an 
effective  tagger  in  this  category  is  the  Brill 
tagger. 

While  the  supervised  approach  has  been 
implemented  for  English  and  several  other 
languages with good results, it suffers from the 
drawback that it needs a human-annotated corpus 
or set of rules. For a language like Bangla, where 
linguistic research is still at an early stage, such 
training  corpora  or  set  of  rules  are  not  easily 
available.  This  then  severely  limits  the 
applications of supervised training for languages 
like these.

2.2 Unsupervised Models 

The  unsupervised  POS  tagging  models  do  not 
require a pre-annotated corpus. Instead, they use 
advanced  computational  techniques  like  the 
Baum-Welch  algorithm  to  automatically  learn 
the  transformation  rules.  Based  on  this 
information, they can either generate the Markov 
model required  by stochastic  taggers  or induce 
the contextual rules needed by the rule-based or 
transformation-based systems. Later in this paper 
we  will  see  more  details  on  how  the  Baum-
Welch algorithm operates on a given dataset.

3 Previous work

In  this  section  we  will  discuss  some  of  the 
previous work that has been done regarding POS 
tagging  for  Bangla.  One  early  study  on  POS 
tagging  for  Bangla  has  been  reported  by 
Chowdhury  et  al  (2004)  and  Seddiqui  et  al 
(2003). Chowdhury et al (2004) implemented a 
rule-based  tagger,  which  requires  writing 
laboriously hand-crafted rules by human experts. 
However, they report no performance analysis of 
their  work.  No  review  or  comparison  of 
established  work  in  Bangla  is  offered  in  that 
paper; they only propose a rule-based technique. 
Further,  they use  a  tagset  consisting of  only 9 
tags.  Such  a  tagger  would  have  very  limited 
applicability in advanced NLP applications.
More recently, work has been done by Hasan et 
al (2006) on developing a supervised POS tagger 
for Bangla. While the lack of a large hand-tagged 
corpus  makes  this  method  less  effective,  the 
authors  were  aiming  to  conduct  a  study  that 
compares the performance of a supervised tagger 
for English and Bangla, using training corpora of 
the same size. They use a 5000 word corpus and 
a  tagset  of  41  tags.  The  results  obtained  are 
satisfactory,  in  the  sense  that  the  accuracy  is 
comparable  to  that  for  similar-sized corpus for 
English. The authors thus claim that with a large 
enough corpora for Bangla,  the performance of 



their tagger can be similar to that for English. In 
addition, the authors point out that the rule-based 
approach  seems  to  perform  much  better  for 
Bangla than the stochastic approach, which is the 
opposite of what has been observed for English.
In  Hasan  et  al  (2007),  the  authors  set  out  to 
compare three South Asian languages – Bangla, 
Hindi and Telugu - all of which are derived from 
Sanskrit. For Bangla, this study uses a corpus of 
25426 tokens and 26 tags. The accuracy figures 
improve from that in the previous study, but are 
still not significant enough. Further, it is noticed 
that  for  all  the  three  languages,  the  rule-based 
tagger performs better than the stochastic tagger. 
The  authors  hypothesize  that  this  could  be 
because  these  languages  are  derived  from 
Sanskrit,  which is  a  very rule-driven language, 
and  mention  that  this  aspect  of  the  problem 
deserves some more research.

4 Methodology

As mentioned above, even with a nearly 25000 
token  corpus  the  results  do  not  seem  very 
promising.  Further,  as  has  been  done  for  most 
other languages, we believe that the next phase 
in POS tagging research for Bangla should be an 
attempt  at  the  unsupervised  approach.  This 
would  eliminate  the  need  to  develop  a  large 
hand-annotated  corpus  –  something  that  is  not 
easily  available  for  Bangla  and  is  time-
consuming and laborious to prepare. With this in 
mind,  we  collected  the  corpus  and  the  tagset 
from  university  labs  currently  working  on 
linguistic  research  in  Bangla.  Our  aim  was  to 
perform Baum-Welch training on this corpus, in 
order to learn the underlying HMM parameters. 
This  HMM  could  then  be  used  to  perform 
tagging  on  a  corpus  and  tested  to  obtain  the 
accuracy  figures.  So  the  entire  study  could  be 
broken down to the following phases: 1) collect 
corpus and tagset, 2) search for implementation 
of  Baum-Welch  algorithm,  3)  perform  training 
and 4)  test  against  gold standard  for  accuracy. 
We now describe the resources collected for this 
project,  and  explain  how  the  Baum-Welch 
algorithm operates.

5 Tagset

We  used  a  54-tag  tagset  developed  for  the 
Bangla language specifically. This tagset extends 
most  standard  tagsets,  to  include  finer 
distinctions  specific  to  the  Bangla  language  – 
such  as  suffixes  that  denote  possessive  or 

accusative  markers.  The  tagset,  along  with 
descriptions if individual tags, is provided in the 
appendix.

6 Corpora

We used corpora currently being developed by 
the  Center  for  Research  on  Bangla  Language 
Processing.  This  corpus  is  collected  from  a 
leading Bangladeshi newspaper called Prothom-
Alo, and is in UTF-8 format. A small subset of 
this  corpus  has  also  been  tagged  by  human 
experts, and was made available to us from the 
same source.  The corpus totals to about 50000 
tokens, and the tagged subset consists of 18110 
tokens and 4760 word types. One portion of this 
tagged corpus was cleaned and set aside as the 
training corpus and the rest was to be used as the 
test set.

7 The Baum-Welch algorithm

In this section we describe the operation of the 
Baum-Welch  algorithm.  In  particular,  we 
describe  what  the  inputs  should  be,  the  steps 
executed and the expected output once training 
has been completed.
The main idea of the Baum-Welch algorithm is 
to  find  the  Hidden  Markov  Model  given  a 
sequence of observations. As input, we need it to 
provide all the possible states, and a sequence of 
observations. Specific to our POS tagging task, 
the states are the possible tags, and the observed 
symbols  are  the  word  types  in  the  corpus.  A 
sequence  of  observations  then  is  a  sentence  in 
our corpus.
The HMM is supposed to specify two matrices: 
the  transition  probability  matrix  T  and  the 
emission probability matrix E. Any entry tij in the 
transition  matrix  specifies  the  probability  of 
moving from state i to state j. For our example, 
this  matrix  will  specify  the  probability  of  one 
word  having  a  tag  i  and  the  next  word  in 
sequence having the state j.  An entry eij  in the 
emission  matrix  denotes  the  probability  of 
observing the symbol j given that we are at state 
i.  This  is  analogous  to  the  probability  of 
observing one of the possible word types, given 
that we know the tag to be assigned for the word 
or  observation.  Once  these  two  matrices  are 
known for  all  possible  state  transitions  and  all 
possible emissions, we can take any observation 
sequence and predict what the underlying states 
are. In other words, given a sentence we can tag 
each word in the sentence. The probability that a 



sequence starts with a state i  is denoted by the 
initial state distribution, which is often denoted 
by π. 
Since this is an unsupervised learning algorithm, 
no human annotation of states is provided with 
the observation.  For  our  problem in particular, 
the training algorithm is simply provided with a 
list of all the possible states, and the sentences in 
the training corpus.  As output, the algorithm is 
supposed to generate the transition and emission 
matrices. We now describe step by step how this 
is done.
Initialization:  To  begin  with,  T,  E  and  π  are 
initialized to random values. The algorithm will 
later update these values until some convergence 
criterion has been reached.  Possible criteria  for 
convergence  can  be  having  finished  a  specific 
number  of  iterations,  or  more  commonly 
insufficient  improvement  between  two 
consecutive iterations.
Forward  step:  The  Forward  algorithm  is  then 
executed.  For  this  phase,  we define  a  quantity 
αi(t) = p(O1 = o1, , ,Ot = ot, Qt = i| λ). This denotes 
the  probability  of  observing  the  sequence  of 
symbols O1…Ot,  and then ending up in state I, 
given  the  HMM  denoted  by  λ.  A  recursive 
relation for αi(t) can be defined as shown below:

Base case: αi(t) = πibi(O1) 

Recursive relation: αj(t+1) = bj(Ot+1) Σ1-n αi(t) Tij

In  the  above  relation,  bi(O1)  denotes  the 
probability  of  observing  symbol  O1  at  state  i. 
Similarly  bj(Ot+1)  denotes  the  probability  of 
observing symbol Ot+1  at state j. In  general,  the 
recurrence  denotes  that  the  probability  of 
observing t+1 symbols  and ending in state j  is 
given by: the probability of observing t symbols 
and ending in state i, transitioning from state i to 
state j, and at state j observing the symbol  Ot+1. 
As can be seen, this recurrence relation satisfies 
the probability of optimal substructure – optimal 
path  to  a  sequence  must  be  generated  through 
optimal  path to  a  subsequence.  Thus it  can  be 
solved  using  a  straightforward  dynamic 
programming approach.

Backward  step:  In  this  step  the  Backward 
algorithm  is  executed.  This  time  we  aim  to 
calculate βi(t),  which denotes  the probability of 
the ending partial sequence  ot+1, , , oT  given that 
we started at state i, at time t. Once again we can 
derive a recurrence relation for this quantity as 
follows:

Base case: βi(T) =1

Recursive relation: βi(t) = Σ1-n βj(t+1)Tij bj(Ot+1)

Once again, we see that the backward probability 
also displays optimal substructure, and can thus 
be computed by dynamic programming. Once we 
know α and β, we can use these to calculate the 
following quantities: 

Once we have these two variables, they can be 
used to update the original HMM parameters as 
follows:

These forward and backward steps are repeated 
over  and  over  until  the  convergence  condition 
has  been satisfied,  at  which point  we have the 
best  HMM that  can  be learned from the given 
observation  sequence.  This  HMM can  then  be 
used on other observation sequences, for which it 
will generate the sequence of hidden states that 
can  then  be  tested  for  accuracy  –  either  by 
automated comparison or by a human expert.

8 Toolkits

8.1 C++ HMM toolkit

Since  our  basic  idea  was  to  implement  Baum-
Welch  training  in  order  to  learn  the  HMM 



parameters  by itself,  we started  looking for  an 
existing implementation of this algorithm. After 
searching for and trying out a few, we decided to 
use the HMM toolkit developed by Dekang Lin, 
at  the  University  of  Alberta.  This  toolkit  is 
developed  in  C++,  and  contains  three  major 
implementations:  1)  the  vit  program  which 
implements the Viterbi algorithm to generate the 
most probable sequence of tags given a sentence, 
2)  the  genseq  program  which  generates  an 
observation sequence given a HMM model and 
3) the trainhmm program which learns the HMM 
parameters  given  a  set  of  observations  and  an 
initial  estimate  for  the  HMM.  Along  with  the 
toolkit, some dataset was also provided to train a 
POS tagger for the English language. An online 
tutorial  is  also  available  for  the  toolkit,  which 
explains the format the input files must be in and 
how to use the different features of the toolkit.

In  general,  the  Baum-Welch  algorithm  is  not 
dependent  on  the  accuracy  of  the  initial 
probability  distribution  and  matrices  provided. 
With  a  less  accurate  estimate,  training  would 
simply  take  more  number  of  iterations  before 
converging.  However,  as  mentioned  by  the 
author of  the  package  and  easily  testable  from 
the  dataset  provided,  the  performance  of  this 
toolkit  depends  on  the  initial  estimate.  In 
particular, if the emission probability is assumed 
to  be equal  for  all  the symbols  given  any tag, 
then Baum-Welch is not able to learn the correct 
HMM. For English,  the author obtains a better 
estimate by using the lexicon for Collin’s parser, 
and is then able to learn the correct HMM. These 
estimates,  and  the  training  and  test  data,  are 
provided with the toolkit for testing purposes.
Since there is no existing lexicon for Bangla, our 
first  experiment  was  conducted  with  the  most 
naïve  initial  estimate  possible  –  assuming  all 
transitions and all  emissions are equally likely. 
Just  like  in  the  case  for  English,  Baum-Welch 
was unable to learn the correct HMM based on 
these parameters. As a second approach, we then 
tried to build a small lexicon from the training 
corpus and get a better estimate for the emission 
probabilities  based  on  this  lexicon.  However 
even with these revised estimates, Baum-Welch 
was still  unable to learn the model properly.  If 
we try generating a sequence of tags  using the 
HMM provided as  output,  all  the words in the 
sentences  are  labelled  with  NN,  which  is  the 
high-level  tag  for  nouns.  So  at  this  point,  no 
further improvement seemed possible using this 
toolkit.  Thus we moved on to try training with 
the Natural Language Toolkit (NLTK).

8.2 Natural Language Toolkit

As pointed out by a fellow student, NLTK also 
provides  unsupervised  training  under  the 
HiddenMarkovModelTrainer module. To use this 
trainer, one needs to specify the possible states 
and  symbols,  and  then  provide  a  set  of 
observation sequences on which training can be 
done. An initial HMM can also be provided but 
is  optional.  After  taking  a  look  at  the  sample 
codes in the documentation, we then developed a 
Python module to perform unsupervised training 
on the training corpus, with the tagset and list of 
word  types  provided  as  inputs.  However,  even 
this  implementation  was  not  able  to  learn  a 
correct  model.  Training  ran  for  only  three 
iterations  before  converging,  and  using  the 
output  model  to  generate  tags  gave  the  same 
result as before – all the words were tagged NN. 
Since  this  module  does  not  need  an  initial 
estimate and none was provided, it would seem 
that this inability of learn the HMM has less to 
do with the accuracy of the estimates and is more 
due to some other reason relevant to the training 
corpus  itself.  This  conclusion  is  further 
strengthened by the fact that in case of both the 
toolkits,  the  final  output  is  the  same  –  all 
symbols  tagged  as NN. However there has not 
been enough time to explore possible reasons for 
this.

9 Results

As mentioned in the previous section, both the 
toolkits have been unable to learn a HMM good 
enough to be of practical use. While in terms of 
total log probability, NLTK has done better than 
the  other  toolkit,  this  improvement  has  clearly 
not  resulted  in  better  output.  In  terms  of  final 
output then, the project has not been successful. 
However,  we believe that some directions have 
been  suggested  for  future  work  that  could 
possibly lead to  better  results.  We will  discuss 
this in more details in the rest of this paper.

10 Evaluation

If  the  project  had  been  successful,  evaluation 
would  be  straightforward:  1)  take  the  tagged 
corpus and produce a clean copy of it,  2) train 
the tagger on one portion of this cleaned corpus, 
3) apply tagger obtained on the other portion and 
4) compare with hand-tagged version of corpus 
to  obtain  accuracy  figures.  However,  we  have 



not  been  able  to  complete  the  training  phase 
properly with either toolkit. Therefore, we have 
not  been  able  to  move  on  to  stages  3  and  4. 
While some of the symbols in the test set are in 
fact  supposed  to  be  tagged  NN and  would  be 
considered correct in an automated testing, such 
an accuracy is hardly representative of the actual 
state of the tagger and would not be a very useful 
figure to go by.

11 Contribution

While we have not been able to reach our desired 
results, there are still some lessons to take away 
from the work that has been done. In particular, 
since there is no existing lexicon for Bangla and 
little  likelihood  of  a  high-quality  one  being 
generated anytime soon, it would seem that there 
is little point in continuing further research with 
the first toolkit, which has already been shown to 
be highly sensitive to the accuracy of the initial 
estimate. On the other hand, while NLTK has not 
performed well  either,  we can mention at  least 
two points in its favour:  1) there is no need to 
provide  an  initial  parameter  and  2)  even  if 
unsuccessful, the training gave better results that 
with the same test data for the first one. Even if a 
lexicon  is  generated  and  really  good  estimates 
obtained,  it  is  still  more  likely  that  providing 
them as parameters to the NLTK trainer method 
would  yield  better  results  than  using  them  as 
input for the other HMM toolkit. Further work in 
this  area  should  thus  focus  more  on  getting 
NLTK training and tagging modules to work.

12 Future Work

At the very initial stage, we proposed to develop 
both  an  unsupervised  Baum-Welch  and  Brill 
tagger  for  Bangla.  The  chief  objective  behind 
this was to test whether the phenomenon of rule-
based  taggers  working  better  than  stochastic 
taggers  -  which  was  observed  in  previous 
research - is true in this case as well. Consistency 
in  this  aspect  would  provide  further 
corroboration to the hypothesis that as a heavily 
rule-driven  language,  Bangla  performs  better 
with rule-based taggers. Given time constraints, 
we have not been able to complete that for this 
study.  However,  we  believe  that  once  the 
unsupervised HMM tagger has been developed, 
the unsupervised Brill tagger should be the next 
step, followed by comparison between the two. 
As far as the developing the unsupervised tagger 
is concerned, the next step should be to try the 

training  with  different  corpora  to  see  whether 
there  has  been  any  improvement.  The  set  of 
experiments  that  have  been  carried  out  so  far 
could  also  be  tried  on  other  toolkits,  to  see 
whether  they  do  any  better.  Even  more 
important,  in  the  event  that  they  do  not,  we 
should check whether they give the same results, 
since  making  the  same  mistake  could  be  an 
indication that the problem is independent of the 
tools used, and probably specific to the dataset or 
the tagset.

13 Conclusion

In this paper we have mentioned the process we 
followed  in  order  to  develop  a  Baum-Welch 
trained  HMM tagger  for  the  Bangla  language. 
We began with an overview of the POS tagging 
problem in general, and mentioned the different 
approaches  to  POS  tagging  in  brief.  We  then 
presented  some of  the  previous  work  done  for 
POS  tagging  in  Bangla,  and  outlined  how our 
approach is different and should need less human 
knowledge  in  order  to  work.  Having described 
the corpus and the tagset, we then described the 
Baum-Welch algorithm, along with formulae for 
the  variables  that  are  calculated.  Lastly,  we 
described the toolkits we used for the project and 
how they  work.  The  results  of  this  work  have 
already  been  presented  above,  along  with 
suggestions on what could be done next. In the 
end,  the  project  has  not  been  able  to  give 
quantitative  results,  but  we  believe  that  some 
progress has been made in the sense that we now 
have a clearer idea of what resources might be 
helpful  for  the  task.  Pursuing  further  in  this 
direction of work should be able to give some 
initial results, depending on which the next plan 
of actions can be decided on.
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Appendix A

Source codes

A1 Code for lexicon generation

corpus  =  open('bangla-corpus-
cleaned.txt','r')
lexicon  =  open('bangla-
lexicon.txt','w')

tokencount=0
typecount=0

wordmap = {}

for line in corpus:
    tokens = line.split()
    for each in tokens:
        if wordmap.has_key(each): 
wordmap[each]+=1
        else: wordmap[each]=1

for entry in wordmap:
    tokencount+=wordmap[entry]
    lexicon.write(entry)
    lexicon.write("\n")

print len(wordmap)
print tokencount

corpus.close()
lexicon.close()

A2 Code for training in NLTK

import nltk
from nltk import tokenize

def loadUntagged(fileName):

    text = open(fileName).read()
    sentences  = 
list(tokenize.blankline(text))
    retSentences = []

    for sentence in sentences:
        newSentence = []
        sentence  = 
list(tokenize.whitespace(sentence
))
        #print sentence
        for token in sentence:
               newSentence.append
(token)

        retSentences.append(newSe
ntence)
        #retSentences  += 
[newSentence]
    return list(retSentences)

def loadCorpus(corpus):

    text = open(corpus).read()
    sentences  = 
list(tokenize.blankline(text))
    newSentences = []

    for sentence in sentences:
        #newSentence = []
        tokens  = 
list(tokenize.whitespace(sentence
))
        '''
        for token in tokens:
            #print token
            #loc  = 
token.rfind('/')
            #if loc > 0: # can't 
allow "/TAG" tuples
            newSentence.append(to
ken)
        newSentences  += 
[newSentence]'''
        newSentences.append(token
s)
    return newSentences

def doTag(model, sentences):

    taggedSentences = []
    for sentence in sentences:
        #print sentence
        pts  = 
model.best_path(sentence)
        #pts  = 
model.best_path(['foo', 'bar'])
        taggedSentence = []
        for  token,  tag  in 
zip(sentence, pts):
            taggedSentence.append
((token[0], tag))
        taggedSentences.append(ta
ggedSentence)
    return taggedSentences

#read all tags from tagset file
tagfile  =  open('bangla-
tagset.txt','r')
tags = [0]*54

i=0



for t in tagfile:
    tags[i] = t
    i+=1
tagfile.close()
print 'done reading tags'
#done reading all tags

#read all symbols/word types from 
lexicon
lexfile  =  open('bangla-
lexicon.txt','r')
types = []

i=0
for word in lexfile:
    #types[i] = word
    #i+=1
    types += [word]
lexfile.close()
print types[0]
print 'done reading symbols'
#done reading all word types

#read all the training sentences 
from corpus
sents  =  loadCorpus('bangla-
corpus-cleaned.txt')
print sents[0][0]
print 'done reading corpus'
#done reading all sentences into 
a list

#begin training on sentences
#print tags
print len(types)
types = []
for s in sents:
    for w in s:
        #if not w in types:
            types += [w]
            #print w + " was not 
found"
trainer  = 
nltk.tag.HiddenMarkovModelTrainer
(tags, types)
#trainer  = 
nltk.tag.HiddenMarkovModelTrainer
(['foo'], ['foo'])
print 'done trainer generation'
print(len(sents))
tagger  = 
trainer.train_unsupervised([sents
])
print 'done training'

#test tagger trained above

untagged  = 
loadUntagged('test.txt')
print 'Tagging...'
taggedOutput  =   doTag(tagger, 
untagged)

taggedFile  = 
open('Tagged_bangla_hmm.txt', 
'w')
for sentence in taggedOutput:
    for (word, tag) in sentence:
        taggedFile.write(word + 
'/'  + tag + ' ')
    taggedFile.write('\n\n')
taggedFile.close()
print 'Finished Tagging'

A3 Code to count number of word types and 
tokens

file  =  open('bangla-corpus-
cleaned.txt','r')

tokencount=0
typecount=0

wordmap = {}

for line in file:
    tokens = line.split()
    for each in tokens:
        if wordmap.has_key(each): 
wordmap[each]+=1
        else: wordmap[each]=1
        
for entry in wordmap:
    tokencount+=wordmap[entry]

print len(wordmap)
print tokencount

A4 Code to clean a tagged corpus

file  =  open('D:\\Fall 
2008\\CS503\\project\\Tagged-
Corpus-and-tag-set\\bangla-
corpus-tagged.txt', 'r')
out  =  open('bangla-corpus-
cleaned.txt', 'w')

for line in file:
    tokens = line.split()
    for item in tokens:
        word = item.split("/")
        out.write(word[0])
        out.write(" ")



    out.write("\n")
        
A5 Code to learn emission probabilities

#include<cstdio>
#include<cstring>
using namespace std;

int main()

{
    FILE *fp1,*fp2,*fp3;
    freopen("dummy.txt","w",stdou
t);
    char 
tag1[100],tag2[100],word[500];
    int f;
    fp1  =  fopen("toy-
lexicon.txt","r");
    fp3 = fopen("emit.txt","w");
    while(fscanf(fp1,"%s
%d",tag1,&f)!=EOF)
    {
     //printf("%s\n",tag1);
     fp2 = fopen("test.txt","r");
     while(fscanf(fp2,"%s
%s",tag2,word)!=EOF)
     {
      printf("%s 
%s\n",tag2,word);
      if (strcmp(tag1,tag2)==0)
      {
       fprintf(fp3,"%s  %s 
%lf\n",tag2,word,1.0/f);
      }
     }
     fclose(fp2);
    }
    fclose(fp1);
    fclose(fp3);
    return 0;
}

Appendix B

The  tagged  corpus  is  not  available  online,  but 
can  be  provided  by  this  author  if  needed  for 
research purposes.
The link to the untagged corpus is given below:
http://faculty.bracu.ac.bd/~fahim/CRBLP/Corpus
AnalysisIntput.zip


