
An Unsupervised Parts-of-Speech Tagger for the Bangla language

Hammad Ali
Department of Computer Science
University of British Columbia
hammada@cs.ubc.ca

Abstract

In this paper we present the results of some
initial experiments performed in developing an
unsupervised Parts-of-Speech (POS) tagger for
the Bangla language. We start with mentioning
some of the work done in this area, and present
the rationale for trying an unsupervised
approach. We then describe the resources used
for the project, the underlying mechanism for
unsupervised learning and present some of the
primary results. The paper then suggests future
directions of work in this area.

1 Introduction

Part-of-Speech (POS) tagging is the process of
assigning each word of a text with an appropriate
parts of speech tag. The significance of part-of-
speech (also known as POS, word classes,
morphological classes, or lexical tags) for
language processing is the large amount of
information they give about a word and its
neighbours. POS tags often signify the
morphological, phonological and contextual
properties of a word, and also provide
information about neighbour words. POS tagging
can be used in Text to Speech applications,
information retrieval and extraction, shallow
parsing, linguistic research for corpora and also
as an intermediate step for higher level NLP
tasks such as parsing, semantics, translation, and
many more. POS tagging, thus, is a necessary
application for advanced NLP applications in any
language.
Bangla is one of the top ten most widely spoken
languages in the world, with more than 200
million native speakers all around the globe.

Along with languages like Hindi and Telugu, the
grammar and morphological rules for Bangla is
derived from Sanskrit, an ancient language
which was the primary language of written
discourse in south-east Asia up until the
beginning of the 20th century. In addition, a lot of
words in Bangla have been absorbed from other
foreign languages, and the original Bangla words
have passed out of common usage. Despite the
long tradition and the wide number of people
who use Bangla as their first language, there has
still not been significant research in the area of
natural language processing for Bangla.
We start this paper by giving an overview of the
different approaches to POS tagging, and
describe what has been done so far for Bangla.
We then compare the previous approach to what
we propose to do in this study. Then we describe
our POS tagset and the corpus used. Next we
describe the toolkit we decided to use for the
purpose of our experiments, and explain in detail
the algorithm that this toolkit is supposed to
execute on the dataset. Finally we conclude with
the results of our study and suggest what could
be possible future steps for further work on this
problem.

2 Literature Review

POS tagging can be seen as a learning task, and
hence the approaches to the task can be divided
into two broad categories – supervised and
unsupervised learning. Within each of these
branches, there are further sub-divisions based
on the finer details of how they approach the
problem. The following figure gives an

mailto:hammada@cs.ubc.ca

overview of the different POS tagging models,
which is then followed by short descriptions of
how each model works.

2.1 Supervised Models

The supervised approach to POS tagging
requires human knowledge of the domain, often
in the form of a corpus that has been hand-
annotated by human experts. This is referred to
as the training corpus. This corpus is used to
learn information about the tagset, word-tag
frequencies, rules etc. The performance of
supervised approaches depends on the size and
annotation quality of the training corpus.
In case of the rule-based approach, the tagger
tries to assign tags to each word based on a set of
hand-crafted rules. These rules could specify, for
instance, that a word following a determiner and
an adjective must be a noun. This approach
requires that the set of rules be properly written
and checked by human experts. This makes
design of the rule-based taggers time-consuming
and expensive. The stochastic approach uses a
training corpus to pick the most probable tag
given a word. These stochastic methods could be
based on simple N-gram based methods, or on
the First or Second order Hidden Markov
Models. Finally, the transformation based
approach combines the rule-based and stochastic
approach. It picks the most likely tag given a
word based on the training corpus. Then it
applies a set of rules to see whether the tag
should be changed to something else. This can be
thought of as adding progressively finer details at
each run of the rule-application steps, and the
process halts when there is insufficient
improvement between two consecutive
iterations. It saves any new rules it has learnt in
the process for future use. One example of an
effective tagger in this category is the Brill
tagger.

While the supervised approach has been
implemented for English and several other
languages with good results, it suffers from the
drawback that it needs a human-annotated corpus
or set of rules. For a language like Bangla, where
linguistic research is still at an early stage, such
training corpora or set of rules are not easily
available. This then severely limits the
applications of supervised training for languages
like these.

2.2 Unsupervised Models

The unsupervised POS tagging models do not
require a pre-annotated corpus. Instead, they use
advanced computational techniques like the
Baum-Welch algorithm to automatically learn
the transformation rules. Based on this
information, they can either generate the Markov
model required by stochastic taggers or induce
the contextual rules needed by the rule-based or
transformation-based systems. Later in this paper
we will see more details on how the Baum-
Welch algorithm operates on a given dataset.

3 Previous work

In this section we will discuss some of the
previous work that has been done regarding POS
tagging for Bangla. One early study on POS
tagging for Bangla has been reported by
Chowdhury et al (2004) and Seddiqui et al
(2003). Chowdhury et al (2004) implemented a
rule-based tagger, which requires writing
laboriously hand-crafted rules by human experts.
However, they report no performance analysis of
their work. No review or comparison of
established work in Bangla is offered in that
paper; they only propose a rule-based technique.
Further, they use a tagset consisting of only 9
tags. Such a tagger would have very limited
applicability in advanced NLP applications.
More recently, work has been done by Hasan et
al (2006) on developing a supervised POS tagger
for Bangla. While the lack of a large hand-tagged
corpus makes this method less effective, the
authors were aiming to conduct a study that
compares the performance of a supervised tagger
for English and Bangla, using training corpora of
the same size. They use a 5000 word corpus and
a tagset of 41 tags. The results obtained are
satisfactory, in the sense that the accuracy is
comparable to that for similar-sized corpus for
English. The authors thus claim that with a large
enough corpora for Bangla, the performance of

their tagger can be similar to that for English. In
addition, the authors point out that the rule-based
approach seems to perform much better for
Bangla than the stochastic approach, which is the
opposite of what has been observed for English.
In Hasan et al (2007), the authors set out to
compare three South Asian languages – Bangla,
Hindi and Telugu - all of which are derived from
Sanskrit. For Bangla, this study uses a corpus of
25426 tokens and 26 tags. The accuracy figures
improve from that in the previous study, but are
still not significant enough. Further, it is noticed
that for all the three languages, the rule-based
tagger performs better than the stochastic tagger.
The authors hypothesize that this could be
because these languages are derived from
Sanskrit, which is a very rule-driven language,
and mention that this aspect of the problem
deserves some more research.

4 Methodology

As mentioned above, even with a nearly 25000
token corpus the results do not seem very
promising. Further, as has been done for most
other languages, we believe that the next phase
in POS tagging research for Bangla should be an
attempt at the unsupervised approach. This
would eliminate the need to develop a large
hand-annotated corpus – something that is not
easily available for Bangla and is time-
consuming and laborious to prepare. With this in
mind, we collected the corpus and the tagset
from university labs currently working on
linguistic research in Bangla. Our aim was to
perform Baum-Welch training on this corpus, in
order to learn the underlying HMM parameters.
This HMM could then be used to perform
tagging on a corpus and tested to obtain the
accuracy figures. So the entire study could be
broken down to the following phases: 1) collect
corpus and tagset, 2) search for implementation
of Baum-Welch algorithm, 3) perform training
and 4) test against gold standard for accuracy.
We now describe the resources collected for this
project, and explain how the Baum-Welch
algorithm operates.

5 Tagset

We used a 54-tag tagset developed for the
Bangla language specifically. This tagset extends
most standard tagsets, to include finer
distinctions specific to the Bangla language –
such as suffixes that denote possessive or

accusative markers. The tagset, along with
descriptions if individual tags, is provided in the
appendix.

6 Corpora

We used corpora currently being developed by
the Center for Research on Bangla Language
Processing. This corpus is collected from a
leading Bangladeshi newspaper called Prothom-
Alo, and is in UTF-8 format. A small subset of
this corpus has also been tagged by human
experts, and was made available to us from the
same source. The corpus totals to about 50000
tokens, and the tagged subset consists of 18110
tokens and 4760 word types. One portion of this
tagged corpus was cleaned and set aside as the
training corpus and the rest was to be used as the
test set.

7 The Baum-Welch algorithm

In this section we describe the operation of the
Baum-Welch algorithm. In particular, we
describe what the inputs should be, the steps
executed and the expected output once training
has been completed.
The main idea of the Baum-Welch algorithm is
to find the Hidden Markov Model given a
sequence of observations. As input, we need it to
provide all the possible states, and a sequence of
observations. Specific to our POS tagging task,
the states are the possible tags, and the observed
symbols are the word types in the corpus. A
sequence of observations then is a sentence in
our corpus.
The HMM is supposed to specify two matrices:
the transition probability matrix T and the
emission probability matrix E. Any entry tij in the
transition matrix specifies the probability of
moving from state i to state j. For our example,
this matrix will specify the probability of one
word having a tag i and the next word in
sequence having the state j. An entry eij in the
emission matrix denotes the probability of
observing the symbol j given that we are at state
i. This is analogous to the probability of
observing one of the possible word types, given
that we know the tag to be assigned for the word
or observation. Once these two matrices are
known for all possible state transitions and all
possible emissions, we can take any observation
sequence and predict what the underlying states
are. In other words, given a sentence we can tag
each word in the sentence. The probability that a

sequence starts with a state i is denoted by the
initial state distribution, which is often denoted
by π.
Since this is an unsupervised learning algorithm,
no human annotation of states is provided with
the observation. For our problem in particular,
the training algorithm is simply provided with a
list of all the possible states, and the sentences in
the training corpus. As output, the algorithm is
supposed to generate the transition and emission
matrices. We now describe step by step how this
is done.
Initialization: To begin with, T, E and π are
initialized to random values. The algorithm will
later update these values until some convergence
criterion has been reached. Possible criteria for
convergence can be having finished a specific
number of iterations, or more commonly
insufficient improvement between two
consecutive iterations.
Forward step: The Forward algorithm is then
executed. For this phase, we define a quantity
αi(t) = p(O1 = o1, , ,Ot = ot, Qt = i| λ). This denotes
the probability of observing the sequence of
symbols O1…Ot, and then ending up in state I,
given the HMM denoted by λ. A recursive
relation for αi(t) can be defined as shown below:

Base case: αi(t) = πibi(O1)

Recursive relation: αj(t+1) = bj(Ot+1) Σ1-n αi(t) Tij

In the above relation, bi(O1) denotes the
probability of observing symbol O1 at state i.
Similarly bj(Ot+1) denotes the probability of
observing symbol Ot+1 at state j. In general, the
recurrence denotes that the probability of
observing t+1 symbols and ending in state j is
given by: the probability of observing t symbols
and ending in state i, transitioning from state i to
state j, and at state j observing the symbol Ot+1.
As can be seen, this recurrence relation satisfies
the probability of optimal substructure – optimal
path to a sequence must be generated through
optimal path to a subsequence. Thus it can be
solved using a straightforward dynamic
programming approach.

Backward step: In this step the Backward
algorithm is executed. This time we aim to
calculate βi(t), which denotes the probability of
the ending partial sequence ot+1, , , oT given that
we started at state i, at time t. Once again we can
derive a recurrence relation for this quantity as
follows:

Base case: βi(T) =1

Recursive relation: βi(t) = Σ1-n βj(t+1)Tij bj(Ot+1)

Once again, we see that the backward probability
also displays optimal substructure, and can thus
be computed by dynamic programming. Once we
know α and β, we can use these to calculate the
following quantities:

Once we have these two variables, they can be
used to update the original HMM parameters as
follows:

These forward and backward steps are repeated
over and over until the convergence condition
has been satisfied, at which point we have the
best HMM that can be learned from the given
observation sequence. This HMM can then be
used on other observation sequences, for which it
will generate the sequence of hidden states that
can then be tested for accuracy – either by
automated comparison or by a human expert.

8 Toolkits

8.1 C++ HMM toolkit

Since our basic idea was to implement Baum-
Welch training in order to learn the HMM

parameters by itself, we started looking for an
existing implementation of this algorithm. After
searching for and trying out a few, we decided to
use the HMM toolkit developed by Dekang Lin,
at the University of Alberta. This toolkit is
developed in C++, and contains three major
implementations: 1) the vit program which
implements the Viterbi algorithm to generate the
most probable sequence of tags given a sentence,
2) the genseq program which generates an
observation sequence given a HMM model and
3) the trainhmm program which learns the HMM
parameters given a set of observations and an
initial estimate for the HMM. Along with the
toolkit, some dataset was also provided to train a
POS tagger for the English language. An online
tutorial is also available for the toolkit, which
explains the format the input files must be in and
how to use the different features of the toolkit.

In general, the Baum-Welch algorithm is not
dependent on the accuracy of the initial
probability distribution and matrices provided.
With a less accurate estimate, training would
simply take more number of iterations before
converging. However, as mentioned by the
author of the package and easily testable from
the dataset provided, the performance of this
toolkit depends on the initial estimate. In
particular, if the emission probability is assumed
to be equal for all the symbols given any tag,
then Baum-Welch is not able to learn the correct
HMM. For English, the author obtains a better
estimate by using the lexicon for Collin’s parser,
and is then able to learn the correct HMM. These
estimates, and the training and test data, are
provided with the toolkit for testing purposes.
Since there is no existing lexicon for Bangla, our
first experiment was conducted with the most
naïve initial estimate possible – assuming all
transitions and all emissions are equally likely.
Just like in the case for English, Baum-Welch
was unable to learn the correct HMM based on
these parameters. As a second approach, we then
tried to build a small lexicon from the training
corpus and get a better estimate for the emission
probabilities based on this lexicon. However
even with these revised estimates, Baum-Welch
was still unable to learn the model properly. If
we try generating a sequence of tags using the
HMM provided as output, all the words in the
sentences are labelled with NN, which is the
high-level tag for nouns. So at this point, no
further improvement seemed possible using this
toolkit. Thus we moved on to try training with
the Natural Language Toolkit (NLTK).

8.2 Natural Language Toolkit

As pointed out by a fellow student, NLTK also
provides unsupervised training under the
HiddenMarkovModelTrainer module. To use this
trainer, one needs to specify the possible states
and symbols, and then provide a set of
observation sequences on which training can be
done. An initial HMM can also be provided but
is optional. After taking a look at the sample
codes in the documentation, we then developed a
Python module to perform unsupervised training
on the training corpus, with the tagset and list of
word types provided as inputs. However, even
this implementation was not able to learn a
correct model. Training ran for only three
iterations before converging, and using the
output model to generate tags gave the same
result as before – all the words were tagged NN.
Since this module does not need an initial
estimate and none was provided, it would seem
that this inability of learn the HMM has less to
do with the accuracy of the estimates and is more
due to some other reason relevant to the training
corpus itself. This conclusion is further
strengthened by the fact that in case of both the
toolkits, the final output is the same – all
symbols tagged as NN. However there has not
been enough time to explore possible reasons for
this.

9 Results

As mentioned in the previous section, both the
toolkits have been unable to learn a HMM good
enough to be of practical use. While in terms of
total log probability, NLTK has done better than
the other toolkit, this improvement has clearly
not resulted in better output. In terms of final
output then, the project has not been successful.
However, we believe that some directions have
been suggested for future work that could
possibly lead to better results. We will discuss
this in more details in the rest of this paper.

10 Evaluation

If the project had been successful, evaluation
would be straightforward: 1) take the tagged
corpus and produce a clean copy of it, 2) train
the tagger on one portion of this cleaned corpus,
3) apply tagger obtained on the other portion and
4) compare with hand-tagged version of corpus
to obtain accuracy figures. However, we have

not been able to complete the training phase
properly with either toolkit. Therefore, we have
not been able to move on to stages 3 and 4.
While some of the symbols in the test set are in
fact supposed to be tagged NN and would be
considered correct in an automated testing, such
an accuracy is hardly representative of the actual
state of the tagger and would not be a very useful
figure to go by.

11 Contribution

While we have not been able to reach our desired
results, there are still some lessons to take away
from the work that has been done. In particular,
since there is no existing lexicon for Bangla and
little likelihood of a high-quality one being
generated anytime soon, it would seem that there
is little point in continuing further research with
the first toolkit, which has already been shown to
be highly sensitive to the accuracy of the initial
estimate. On the other hand, while NLTK has not
performed well either, we can mention at least
two points in its favour: 1) there is no need to
provide an initial parameter and 2) even if
unsuccessful, the training gave better results that
with the same test data for the first one. Even if a
lexicon is generated and really good estimates
obtained, it is still more likely that providing
them as parameters to the NLTK trainer method
would yield better results than using them as
input for the other HMM toolkit. Further work in
this area should thus focus more on getting
NLTK training and tagging modules to work.

12 Future Work

At the very initial stage, we proposed to develop
both an unsupervised Baum-Welch and Brill
tagger for Bangla. The chief objective behind
this was to test whether the phenomenon of rule-
based taggers working better than stochastic
taggers - which was observed in previous
research - is true in this case as well. Consistency
in this aspect would provide further
corroboration to the hypothesis that as a heavily
rule-driven language, Bangla performs better
with rule-based taggers. Given time constraints,
we have not been able to complete that for this
study. However, we believe that once the
unsupervised HMM tagger has been developed,
the unsupervised Brill tagger should be the next
step, followed by comparison between the two.
As far as the developing the unsupervised tagger
is concerned, the next step should be to try the

training with different corpora to see whether
there has been any improvement. The set of
experiments that have been carried out so far
could also be tried on other toolkits, to see
whether they do any better. Even more
important, in the event that they do not, we
should check whether they give the same results,
since making the same mistake could be an
indication that the problem is independent of the
tools used, and probably specific to the dataset or
the tagset.

13 Conclusion

In this paper we have mentioned the process we
followed in order to develop a Baum-Welch
trained HMM tagger for the Bangla language.
We began with an overview of the POS tagging
problem in general, and mentioned the different
approaches to POS tagging in brief. We then
presented some of the previous work done for
POS tagging in Bangla, and outlined how our
approach is different and should need less human
knowledge in order to work. Having described
the corpus and the tagset, we then described the
Baum-Welch algorithm, along with formulae for
the variables that are calculated. Lastly, we
described the toolkits we used for the project and
how they work. The results of this work have
already been presented above, along with
suggestions on what could be done next. In the
end, the project has not been able to give
quantitative results, but we believe that some
progress has been made in the sense that we now
have a clearer idea of what resources might be
helpful for the task. Pursuing further in this
direction of work should be able to give some
initial results, depending on which the next plan
of actions can be decided on.

14 References

B. Greene and G. Rubin, Automatic
Grammatical Tagging of English, Technical
Report, Department of Linguistics, Brown
University, Providence, Rhode Island, 1971.
D. Cutting, J. Kupiec, J. Pederson and P. Sibun,
A practical Part-Of-Speech Tagger, in
proceedings of the Third Conference on Applied
Natural Language Processing. 1992.
Daniel Jurafsky and James H. Martin, Chapter 8:
Word classes and Part-Of-Speech Tagging,
Speech and Language Processing, Prentice Hall,
2000.

Eric Brill, A simple rule based part of speech
tagger, in proceedings of the Third Conference
on Applied Natural Language Processing. 1992.
Eric Brill, Automatic grammar induction and
parsing free text: A transformation based
approach, in proceedings of 31st Meeting of the
Association of Computational Linguistics, 1993.
Eric Brill, Transformation based error driven
parsing, in proceedings of the Third International
Workshop on Parsing Technologies, Tilburg,
The Netherlands, 1993.
Eric Brill, Unsupervised Learning of
Disambiguation Rules for Part-of-Speech
Tagging, in proceedings of The Natural
Language Processing Using Very Large Corpora,
Boston, MA, 1997.
Helmut Schmid, Probabilistic Part-Of-Speech
Tagging using Decision Trees, in proceedings of
The International Conference on new methods in
language processing, 1994.
K. W. Church, A stochastic parts program and
noun phrase parser for unrestricted text, in
proceeding of the Second Conference on Applied
Natural Language Processing, 1988.

L. Bahl and R. L. Mercer, Part-Of-Speech
assignment by a statistical decision algorithm,
IEEE International Symposium on Information
Theory, 1976.
Linda Van Guilder, Automated Part of Speech
Tagging: A Brief Overview, Fall 1995,
Georgetown University.
Mihai Pop, Unsupervised Part-of-Speech
Tagging, Department of Computer Science,
Johns Hopkins University, 1996.
S. J. DeRose, Grammatical Category
Disambiguation by Statistical Optimization,
Computational Linguistics, 14(1), 1988.
S. Klein and R. Simmons, A computational
approach to grammatical coding of English
words, JACM 10, 1963
The Summer Institute for Linguistics (SIL)
Ethnologue Survey 1999.
Yair Halevi, Part of Speech Tagging, Seminar in
Natural Language Processing and Computational
Linguistics, School of Computer Science, Tel
Aviv University, Israel, April 2006.
Z. Harris, String Analysis of Language Structure,
Mouton and Co., The Hague, 1962.

Appendix A

Source codes

A1 Code for lexicon generation

corpus = open('bangla-corpus-
cleaned.txt','r')
lexicon = open('bangla-
lexicon.txt','w')

tokencount=0
typecount=0

wordmap = {}

for line in corpus:
 tokens = line.split()
 for each in tokens:
 if wordmap.has_key(each):
wordmap[each]+=1
 else: wordmap[each]=1

for entry in wordmap:
 tokencount+=wordmap[entry]
 lexicon.write(entry)
 lexicon.write("\n")

print len(wordmap)
print tokencount

corpus.close()
lexicon.close()

A2 Code for training in NLTK

import nltk
from nltk import tokenize

def loadUntagged(fileName):

 text = open(fileName).read()
 sentences =
list(tokenize.blankline(text))
 retSentences = []

 for sentence in sentences:
 newSentence = []
 sentence =
list(tokenize.whitespace(sentence
))
 #print sentence
 for token in sentence:
 newSentence.append
(token)

 retSentences.append(newSe
ntence)
 #retSentences +=
[newSentence]
 return list(retSentences)

def loadCorpus(corpus):

 text = open(corpus).read()
 sentences =
list(tokenize.blankline(text))
 newSentences = []

 for sentence in sentences:
 #newSentence = []
 tokens =
list(tokenize.whitespace(sentence
))
 '''
 for token in tokens:
 #print token
 #loc =
token.rfind('/')
 #if loc > 0: # can't
allow "/TAG" tuples
 newSentence.append(to
ken)
 newSentences +=
[newSentence]'''
 newSentences.append(token
s)
 return newSentences

def doTag(model, sentences):

 taggedSentences = []
 for sentence in sentences:
 #print sentence
 pts =
model.best_path(sentence)
 #pts =
model.best_path(['foo', 'bar'])
 taggedSentence = []
 for token, tag in
zip(sentence, pts):
 taggedSentence.append
((token[0], tag))
 taggedSentences.append(ta
ggedSentence)
 return taggedSentences

#read all tags from tagset file
tagfile = open('bangla-
tagset.txt','r')
tags = [0]*54

i=0

for t in tagfile:
 tags[i] = t
 i+=1
tagfile.close()
print 'done reading tags'
#done reading all tags

#read all symbols/word types from
lexicon
lexfile = open('bangla-
lexicon.txt','r')
types = []

i=0
for word in lexfile:
 #types[i] = word
 #i+=1
 types += [word]
lexfile.close()
print types[0]
print 'done reading symbols'
#done reading all word types

#read all the training sentences
from corpus
sents = loadCorpus('bangla-
corpus-cleaned.txt')
print sents[0][0]
print 'done reading corpus'
#done reading all sentences into
a list

#begin training on sentences
#print tags
print len(types)
types = []
for s in sents:
 for w in s:
 #if not w in types:
 types += [w]
 #print w + " was not
found"
trainer =
nltk.tag.HiddenMarkovModelTrainer
(tags, types)
#trainer =
nltk.tag.HiddenMarkovModelTrainer
(['foo'], ['foo'])
print 'done trainer generation'
print(len(sents))
tagger =
trainer.train_unsupervised([sents
])
print 'done training'

#test tagger trained above

untagged =
loadUntagged('test.txt')
print 'Tagging...'
taggedOutput = doTag(tagger,
untagged)

taggedFile =
open('Tagged_bangla_hmm.txt',
'w')
for sentence in taggedOutput:
 for (word, tag) in sentence:
 taggedFile.write(word +
'/' + tag + ' ')
 taggedFile.write('\n\n')
taggedFile.close()
print 'Finished Tagging'

A3 Code to count number of word types and
tokens

file = open('bangla-corpus-
cleaned.txt','r')

tokencount=0
typecount=0

wordmap = {}

for line in file:
 tokens = line.split()
 for each in tokens:
 if wordmap.has_key(each):
wordmap[each]+=1
 else: wordmap[each]=1

for entry in wordmap:
 tokencount+=wordmap[entry]

print len(wordmap)
print tokencount

A4 Code to clean a tagged corpus

file = open('D:\\Fall
2008\\CS503\\project\\Tagged-
Corpus-and-tag-set\\bangla-
corpus-tagged.txt', 'r')
out = open('bangla-corpus-
cleaned.txt', 'w')

for line in file:
 tokens = line.split()
 for item in tokens:
 word = item.split("/")
 out.write(word[0])
 out.write(" ")

 out.write("\n")

A5 Code to learn emission probabilities

#include<cstdio>
#include<cstring>
using namespace std;

int main()

{
 FILE *fp1,*fp2,*fp3;
 freopen("dummy.txt","w",stdou
t);
 char
tag1[100],tag2[100],word[500];
 int f;
 fp1 = fopen("toy-
lexicon.txt","r");
 fp3 = fopen("emit.txt","w");
 while(fscanf(fp1,"%s
%d",tag1,&f)!=EOF)
 {
 //printf("%s\n",tag1);
 fp2 = fopen("test.txt","r");
 while(fscanf(fp2,"%s
%s",tag2,word)!=EOF)
 {
 printf("%s
%s\n",tag2,word);
 if (strcmp(tag1,tag2)==0)
 {
 fprintf(fp3,"%s %s
%lf\n",tag2,word,1.0/f);
 }
 }
 fclose(fp2);
 }
 fclose(fp1);
 fclose(fp3);
 return 0;
}

Appendix B

The tagged corpus is not available online, but
can be provided by this author if needed for
research purposes.
The link to the untagged corpus is given below:
http://faculty.bracu.ac.bd/~fahim/CRBLP/Corpus
AnalysisIntput.zip

