Analyzing Context using Natural Language Parsers for Sentence Boundary Disambiguation

Andrew Tjia

hung_yao@cs.ubc.ca

Sentence Boundaries

- Terminators marking the beginning and end of sentences
 - In English, we can terminate sentences with periods (.), question marks (?), and exclamation points (!)
- First step in many NLP tasks
 - Parts of speech tagging, grammar, summarization, sentence alignment

Existing Approaches

- Hand-crafted rules
 - (Aberdeen et al., 1995)
- Satz
 - (Palmer and Hearst, 1997)
- mxTerminator
 - (Reynar and Ratnaparkhi, 1997)
- Splitta
 - (Gillick, 2009)

Existing Approaches

Method	Error Rate
Hand-crafted rules	0.9%
Satz	1.0%
mxTerminator	1.2%
Splitta	0.25%

N-gram models

- Used NLTK's nltk.model.ngram.NgramModel.
- With word level n-grams, use training and test sets, to train and test an n-gram model

ParseReduce

- Segment sentence into fragments
- Join fragments that give a better PCFG score combined than individually

- If $P(A.B.) \ge P(A.) \times P(B.)$:
 - Is Nonterminator
- Else:
 - Is Terminator

ParseReduce

Original: The suit was filed by plaintiffs' securities lawyer Richard D. Greenfield in U.S. District Court in Philadelphia.

Segmented:

The suit was filed by plaintiffs' securities lawyer Richard D.

Greenfield in U.S.

Score = -104.303

District Court in Philadelphia.
Score = -36.6166

Combined:

The suit was filed by plaintiffs' securities lawyer Richard D. Greenfield in U.S. District Court in Philadelphia.

Score = -129.032

Stanford Parser

Input: The remainder of the debt will be exchanged for new Costa Rican bonds with a 6 1/4% interest rate.

Most likely parse tree:

```
(ROOT
(S
(NP
(NP (DT The) (NN remainder))
(PP (IN of)
(NP (DT the) (NN debt))))
(VP (MD will)
(VP (VB be)
```

```
(VP (VBN exchanged)
     (PP (IN for)
      (NP (JJ new)
        (ADJP (JJ Costa) (JJ Rican))
        (NNS bonds)))
     (PP (IN with)
      (NP (DT a)
        (NP (CD 6 1 \ /4) (NN \%))
        (NN interest) (NN rate))))))
  (. .)))
Score: -122.74738311767578
```

Corpora

10% Penn Treebank	
Class of SBD	Count
Terminators	3848
Nonterminators	2487
RST Corpus	
Class of SBD	Count
Terminators	6459
Nonterminators	4383
Combined (10% Penn + RST)	
Class of SBD	Count
Terminators	10307
Nonterminators	6870

Splitta

- (Gillick, 2009)
- Best of breed feature based supervised classifier
- 0.25% error rate trained over WSJ and Brown corpora

Results

Comparison of SBD Classifiers	
Classifier	Overall Error Rate
ParseReduce	1.24653%
Splitta	0.343885%
N-grams	12.0474%
Baseline	39.9953%

Examples of errors

ParseReduce: "The information on 125
metropolitan markets is supplied by retailers
such as Sears, Roebuck & Co. and K mart Corp.
as well as closely held concerns such as R.H.
Macy & Co. The council plans to release its
regional reports monthly.<S>"

Examples of errors

 Splitta: "Takuma Yamamoto, president of Fujitsu Ltd., believes the `money worship' among young people . . .<S> caused the problem."

Common errors

- Sentence fragments
- Ellipsis neither Splitta nor ParseReduce handles this very well

Error Correlation

Errors on Treebank	
Type of error	Proportion of errors
Uncorrelated errors	97%
Correlated errors	3%
Errors on RST Corpus	
Errors on RST Corpus	
Type of error	Proportion of errors
· ·	Proportion of errors 96%

Conclusion

- Higher error than Splitta, but...
- Showed low correlation between errors
- Different approach which generalizes to any corpora so as long a parser exists

Future Work

- Perform grammar induction for unsupervised sentence boundary disambiguation
- Modify parser grammar for terminator/nonterminator disambiguation
- Evaluate ParseReduce against entire WSJ test corpus
- Extend technique to other parsers and other corpora, possibly in other languages

References

- Gillick, D. (2009). Sentence Boundary Detection and the Problem with the U.S. Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Companion Volume: Short Papers, (pp. 241-244). Boulder, Colorado.
- Kiss, T., & Strunk, J. (2006). Unsupervised Multilingual Sentence Boundary Disambiguation. *Computational Linguistics*, 32(4), 485-525.
- Marcus, M., Marcinkiewicz, M., & Santorini, B. (1993). Building a large annotated corpus of English: the penn treebank. *Computational Linguistics*, 19(2), 313-330.
- Palmer, D., & Hearst, M. (1997). Adaptive Multilingual Setence Boundary Disambiguation. *Computational Linguistics*, 23(2), 241-267.
- Reynar, J., & Ratnaparkhi, A. (1997). A maximum entropy approach to identifying sentence boundaries. *Proceedings of the Fifth Conference on Applied Natural Language Processing*, (pp. 16-19).