
Evaluating Machine Learning Algorithms and the ClueWordSummarizer
for Email Thread Summarization

Jan Ulrich
Department of Computer Science
University of British Columbia

2366 Main Mall
Vancouver, BC V6P 5H9
ulrichj@cs.ubc.ca

Abstract

Machine learning summarizers and the
ClueWordSummarizer are two different
approaches to summarizing email threads.
These approaches are compared to show
which is a more viable solution under
different conditions. The current results
show that both approaches perform com-
parably. With some possible improvement
to features, machine learning has the po-
tential to create more accurate summaries.
Future directions for email thread summa-
rization are discussed.

1 Introduction

Email has become a part of most people’s everyday
lives. With its widespread use, using it as effec-
tively as possible has become important. Summa-
rization provides one aspect in reducing the informa-
tion overload. A summary of an email thread limits
itself to the salient parts of the email conversation.
Email threads are of particular interest to summa-
rization because they provide lots of structural re-
dundancy due to their conversational nature.

Although summaries are useful, they still cannot
replace the original emails in all cases. This is be-
cause the algorithms don’t always perform as human
summarizers would. Also, usually the original mes-
sage contains additional information which is lost in
the summary. Therefore the summaries are used as
a tool in certain situations, not to replace reading ac-
tual emails. Some of these situations include get-
ting an overview of what has happened when your

mailbox is overwhelmingly full. Summaries also
are a type of memory. A written summary can help
you remember what you had been discussing previ-
ously. This is especially important in the business
world, where summaries form a corporate memory.
The content of previous business decisions can be
archived in email thread summaries. Summaries are
also useful in investigations. They provide an easy
way of indexing, by allowing the reader to get an
overview of the conversation and then providing a
link to the original emails. They can also serve as
a tool to highlight the important parts of a conver-
sation. When a new email arrives in the mailbox, a
summary of the conversation can be generated and
any summary sentence highlighted in the incoming
email. It can also serve as a kind of writing checker,
by summarizing an outgoing message that is part
of a thread, and then showing you which sentences
would not be included in a summary, allows you to
remove some to make the message more concise.

Summarization can be divided into two different
types: extractive and abstractive. In extractive sum-
marization the important sentences are copied from
the original document to form the summary. This
means that nothing is changed and a summary is
a strict subset of the original document. In an ab-
stractive summary, the document is rewritten in a
more concise form. In an extractive summary since
the sentences are just picked from the original doc-
ument, they may not flow and the coherence will be
very low. The sentences can be rearranged so the
document make more sense. Although an abstrac-
tive summary seems like a better solution, the prob-
lem is much more complex and therefore extrac-

tive summarization has been the standard in multi-
document summarization.

2 Work on Email Thread Summarization

There has been much work done on email thread
summarization. Most of the work uses techniques
learned in multi-document summarization and ap-
plies them to email summarization by including
email specific elements. The Clue Word Sum-
marizer (CWS)(Carenini et al., 2007) takes advan-
tage of the email thread structure when creating the
emails. Other attempts have used a machine learn-
ing approach to summarization. Here a classifier is
trained to do the sentence extraction using a variety
of features (Rambow et al., 2004). These are two
very different approaches to the same email summa-
rization problem. The machine learning approach
requires a corpus for the training. Such a corpus
has become available and thus machine learning is
now a feasible solution to the email thread summa-
rization problem. In this paper I will perform an
in depth comparison between these two techniques.
For future development it is worth knowing which
one performs better. There is even the possibility of
combining the two techniques since clue score could
be a feature in the machine learning technique.

CWS was developed by Xiaodong Zhou at the
University of British Columbia (Carenini et al.,
2007). For this research the full system was avail-
able for evaluation. The machine learning sum-
marization system built by (Rambow et al., 2004)
serves as a good model for machine learning sum-
marization. The first step was to build summarizer
modeled after this one and then compare the perfor-
mances.

3 ClueWordSummarizer

CWS requires no previous training data or knowl-
edge about the email topic. It uses the conversation
structure to provide an accurate summary. Therefore
the first step is to create the email conversation struc-
ture. To do this, a quotation graph is built. This is
done by taking advantage of the fact that most email
clients will paste the previous email into the current
one as a quote. Therefore by looking at the quote
structure the email hierarchy can be created.

3.1 Hidden Emails

The inclusion of quoted previous emails allows for
the recovery of hidden emails. These are emails that
the user has deleted from their mailbox, but that can
still be recovered because they are quoted in a fol-
lowing email. These emails are extracted and added
to the hierarchy as if they were still in the mailbox.

3.2 Fragment Quotation Graph

The fragment quotation graph is a refined version of
the message quotation graph. In this graph the nodes
are more detailed since they are fragments which are
parts of an email message. A fragment is derived
from the fact that users sometimes reply to specific
parts of the previous email. They do this by writ-
ing their reply directly beneath different parts of the
quoted email. The algorithm then divides the orig-
inal message into different fragments depending on
the position of the reply of the user. Analysis of the
email thread at the fragment level allows for a more
accurate conversation structure.

3.3 Clue Word

The basis for CWS are clue words. Clue words are
words that are important to the conversation. People
tend to use the same key words from the original
email in their replies. Therefore a clue word is a
word that is repeated in the child and parent node in
the fragment quotation graph (excluding stopwords).
These clue words should be included in a summary.

3.4 The Overall System

CWS first computes the fragment quotation graph
including the hidden emails. From this graph the
clue words can be identified. Then each sentence
is given a clue score based on the number of clue
words it contains. This score is then used to select
which sentences to extract for the summary.

4 A Machine Learning Summarizer

Another approach has been to use machine learn-
ing to summarize email threads. (Rambow et al.,
2004) have used email specific features to classify
sentences for extraction based summarization. They
combined successfully used features from text sum-
marization with email specific features. Then using
a corpus, a collection of training data, they trained a

rule based binary classifier to determine which sen-
tences would be included in the summary. Their
work showed that using email specific features was
indeed useful for summarization.

5 Overview

In this paper I will compare CWS to a machine
learning summarizer. For future research it will be
useful to know which one performs better and which
has the most potential. The machine learning ap-
proach requires a corpus for training, so this will
also tell if spending time collecting a corpus is a jus-
tified endeavor. The rest of the paper is laid out as
follows: the machine learning email thread summa-
rization system is described in section 6. In section
7 the corpus and annotations that were used are de-
scribed in detail. Section 8 explains all the different
features that were used and section 9 describes the
different machine learning classifiers. Then section
10 describes how all these pieces fit together. Sec-
tion 11 outlines the evaluation that was performed
and section 12 & 13 provide the results. Section 14
talks about the implications of these results and sec-
tion 15 goes over some of the challenges in working
on this project. Finally, section 16 introduces future
work on this project. Section 17 contains a pointer
to the Enron corpus and some of the source code for
the project

6 Machine Learning Email Thread
Summarization

A machine learning summarizer uses a classifier that
creates a sentence importance score for each sen-
tence. This score is then used to decide which sen-
tences to include in the summary. Ten features were
generated from the email corpus that was used. The
summarizer used two software packages in its im-
plementation. MEAD (Radev et al., 2004) was used
as the summarization framework. WEKA (Witten
et al., 1999) was used as the implementation of ma-
chine learning classification algorithms. These two
packages were combined to create several different
machine learning summarizers that were compared
to CWS.

6.1 MEAD

MEAD is a open source multi-document summa-
rization framework. It works in three components.
First features are generated, then a classifier scores
sentences, and finally a reranker produces the final
summary. The system is build so that each one of
these components can be changed independently for
development and analysis.

6.2 WEKA

WEKA is a collection of machine learning algo-
rithms developed by the University of Waikato. It
is implemented in Java and can be used to train and
test a variety of classification algorithms. It is pro-
vided as open source software and is well-suited for
comparing different machine-learning techniques.

7 The Corpus

In order to do machine learning summarization, a
corpus of email threads is needed for training the
classifiers. Email data can be hard to obtain for re-
search purposes because of privacy concerns. Peo-
ple are not inclined to donate their private emails,
even for research. However the email research com-
munity has been blessed with an unaltered, real
email corpus. This is due to the Federal Energy
Regulatory Commission releasing the Enron corpo-
ration’s emails to the public during the investigation
into accounting fraud. This corpus contains a huge
number of messages sent or received by Enron em-
ployees. From these emails, 39 email threads were
selected from the 10 largest email inbox folders such
that each thread contained at least four emails.

These email conversations were annotated using
manual sentence extraction. The 50 annotators that
were recruited for the study were undergraduates
and graduate students from the University of British
Columbia. Their majors covered various disciplines
including Arts, Law, Science, and Engineering. The
variety of backgrounds for the summarizers provides
for less biased summaries.

Each annotator had to summarize four email
threads by selecting which sentences to include.
Each thread was therefore annotated by five anno-
tators. The annotators were asked to pick 30% of
the original sentences such that the summary con-
tained the overall information in the email and could

be understood without referencing the original email
thread. Sentences were labeled as eitheressentialor
optional, where an essential sentence is vital to the
understanding of the summary and an optional sen-
tence elaborates on the meaning of the conversation
but is only included if there is space in the summary.

7.1 GSValue

A GSValue score was computed for each sentence
in the corpus. This score represents the annotators’
combined feeling about the importance of the sen-
tence. Since each sentence was either selected as
essentialor optional or not selected at all by each
annotator, a score is calculated taking into account
each annotator’s remarks. The score weighs a vote
for essentialas three points and a vote foroptional
as one point. Since there are five annotators, the
GSValue score ranges from zero to fifteen.

GSV alue = 3 ∗ #ESS + #OPT (1)

8 Features

The features are the information from each email
thread that is actually used to select which sentences
are included in the summary. Choosing features is
like choosing what aspects of sentences are impor-
tant in summaries. The features that have been in-
cluded are those that have been shown to work in
multi-document summarization as well as some that
are email specific. In the work by (Rambow et al.,
2004) including email specific features significantly
improved performance. 10 features were used in the
study and they are listed below. These features are
calculated for each sentence and are therefore in re-
lation to that sentence.

• Thread Line Number- The position of the sen-
tence in the thread.

• Relative Position in Thread- The position in
the thread as a percentage (Thread Line Num-
ber /Number of sentences in the thread).

• Centroid Similarity- The cosine similarity of
the sentence tf*idf vector to the thread average
tf*idf vector. The idf component is computed
for the whole corpus.

• Local Centroid Similarity- The same as the
centroid similarity except that the inverse doc-
ument frequencies are computed for the current
thread instead of the whole corpus.

• Length- The number of words in the sentence.

• TF*IDF Sum- The sum of the sentence’s tf*idf
values.

• TF*IDF Average - The average of the sen-
tence’s tf*idf values.

• Is Question- A boolean stating whether the
sentence is a question (based on punctuation).

• Fragment Number- The temporal position of
the current fragment.

• Relative Position in Fragment- The temporal
position of the current fragment as a percent-
age (Fragment Number / Total number of frag-
ments).

9 Classifiers

The classifier is the part of the MEAD system which
scores each of the different sentences. The features
of each sentence are fed into the classifier to create
an importance score. The reranker can then adjust
the score to fit its own needs, which in this system is
to minimize redundancy. The class for classification
is GSValue. Since this value can range from zero to
fifteen, depending on sentence importance, regres-
sion classifiers are chosen. The three classifiers that
are compared in this paper are SMOreg, Simple Lin-
ear Regression, and Bagging. They are implemented
in the WEKA software package.

SMOreg is an optimization algorithm for training
support vector regression using a polynomial ker-
nel. The algorithm implements sequential minimal
optimization using extreme chunking by converting
nominal attributes into binary ones and optimizing
the target function for them.

Simple Linear Regression builds a regression
model by repeatedly selecting the attribute provid-
ing the lowest squared error.

Bagging was done on decision tree classifiers.
Bagging is a bootstrapping algorithm which aver-
ages the output of several decision trees trained on

random subsets of the training data. It improves sta-
bility and accuracy. The decision tree algorithm that
was used was REPTree which builds a regression
tree using information variance reduction.

10 The Combined Summarization System

The combined summarization system combines the
MEAD framework with the WEKA classifiers using
the 10 mentioned features. First the email conversa-
tions are preprocessed to determine the conversation
structure. Hidden emails are identified and extracted
from the quotation. The messages are then divided
into fragments as described in CWS. When dividing
messages into fragments only the text is kept. Any
headers or attachments are removed. These frag-
ments are then inserted into the MEAD framework
so that each email thread is one cluster. A cluster
summary will then be a thread summary. The fea-
tures listed above are calculated for each sentence.
Each sentence is also assigned a class which is the
GSValue derived from the annotators’ rating. Now
these features with class values can be exported to
WEKA for training a classifier. An .arff file is cre-
ated and used to train the corresponding classifier.
This classifier is then used in the MEAD summa-
rization system. A new test thread is loaded into
MEAD and the features are computed. Now the
classifier is run on the list of feature vectors and the
sentences are given a score. This score is used by the
reranker to generate a final summary with reduced
redundancy. This is how an email thread summary
is generated using a machine learning summarizer
which combines MEAD and WEKA.

11 Evaluation

For the evaluation the generated summaries from
the different summarizers were compared to the hu-
man generated gold standard. The machine learn-
ing summarizers were tested using a 10-fold cross-
validation. Thus the 39 email threads were divided
into ten tests where 90% of the data was used for
training and 10% of the data was used for testing.
This meant that there were 10 randomly generated
test sets of four threads. This was done for all three
different classification algorithms. The 40 different
resulting summaries were then compared to the cor-
responding gold standard. The gold standard sum-

Figure 1: ROUGE-2 comparison between the differ-
ent machine learning algorithms and the ClueWord-
Summarizer.

maries were created from the GSValues by using
a threshold level of 8. This means that any sen-
tence with a GSValue greater than 8 was included
in the summary. The summaries were compared us-
ing ROUGE-2 (Lin and Hovy, 2003). This is a bi-
gram based comparison which has been shown to
correspond well with human evaluations and is be-
ing used in the Document Understanding Confer-
ence. The results can be seen in Figure 1. Com-
paring the actual summaries, instead of the sentence
indices, is a good test since this can account for sim-
ilarities between the sentences.

The classifiers can also be evaluated at a lower
level. Since we are performing cross-validation,
even the GSValues of the test set sentences are avail-
able. Thus we can see how accurate the classifiers
were in their results. Figure 2 shows the mean ab-
solute error of the algorithm’s classification. Since
GSValue is a continuous value, this error shows us
how far off the classifier was on average.

12 Results

The machine learning summarizer using bagging
for classification received the highest ROUGE-2 re-
call score. However there was no significant dif-
ference among any of the tested methods. The
ROUGE-2 recall scores are averaged over all 10
cross-validations. The error bars represent the range

Figure 2: The error in the sentence importance pre-
diction of the different classifiers.

of values that fall into the 95% confidence interval.

These results have some integrity problems. Af-
ter computing the results it was noticed that the frag-
ments were not strictly in chronological order in the
MEAD clusters. This means that features that rely
on the ordering of the fragments can have the wrong
values. These faulty features should not have a detri-
mental effect on the results since the algorithms use
the features that are most useful. However the re-
sults are surely not as good as they could be for the
machine learning summarizers. The faulty features
had no effect on CWS since no features were used
for this approach. This should be promising for the
machine learning summarizers since by correcting
these features the summarizers’ performance would
improve.

In figure 2 it can be seen that the different clas-
sifiers performed differently for the average classifi-
cation accuracy. However their ROUGE-2 summary
results are very similar. This means that the sum-
mary score is not very sensitive to small amounts of
error in the classification. In fact the classifier with
the smallest amount of error, SMOreg, performed
worst in the ROUGE-2 recall (although not signif-
icantly). Different evaluations are needed validate
the ROUGE-2 scores.

13 Summarizer Results

Summarizer ROUGE-2 Recall 95% Conf.
Bagging 0.687 0.617 - 0.755
Cluescore 0.677 0.624 - 0.727
SimLinReg 0.686 0.623 - 0.742
SMOReg 0.659 0.586 - 0.730

14 Discussion

The results bode well for CWS, since all systems
perform similarly well, but CWS does not need to
be trained and therefore does not need a corpus.

Neither of these approaches have been tested for
robustness to different kinds of emails. They were
designed to summarize email threads, so of course
they would not work for single emails. However
they were trained and tested on the Enron corpus,
and it is not known how well they perform on other
corpora. There is surely a difference between a
strictly personal email inbox and a business email
inbox. The machine learning summarizers could
be trained on a different corpus if it was available.
However the features might not work as well for
such a corpus as different aspects of an email conver-
sation could be important in strictly personal emails.
CWS would not have to be changed at all, but in case
it doesn’t work as well, there is not much that can be
done.

This project was successful in creating a first im-
pression of the comparison between CWS and the
machine learning summarizers. However, the fact
that some of the features were faulty is a major prob-
lem for the validity of results. Optimistically one can
say that the machine learning algorithms can only
get better by fixing the problem, but this is not nec-
essarily true, and one can only be sure when the re-
sults are available.

This project did however build a framework for
machine learning summarization which can easily
be modified and extended. The hard work was ac-
complished which combined MEAD and WEKA so
that additional features and classifiers only need to
be plugged into the system. It is also possible to
change the evaluation of the summaries. Therefore
the real contribution of this project was to build a
framework which fosters research.

15 Challenges

There have been a number of challenges in writing
this paper that have turned into good learning expe-
riences. Having to create each one of the features by
hand proved to be more of a challenge than first ex-
pected. Having read many papers on summarization
and information retrieval all the traditional features
were very familiar. Therefore conceptually the prob-
lem of generating the features seemed very simple.
For example when actually having generate tf*idf
vectors, you realize just how many numbers you are
dealing with. I gained perspective by actually gen-
erating all these features that I have read so many
papers about.

I also saw that although the overall concepts are
agreed upon, the details can be very different in dif-
ferent applications. For example term frequency, is
a very basic concept in information retrieval. It is
just the number of times a term appears in a given
document which is normalized by length because
documents vary in size. Since I am dealing with
email sentences, the tf vector was just the number
of occurrences of each word divided by the num-
ber of words. However in the MEAD implementa-
tion, when a tf vector is used for creating a centroid,
it is calculated to be the average number of occur-
rences of each term in a sentence. That means all
the sentences in the document have the same tf vec-
tor. The documentation states this works for build-
ing a centroid, but it did not work for my features, so
sometimes implementations are optimized and are
no longer general.

I also had to learn PERL which is a powerful, high
level programming language in which MEAD is de-
veloped. Whenever you learn a new programming
language, it is a lot of work at first and only slowly
are you able to write programs. However by the end
of this project I am a lot more comfortable in writ-
ing PERL and see how useful it can be to do tasks
without having to write too much code.

I also had to combine two software packages that
were written in different languages: PERL and Java.
Combing different interfaces is always challenging,
but the result is very powerful since both software
packages perform their functions very well. By us-
ing software that has been widely used and is under-
stood by many other researchers, my work becomes

much more valid. I also learned to use other people’s
code by trying to understand their documentation,
and looking through their source code.

In this project I was able to take the high level
plan and implement it by combining two different
software packages, as well as learn a new program-
ming language.

16 Future Work

The first thing that has to be fixed is the ordering
problem of the fragments for the machine-learning
summarizers. This will correct any of the features
that depend on the chronology of the fragments, and
will therefore make higher quality summaries.

Additional features should also be added to the
system. At present there are only two email related
features in the system. Three more were used by
(Rambow et al., 2004) which can be included in
the system. These were the number of direct re-
sponses to the current email and the number of recip-
ients. Also the email subject can be compared to the
thread’s original subject. This last feature accounts
for emails that should not have been in the thread be-
cause the point of the conversation has been changed
and the author also changed the subject line.

As an additional baseline, the standard MEAD
multi-document summarizer can also be included.
This will compare email thread specific summariz-
ers to more general multi-document summarizers.
This would validate the need for additional features
that have been found useful in email thread summa-
rization (Rambow et al., 2004).

A variety of evaluation should also be used. The
ROUGE-2 evaluation method depends on one gold
standard summary to which candidate summaries
are compared. However it has been found that hu-
man summaries of the same email thread are often
very different (Rath et al., 1961) and therefore there
should not be one gold standard for each summary.
Therefore other evaluation methods should be used
as well. Since the summarizers we are comparing
are all extraction based summarizers, the sentence
index numbers can be used to evaluate the summa-
rizers. The sentences each received a GSValue from
the annotators, which represents the importance of
the sentence. By adding up all the GSValue points in
a summary, a summary can receive a GSscore which

represents it’s information content level. This ap-
proach is similar to (Nenkova et al., 2007) in that
multiple annotator’s summaries are used to score the
candidate summary. This approach would also elim-
inate the arbitrary threshold value of 8 that is used
to create the gold standard summary for ROUGE-2
evaluations.

It would also be interesting to do a comparison of
a wider variety of classification algorithms. WEKA
contains implementations of a vast number of clas-
sifiers which makes it possible to do such a broad
comparison. However most classifiers do not work
with ordinal classes which limits the number that
can be used. Even so, the ordinal problem can be
converted into a binary problem by choosing differ-
ent thresholds for GSValues. A sentence would then
be labeled as included or not included in the sum-
mary, and a binary classifier can be used to solve
the problem. Local ordinal classification techniques
have also been developed which convert an ordinal
class into a set of binary classes while preserving the
ordering of the original classes (Kotsiantis, 2006).
This is also a promising approach to using a wider
variety of classifiers.

References

Giuseppe Carenini, Raymond T. Ng, and Xiaodong Zhou.
2007. Summarizing email conversations with clue
words. 16th International World Wide Web Confer-
ence (ACM WWW’07).

Sotiris B. Kotsiantis, 2006.Local Ordinal Classification,
volume 204/2006 ofIFIP International Federation for
Information Processing, pages 1–8. Springer Boston.

Chin-Yew Lin and E.H. Hovy. 2003. Automatic evalua-
tion of summaries using n-gram co-occurrence statis-
tics. Proceedings of Language Technology Conference
(HLT-NAACL).

Ani Nenkova, Rebecca Passonneau, and Kathleen McK-
eown. 2007. The pyramid method: Incorporating hu-
man content selection variation in summarization eval-
uation.ACM Trans. on Speech and Language Process-
ing (TSLP).

Dragomir Radev, Timothy Allison, Sasha Blair-
Goldensohn, John Blitzer, Arda Çelebi, Stanko
Dimitrov, Elliott Drabek, Ali Hakim, Wai Lam,
Danyu Liu, Jahna Otterbacher, Hong Qi, Horacio
Saggion, Simone Teufel, Michael Topper, Adam
Winkel, and Zhang Zhu. 2004. MEAD - a platform

for multidocument multilingual text summarization.
In Proceedings of LREC 2004, Lisbon, Portugal, May.

Owen Rambow, Lokesh Shrestha, John Chen, and
Chirsty Lauridsen. 2004. Summarizing email threads.
Proceedings of HLT-NAACL 2004.

G. J. Rath, A. Resnick, and R. Savage. 1961. The forma-
tion of abstracts by the selection of sentences.Ameri-
can Documentation.

I.H. Witten, E. Frank, L. Trigg, M. Hall, G. Holmes, and
S.J. Cunningham. 1999. Weka: Practical machine
learning tools and techniques with java implementa-
tions. ICONIP/ANZIIS/ANNES.

17 Appendix

17.1 The Enron Corpus

The Enron corpus contains a large number of emails
from the Enron corporation’s former employees that
were made public by the accounting investigation by
the Federal Energy Regulatory Commission. The
dataset was purchased by Leslie Kaelbling but found
to have integrity problems. These problems were
fixed by folks at SRI which made the corpus usable.
It is now distributed by William Cohen at:

http : //www.cs.cmu.edu/ enron/

18 Source Code

18.1 Feature Scripts

18.1.1 CentroidSimLocal.pl
#!/cs/public/bin/perl
#
usage: echo clusterfile name | Centroid Sim Local.pl <idffile> <datadir>
#

#
<idffile> is relative to <datadir>
#

use strict; 10

use FindBin;
use lib "$FindBin::Bin/. ./. ./lib/" , "$FindBin::Bin/. ./. ./lib/arch/" ;

use Essence::IDF;
use Essence::Centroid;

use MEAD::SentFeature;

command-line args. 20
my $idf file = shift;
my $datadir = shift;

open the specified IDF file.
open nidf($datadir.’/. ./’ .$idf file);

Centroid and the max value for any sentence.
my $centroid = Essence::Centroid−>new();
my $max cent = 0;

30
extract sentfeatures($datadir, {’Cluster’ =>\&cluster,

’Sentence’ =>\&sentence});

sub cluster {

my $cℓuster = shift;
my $query = shift; # ignored.

my @sents;

foreach my $did (keys %{$cℓuster}) { 40
my $docref = $$cℓuster{$did};

my $text;
foreach my $sentref (@{$docref}) {

$text .= " " . $$sentref{’TEXT’ };
push @sents, $$sentref{’TEXT’ };

}

$centroid−>add document($text);
} 50

foreach my $s (@sents) {

my $score = $centroid−>centroid score($s);
if ($score > $max cent) {

$max cent = $score;
}

}

}

60
sub sentence{

my $feature vector = shift;
my $attribs = shift;

my $text = $$attribs{"TEXT" };
my $score = $centroid−>centroid score($text);
$$feature vector{’Centroid’ } = sprintf ("%17.15f" , $score / $max cent);

}

18.1.2 Class.pl
#!/cs/public/bin/perl

70
#
usage: echo clusterfile queryfile | Class.pl <datadir>
#
Note: datadir is appended by the driver.pl script as it
calls the feature script.
#

use strict;

use FindBin; 80
use lib "$FindBin::Bin/. ./. ./lib" , "$FindBin::Bin/. ./. ./lib/arch" ;

use MEAD::SentFeature;

my $datadir = shift;
my @scores;

#open GoldStandard file and parse out score
open(DATA , $datadir."/. ./goldstandard.csv") or die("Error opening goldstandard: " .$datadir."/. ./goldstandard.csv"); 90
<DATA>; #The first line is just labels
while (<DATA>)
{

chomp;
split(’,’);
3*essential + optional
$scores[$ [0]][$ [1]] = 3*$ [2]+$ [3];

}
close DATA ;

100

extract sentfeatures($datadir, {’Sentence’ => \&sentence});

sub sentence{
my $feature vector = shift;
my $sentref = shift;

my $did = $$sentref{"DID" };
my $sno = $$sentref{"SNO"};
my $text = $$sentref{"TEXT" }; 110

You can compute more than one feature at a time,
but all but one may be “lost” as driver.pl looks for features
in files with names that include the feature name.
$$feature vector{"Class" } = $scores[$did][$sno];
etc. . .

}

18.1.3 IsQuestion.pl
#!/cs/public/bin/perl

120
usage: echo clusterfile queryfile | Is Question.pl <datadir>
#
Note: datadir is appended by the driver.pl script as it
calls the feature script.
#

use strict;

use FindBin;
use lib "$FindBin::Bin/. ./. ./lib" , "$FindBin::Bin/. ./. ./lib/arch" ; 130

use MEAD::SentFeature;

my $datadir = shift;

extract sentfeatures($datadir, {’Cluster’ => \&cluster,
’Document’ => \&document,
’Sentence’ => \&sentence});

sub cluster { 140
my $cℓusterref = shift;
my $queryref = shift; # This will only be defined if a

query filename is passed via the
standard input along with the
cluster filename.

foreach my $did (keys %$cℓusterref) {
This cycling through the DIDs will produce each
document passed to the document subroutine.
my $docref = $$cℓusterref{$did}; 150

}
}

sub document {
my $docref = shift;

for my $sno (1 . . (scalar(@$docref)−1)) {
This will produce each sentence in the document,
and because the document subroutine is called with 160
each document, it will produce every sentence in the
cluster.
my $sentref = $$docref[$sno]; # note array indices, not hash keys.

}
}

sub sentence{
my $feature vector = shift;
my $sentref = shift; 170

my $did = $$sentref{"DID" };
my $sno = $$sentref{"SNO"};
my $text = $$sentref{"TEXT" };

You can compute more than one feature at a time,
but all but one may be “lost” as driver.pl looks for features
in files with names that include the feature name.

#Does the sentence contain a question mark? 180
if ($text =˜ m/\?/)
{

$$feature vector{"Is_Question" } = "1" ;
}
else
{

$$feature vector{"Is_Question" } = "0" ;
}
etc. . .

} 190

18.1.4 MRelPos.pl
#!/cs/public/bin/perl

#
usage: echo clusterfile queryfile | M Rel Pos.pl <datadir>
#
Note: datadir is appended by the driver.pl script as it
calls the feature script.
#

use strict; 200

use FindBin;
use lib "$FindBin::Bin/. ./. ./lib" , "$FindBin::Bin/. ./. ./lib/arch" ;

use MEAD::SentFeature;

my $datadir = shift;
my $tsent; #count total number of sentences in message

extract sentfeatures($datadir, {’Cluster’ => \&cluster, 210
’Document’ => \&document,
’Sentence’ => \&sentence});

sub cluster {
my $cℓusterref = shift;
my $queryref = shift; # This will only be defined if a

query filename is passed via the
standard input along with the
cluster filename.

220
foreach my $did (keys %$cℓusterref) {

This cycling through the DIDs will produce each
document passed to the document subroutine.

my $docref = $$cℓusterref{$did};

}
}

sub document {
my $docref = shift; 230

for my $sno (1 . . (scalar(@$docref)−1)) {
This will produce each sentence in the document,
and because the document subroutine is called with
each document, it will produce every sentence in the
cluster.
my $sentref = $$docref[$sno]; # note array indices, not hash keys.

}
$tsent = scalar(@$docref)−1; 240

}

sub sentence{
my $feature vector = shift;
my $sentref = shift;

my $did = $$sentref{"DID" };
my $sno = $$sentref{"SNO"};
my $text = $$sentref{"TEXT" };

250
You can compute more than one feature at a time,
but all but one may be “lost” as driver.pl looks for features
in files with names that include the feature name.
$$feature vector{"M_Rel_Pos" } = ($sno−1)/$tsent;
etc. . .

}

18.1.5 MsgNum.pl
#!/cs/public/bin/perl

#
usage: echo clusterfile queryfile | Msg Num.pl <datadir> 260
#
Note: datadir is appended by the driver.pl script as it
calls the feature script.
#

use strict;

use FindBin;
use lib "$FindBin::Bin/. ./. ./lib" , "$FindBin::Bin/. ./. ./lib/arch" ;

270
use MEAD::SentFeature;

my $datadir = shift;

extract sentfeatures($datadir, {’Cluster’ => \&cluster,
’Document’ => \&document,
’Sentence’ => \&sentence});

sub cluster {
my $cℓusterref = shift; 280
my $queryref = shift; # This will only be defined if a

query filename is passed via the
standard input along with the
cluster filename.

foreach my $did (keys %$cℓusterref) {
This cycling through the DIDs will produce each
document passed to the document subroutine.
my $docref = $$cℓusterref{$did};

290
}

}

sub document {
my $docref = shift;

for my $sno (1 . . (scalar(@$docref)−1)) {
This will produce each sentence in the document,
and because the document subroutine is called with
each document, it will produce every sentence in the 300
cluster.

my $sentref = $$docref[$sno]; # note array indices, not hash keys.

}
}

sub sentence{
my $feature vector = shift;
my $sentref = shift;

310
my $did = $$sentref{"DID" };
my $sno = $$sentref{"SNO"};
my $text = $$sentref{"TEXT" };

You can compute more than one feature at a time,
but all but one may be “lost” as driver.pl looks for features
in files with names that include the feature name.

$$feature vector{"Msg_Num"} = $did;
etc. . . 320

}

18.1.6 Tfidfavg.pl
#!/cs/public/bin/perl

#
usage: echo clusterfile queryfile | Tfidfavg.pl <idffile> <datadir>
#
Note: datadir is appended by the driver.pl script as it
calls the feature script.
#

330
use strict;

use FindBin;
use lib "$FindBin::Bin/. ./. ./lib" , "$FindBin::Bin/. ./. ./lib/arch" ;

use Essence::IDF;
use Essence::Text;
use MEAD::SentFeature;

my $idffiℓe = shift; 340
my $datadir = shift;

open nidf($idffiℓe);

extract sentfeatures($datadir, {’Cluster’ => \&cluster,
’Document’ => \&document,
’Sentence’ => \&sentence});

sub cluster {
my $cℓusterref = shift; 350
my $queryref = shift; # This will only be defined if a

query filename is passed via the
standard input along with the
cluster filename.

foreach my $did (keys %$cℓusterref) {
This cycling through the DIDs will produce each
document passed to the document subroutine.
my $docref = $$cℓusterref{$did};

360
}

}

sub document {
my $docref = shift;

for my $sno (1 . . (scalar(@$docref)−1)) {
This will produce each sentence in the document,
and because the document subroutine is called with
each document, it will produce every sentence in the 370
cluster.
my $sentref = $$docref[$sno]; # note array indices, not hash keys.

}
}

sub sentence{
my $feature vector = shift;
my $sentref = shift;

380
my $did = $$sentref{"DID" };
my $sno = $$sentref{"SNO"};
my $text = $$sentref{"TEXT" };

You can compute more than one feature at a time,
but all but one may be “lost” as driver.pl looks for features
in files with names that include the feature name.

my %hash;

my @words = split words($text); 390
foreach my $word (@words) {

$hash{$word}++;
}
my $totaℓ = 0;
while((my $word, my $tf) = each %hash)
{

#There is a difference in Clairlib word-splitting and MEAD word-splitting. The IDF database was built with Clairlib, while this function
my $formatted word = lc $word;
$formatted word =˜ s/\’/˜/; #replace ’ with ˜
$formatted word =˜ s/\/|\\|"//; #remove quoatations and slashes 400
$formatted_word =˜ s/(\.|;)$//; #remove period from last w ord
$total += $tf/@words * get_nidf($formatted_word);

}
$$feature_vector {" Tfidfavg" } = $total / @words;
etc. . .

}

18.1.7 Tfidfsum.pl
#!/cs/public/bin/perl

#
usage: echo cluster˙file query˙file — Tfidfsum.pl ¡idffile¿ ¡datadir¿ 410
#
Note: datadir is appended by the driver.pl script as it
calls the feature script.
#

use strict;

use FindBin;
use lib "$FindBin::Bin/. ./. ./lib" , "$FindBin::Bin/. ./. ./lib/arch" ;

420
use Essence::IDF;
use Essence::Text;
use MEAD::SentFeature;

my $idffiℓe = shift;
my $datadir = shift;

open nidf($idffiℓe);

extract sentfeatures($datadir, {’Cluster’ => \&cluster, 430
’Document’ => \&document,
’Sentence’ => \&sentence});

sub cluster {
my $cℓusterref = shift;
my $queryref = shift; # This will only be defined if a

query filename is passed via the
standard input along with the
cluster filename.

440
foreach my $did (keys %$cℓusterref) {

This cycling through the DIDs will produce each
document passed to the document subroutine.
my $docref = $$cℓusterref{$did};

}
}

sub document {
my $docref = shift; 450

for my $sno (1 . . (scalar(@$docref)−1)) {
This will produce each sentence in the document,
and because the document subroutine is called with
each document, it will produce every sentence in the
cluster.
my $sentref = $$docref[$sno]; # note array indices, not hash keys.

}
} 460

sub sentence{
my $feature vector = shift;
my $sentref = shift;

my $did = $$sentref{"DID" };
my $sno = $$sentref{"SNO"};
my $text = $$sentref{"TEXT" };

You can compute more than one feature at a time, 470
but all but one may be “lost” as driver.pl looks for features
in files with names that include the feature name.

my %hash;

my @words = split words($text);
foreach my $word (@words) {

$hash{$word}++;
}
my $totaℓ = 0;
while((my $word, my $tf) = each %hash) 480
{

#There is a difference in Clairlib word-splitting and MEAD word-splitting. The IDF database was built with Clairlib, while this function
my $formatted word = lc $word;
$formatted word =˜ s/\’/˜/; #replace ’ with ˜
$formatted word =˜ s/\/|\\|"//; #remove quoatations and slashes
$formatted_word =˜ s/(\.|;)$//; #remove period from last w ord
$total += $tf/@words * get_nidf($formatted_word);

}
$$feature_vector {" Tfidfsum" } = $total;
etc. . . 490

}

18.1.8 ThreadLineNum.pl
#!/cs/public/bin/perl

#
usage: echo cluster˙file query˙file — Thread˙Line˙Num.pl ¡datadir¿
#
Note: datadir is appended by the driver.pl script as it
calls the feature script.
#

500
use strict;

use FindBin;
use lib "$FindBin::Bin/. ./. ./lib" , "$FindBin::Bin/. ./. ./lib/arch" ;

use MEAD::SentFeature;

my $datadir = shift;
my @maxsent; #count number of sentences in document

510
extract sentfeatures($datadir, {’Cluster’ => \&cluster,

’Document’ => \&document,
’Sentence’ => \&sentence});

sub cluster {
my $cℓusterref = shift;
my $queryref = shift; # This will only be defined if a

query filename is passed via the
standard input along with the
cluster filename. 520

foreach my $did (keys %$cℓusterref) {
This cycling through the DIDs will produce each
document passed to the document subroutine.
my $docref = $$cℓusterref{$did};

$maxsent[$did] = scalar(@$docref)−1;
}

}
530

sub document {
my $docref = shift;

for my $sno (1 . . (scalar(@$docref)−1)) {
This will produce each sentence in the document,

and because the document subroutine is called with
each document, it will produce every sentence in the
cluster.
my $sentref = $$docref[$sno]; # note array indices, not hash keys.

540
}

}

sub sentence{
my $feature vector = shift;
my $sentref = shift;

my $did = $$sentref{"DID" };
my $sno = $$sentref{"SNO"};
my $text = $$sentref{"TEXT" }; 550

You can compute more than one feature at a time,
but all but one may be “lost” as driver.pl looks for features
in files with names that include the feature name.
my $totsent = 0; #total number of sentences
for my $i (0 . . (scalar($did)−1)) {

#find number of sentences in the thread before this thread
$totsent += $maxsent[$i];

}
$$feature vector{"Thread_Line_Num" } = $sno+$totsent; 560
etc. . .

}

18.1.9 TRelPos.pl
#!/cs/public/bin/perl

#
usage: echo clusterfile queryfile | T Rel Pos.pl <datadir>
#
Note: datadir is appended by the driver.pl script as it
calls the feature script.
570

use strict;

use FindBin;
use lib "$FindBin::Bin/. ./. ./lib" , "$FindBin::Bin/. ./. ./lib/arch" ;

use MEAD::SentFeature;

my $datadir = shift;
my @maxsent; #count number of sentences in document 580
my $tsent; #count total number of sentences in thread

extract sentfeatures($datadir, {’Cluster’ => \&cluster,
’Document’ => \&document,
’Sentence’ => \&sentence});

sub cluster {
my $cℓusterref = shift;
my $queryref = shift; # This will only be defined if a

query filename is passed via the 590
standard input along with the
cluster filename.

foreach my $did (keys %$cℓusterref) {
This cycling through the DIDs will produce each
document passed to the document subroutine.
my $docref = $$cℓusterref{$did};

$maxsent[$did] = scalar(@$docref)−1;
$tsent += scalar(@$docref)−1; 600

}
}

sub document {
my $docref = shift;

for my $sno (1 . . (scalar(@$docref)−1)) {
This will produce each sentence in the document,
and because the document subroutine is called with
each document, it will produce every sentence in the 610
cluster.
my $sentref = $$docref[$sno]; # note array indices, not hash keys.

}
}

sub sentence{
my $feature vector = shift;
my $sentref = shift;

620
my $did = $$sentref{"DID" };
my $sno = $$sentref{"SNO"};
my $text = $$sentref{"TEXT" };

You can compute more than one feature at a time,
but all but one may be “lost” as driver.pl looks for features
in files with names that include the feature name.
my $totsent = 0; #total number of sentences
for my $i (0 . . (scalar($did)−1)) {

#find the number of sentences in the message before this message 630
$totsent += $maxsent[$i];

}
#Computes the ratio of the number of sentences preceding thisone divided by the total number of sentences in the thread

$$feature vector{"T_Rel_Pos" } = ($sno+$totsent−1)/$tsent;
etc. . .

}

18.2 Classifier

18.2.1 weka-classifier.pl
#!/cs/public/bin/perl
#This is the classifier that calls the weka model
#usage: weka-classifier.pl<classifier> <classifier-model> . . .

640
use FindBin;
use lib "$FindBin::Bin/. ./lib" , "$FindBin::Bin/. ./lib/arch" ;

use XML::Parser;
use XML::Writer;

use MEAD::MEAD;
use MEAD::Cluster;
use MEAD::SentFeature;

650
my %fnames = ();
my @all sents = ();
my %features = ();
my $cℓassifier;
my $modeℓ;

{
&parseoptions();

%features = read sentfeature(); 660
@all sents = @{ flatten cluster(\%features) };

##Score the sentences based upon their weights
&computescores();

##Write out the new scores to a sentjudge file
&write sentjudge();

}

sub computescores { 670
#Create Arff file
write features();
my $command = "java -Xmx1000m -classpath /cs/public/lib/weka-3-5-6/w eka.jar $classifier -T sum.arff -l $model -c
open RES, $command;
my $t = <RES>;
($t eq "predicted\n") or die ("WEKA provided bad output: " .$t."\n");
my @res = ();
while(<RES>)
{

chomp; 680
push @res, $;

}
close FILE;

##Now compute sentence scores based on weight
foreach my $sentref (@all sents)
{

$$sentref{’FinalScore’ } = shift @res;
}

690
}

sub write features {

my $sentfeatures = \%features;
open(OUT, ">sum.arff");
get the feature names to print.
my @dids = keys %$sentfeatures;
my $did1 = $dids[0];
my $sentref = $$sentfeatures{$did1}[1]; 700
my @featurenames = keys %$sentref;

my $did format = ’%-’ . "$longest.$longest" . ’s’ ;
print the feature names
print OUT ’@relation ’ ."’summary’\n" ;

foreach my $fn (@feature names) {

print OUT ’@attribute ’ .$fn." real\n" ;
}

print OUT ’@data’ ."\n" ;
710

foreach my $did (keys %$sentfeatures) {

my $fdocref = $$sentfeatures{$did};
for (my $sno = 1; $sno < @$fdocref; $sno++) {

my $fsentref = $$fdocref[$sno];
my $first;
foreach my $fn (@feature names) {

if (defined($first)) {print OUT "," };
print OUT $$fsentref{$fn}; 720
$first = 1;

}

print OUT "\n" ;
}

}

close OUT;
}
sub parseoptions {

730
##If there’s no input file
if (@ARGV < 2) {

Debug ("usage: weka-classifier.pl <classifier> <classifier-mo del> . . ." , 3, "ParseOpts");
exit(1);

}

$cℓassifier = shift @ARGV;
$modeℓ = shift @ARGV;

}

sub write sentjudge { 740

my $writer = new XML::Writer(DATA MODE=>1);

$writer−>xmlDecl();
$writer−>doctype("SENT-JUDGE" , "" , "/clair/tools/mead/dtd/sentjudge.dtd");

$writer−>startTag("SENT-JUDGE" , "QID" =>"none");

##MEAD input doesn’t store RSNT and PAR. For now, don’t output it
foreach my $sentref (@all sents) { 750

$writer−>startTag("S" ,
"DID" =>$$sentref{"DID" },
"SNO"=>$$sentref{"SNO"});

$writer−>emptyTag("JUDGE" ,
"N" => "CLASSIFIER" ,
"UTIL" =>$$sentref{"FinalScore" });

$writer−>endTag();
}

760
$writer−>endTag();
$writer−>end();

}

18.2.2 makearff.pl
#This file will parse a mead.pl -score output into an arff file

my $out = ’@relation \’summary\’’ ."\n" ; #output file string

#The first line is the header
my @labels = split(/\s+/,<>);
for (2. .$#labels−1) 770
{

$out .= ’@attribute ’ .$ℓabeℓs[$]." real\n" ;
}
#The rest of the file is data
$out .= ’@data’ ."\n" ;
while(<>)
{

my @data = split(/\s+/,$);
my $s = join ("," ,@data[2. .$#data−1]);
$out .= $s."\n" ; 780

}
print $out;

18.2.3 createallarff.sh
#!/bin/bash
#This is a bash script that calls makearff on all threads
for i in ‘ls /var/tmp/research/data‘; do
perl ˜/mead/bin/mead.pl −scores $i | perl ˜/mead/user/mead/bin/make arff.pl > /var/tmp/research/data/$i/features.arff;
done

18.2.4 meadrc
compressionbasis sentences
compressionpercent 30
#output mode scores 790
output mode summary
#system RANDOM

data path /var/tmp/research/data
#data path /.autofs/homes/ubccshome/u/ulrichj/research/data

#Basic features
feature ThreadLine Num ˜/mead/user/mead/bin/feature−scripts/Thread Line Num.pl
feature CentroidSim ˜/mead/bin/feature−scripts/Centroid.pl ˜/mead/etc/enidf ENG
feature CentroidSim Local ˜/mead/user/mead/bin/feature−scripts/Centroid Sim Local.pl myidf 800
feature Length ˜/mead/bin/feature−scripts/Length.pl
feature Tfidfsum ˜/mead/user/mead/bin/feature−scripts/Tfidfsum.pl enronidf−punc
feature Tfidfavg ˜/mead/user/mead/bin/feature−scripts/Tfidfavg.pl enronidf−punc
feature TRel Pos ˜/mead/user/mead/bin/feature−scripts/T Rel Pos.pl
feature IsQuestion ˜/mead/user/mead/bin/feature−scripts/Is Question.pl
#Basic+ features
feature MsgNum ˜/mead/user/mead/bin/feature−scripts/Msg Num.pl
feature M Rel Pos ˜/mead/user/mead/bin/feature−scripts/M Rel Pos.pl
#Gold Standard Rating
feature Class˜/mead/user/mead/bin/feature−scripts/Class.pl 810

#classifier ˜/mead/user/mead/bin/weka-classifier.pl weka.classifiers.functions.SMOreg /var/tmp/research/cross-validation/model

18.2.5 combinearff.pl
#This file is used to take the 39 thread .arffs and divide
#them into the training and testing arff depending on the
#ordering file
$fiℓename = shift;
my $data;
my $header;
my $data2;
my $header2; 820
my $count = 0;

open(NAMES, $fiℓename) or die("Can’t open " .$fiℓename);
while(<NAMES>)
{

chomp;
open(ARFFFILE, "/var/tmp/research/data/" .$."/features.arff") or die("Can’t find file: " ."/var/tmp/research/data/" .$."/features.arff"
my $datastart = 0;
if ($count > 3)
{ 830

$header = "" ;
}
else
{

$header2 = "" ;
}
while($ℓ = <ARFFFILE>)
{

if ($datastart)
{ 840

if ($count > 3)
{
$data .= $ℓ;
}
else
{
$data2 .= $ℓ;
}

}
else 850
{

if ($count > 3)
{
$header .= $ℓ;
}
else
{
$header2 .= $ℓ;
}

} 860
if ($ℓ =˜ /\@data/)
{

$datastart = 1;
}

}
close ARFFFILE;
$count++;

}
close NAMES;
open(TRAIN, ">arff/" .$fiℓename.".train.arff") or die("Can’t open output file"); 870
open(TEST, ">arff/" .$fiℓename.".test.arff") or die("Can’t open output file");
print TRAIN $header;
print TRAIN $data;
print TEST $header2;
print TEST $data2;
close TRAIN;
close TEST;

18.2.6 createarff.sh
#!/bin/bash
#This script creates 10 training and testing arffs 880
for i in 1 2 3 4 5 6 7 8 9 10; do
perl combinearff.pl $i;
done

18.2.7 createmodels.sh
#!/bin/bash
#This script creates the classifier model from the trainig.arff
for i in 1 2 3 4 5 6 7 8 9 10; do
java −Xmx1000m −classpath /cs/public/lib/weka−3−5−6/weka.jar weka.classifiers.meta.Bagging −t arff/$i.train.arff −d models/$i.Bagging −x 0 −c 9;
done

18.2.8 files.sh
#!/bin/bash
#This script lists the different thread names 890
for i in ‘ls . ./data‘; do
echo $i;
done

18.2.9 randomize.pl
#!/cs/public/bin/perl -w
#Fisher Yates Shuffle algorithm
#This creates the random 10 distributions for the 10 fold cross-validation
sub fys {
my $array=shift;
my $i;
for ($i=@$array; −−$i;) { 900
my $j = int rand ($i+1);
next if $i == $j;
@$array[$i,$j]=@$array[$j,$i];
}

}

while (<>) {
push(@lines, $);
}
fys(\@lines); 910
foreach(@lines) {
print $;
}

18.3 Create IDF

18.3.1 dirtocor.sh
#!/bin/bash
#For all threads add them to clairlib corpus
for i in ‘ls orig‘; do
˜/clairlib−core/util/directory to corpus.pl −b produced −c $i −d orig/$i;
done

18.3.2 idfquery.sh
#!/bin/bash 920
#Create individual idf file for each thread
for i in ‘ls orig‘; do
˜/clairlib−core/util/idf query.pl −b produced −c $i −−all > data/$i/myidf.txt;
done

18.3.3 indcor.sh
#!/bin/bash
#For each thread index the corpus
for i in ‘ls orig‘; do
˜/clairlib−core/util/index corpus.pl −b produced −c $i;
done

18.3.4 mkdb.sh
#!/bin/bash 930
#Make a db file for each thread
for i in ‘ls orig‘; do
awk ’ { gsub(/: /, " "); print }’ data/$i/myidf.txt > data/$i/myidf1.txt;
mv −f data/$i/myidf1.txt data/$i/myidf.txt;
˜/mead/bin/write−idf.pl data/$i/myidf data/$i/myidf.txt;
done

18.4 Generate Summaries

18.4.1 createsummaries.sh
#!/bin/bash
#Generate summaries from mead for each fold
for i in 1 2 3 4 5 6 7 8 9 10; do
count=0; 940
for j in ‘cat /var/tmp/research/cross−validation/$i‘; do
if [[$count −lt 4]]; then
˜/mead/bin/mead.pl −classifier "˜/mead/user/mead/bin/weka-classifier.pl weka.classi fiers.meta.Bagging /var/tmp/research/cross-validatio n/models/$i.Bag
fi
count=‘expr $count + 1‘;
done
done

18.4.2 sumremnum.sh
#!/bin/bash
#This script removes the line number from the MEAD summaries
for i in ‘ls summaries‘; do 950
cat summaries/$i | awk ’ { sub(/\[[[:digit:]]+\][[:space:]] * /,""); print }’ > summaries/$i;
done

18.5 Rouge Evaluation

18.5.1 clueawk.sh
#!/bin/bash
#Create ROUGE scores for cluescore summaries
./createlst.sh | awk −F. ’ {print "/var/tmp/research/data/" $2 "/sum.k30.n100 /var/ tmp/research/data/" $2 "/GS8.txt" }’

18.5.2 myawk.sh
#!/bin/bash
#Create ROUGE scores for summaries from createlst.sh
./createlst.sh | awk −F. ’ {print $1 "." $2 "." $3 "." $4 " /var/tmp/research/data/" $2 "/ GS8.txt" }’

18.5.3 createlst.sh
#!/bin/bash 960
#Create ROUGE scores for machine learning summaries
for i in ‘ls /var/tmp/research/cross−validation/summaries/*.SMOreg‘; do
echo $i;
done

18.6 Mean Absolute Error

18.6.1 compileerr.sh
#!/bin/bash
#Extract Mean Absolute Error from weka output
for i in 1 2 3 4 5 6 7 8 9 10; do
./meanabserr.sh $i meta.Bagging | grep "Mean absolute" | awk ’NR>1 {print $4 }’ ;
done

18.6.2 meanabserr.sh
#!/bin/bash 970
#Run weka in cross-validation to generate results
java −Xmx1000m −classpath /cs/public/lib/weka−3−5−6/weka.jar weka.classifiers.$2 −t arff/$1.train.arff −d model −x 0 −c 9;
echo "Created Model" ;
java −Xmx1000m −classpath /cs/public/lib/weka−3−5−6/weka.jar weka.classifiers.$2 −T arff/$1.test.arff −l model −c 9;

