Laura Tammpere Context-dependent Parsing for Time Expressions Error Analysis

Background

• Paper:

K. Lee, Y. Artzi, J. Dodge, and L. Zettlemoyer. 2014. Contextdependent semantic parsing for time expressions. In ACL(1).

- Introduces UWTime: A framework for parsing time expressions and resolving them to a TIMEX₃ value
- Temporal semantics modeled using Combinatory Categorial Grammar (CCG)
- Authors' error analysis suggests that majority of errors stem from misused context operators

CCG with context operators

one	week	ago		
\overline{C}	\overline{N}	$NP \setminus NP$		
1	week	$\lambda x.shift (ref_time, -1 imes x)$		
N/N				
$\lambda x.1 \times x$	>			
$1 \times week$				
$NP \\ 1 imes week$				
$NP \\ shift(ref_time, -1 \times 1 \times week)$				

ref_time could refer to the document creation time, or the most recently mentioned range (e.g. a previously mentioned date)

Context-Dependent Operations

- Reference Time Resolution
 - Document Creation Time vs. last_range

Directionality Resolution
nearest_forward vs. nearest_backward

 $nearest_forward_{\langle s,\langle r,r \rangle
angle} \ nearest_backward_{\langle s,\langle r,r \rangle
angle}$

this $\vdash NP/N : \lambda x.this(x, ref_time)$

- Shifting Granularity
 - Resolve temp_d to delta vs. anchor granularity

 $egin{aligned} & ext{before} dash N igwedge N igwedge N P : \ &\lambda x. \lambda y. shift(x, -1 imes y, temp_d) \end{aligned}$

The Plan

- Replicate the base experiments using the freely available UWTime software \checkmark
- Replicate the authors' error analysis \checkmark
 - Manual categorization of all resolution errors in the TempEval Dev data set gold mentions
- Perform similar manual categorization of errors on the WikiWars corpus results (underway)
 - Not exactly the same as the other analysis
- Identify underlying causes of major sources of error, propose avenues for improvement
- Stretch goal: Update model to to prevent an identified error

Authors' vs. My Categorization

Error description	
Wrong directionality context operator	
Wrong reference time context operator	15.7
Wrong shifting granularity context operator	14.4
Requires joint reasoning with events	9.2
Cascading error due to wrong detection	7.8
CCG parse error	2.0
Other error	16.3

Error Description	
Wrong directionality context operator	27.4%
Wrong reference time context operator	13.7%
Wrong shifting granularity context operator	2.6%
Requires joint reasoning with events	12.1%
Cascading error due to wrong detection	16.3%
CCG parse error	4.7%
Other error	23.2%