Chapter 2
Regular Expressions and Automata

Usery: Men are all alike.

ELIZAy: IN WHAT WAY

Usery: They're always bugging us about something or other.
ELIZA;: CAN YOU THINK OF A SPECIFIC EXAMPLE
Usery: Well, my boyfriend made me come here.

ELIZA3: YOUR BOYFRIEND MADE YOU COME HERE
Usery: He says I'm depressed much of the time.

ELIZA4: 1AM SORRY TO HEAR YOU ARE DEPRESSED

Weizenbaum (1966)

Imagine that you have become a passionate fan of woodchucks and have recently
learned that groundhog and woodchuck are different names for the same animal. Since
you are writing a term paper on woodchucks, you now need to search through your
paper for every occurrence of the term woodchuck and replace woodchucks with wood-
chucks (groundhogs). But you also need to replace singular woodchuck with wood-
chuck (groundhog). Instead of having to do this search twice, you would prefer to
perform a single command for something like woodchuck with an optional final s. Or
perhaps you might want to search for all the prices in some document; you might want
to see all strings that look like $799 or $25 or $24.99 in order to automatically extract
a table of prices. In this chapter we introduce the regular expression, the standard no-
tation for characterizing text sequences. The regular expression is used for specifying
text strings in all sorts of text processing and information extraction applications.

After we have defined regular expressions, we show how they can be implemented
with the finite-state automaton. The finite-state automaton is not only the mathemat-
ical device used to implement regular expressions but also one of the most significant
tools of computational linguistics. Variations of automata such as finite-state trans- _
ducers, hidden Markov models, and N-gram grammars are important components of
applications that we introduce in later chapters, including speech recognition and syn-
thesis, machine translation, spell-checking, and information extraction,

2.1 Regular Expressions

SIR ANDREW: Her C’s, her U’s and her T's: why that?
Shakespeare, Twelfth Night

One of the unsung successes in standardization in computer science has been the reg- b

Gx[fiﬁ;‘i’g,’; ular expression (RE), a language for specifying text search strings. The regular ex-

18 Chapter 2.

Regular Expressions and Automata

H Strings

Corpus

pression languages used for searching texts in Unix tools like grep and Emacs, in Perl,
Python, Ruby, Java, and .NET, and also in Microsoft Word are very similar, and many
RE features exist in Web search engines. Besides this practical use, the regular expres-
sion is an important theoretical tool throughout computer science and linguistics.

A regular expression (first developed by Kleene (1956) but see the Historical Notes
section for more details) is a formula in a special language that specifies simple classes
of strings. A string is a sequence of symbols; for most text-based search techniques, a
string is any sequence of alphanumeric characters (letters, numbers, spaces, tabs, and
punctuation). For these purposes a space is just a character like any other, and we
represent it with the symbol _.

Formally, a regular expression is an algebraic notation for characterizing a set of
strings. Thus, they can specify search strings as well as define a language in a formal
way. We begin by talking about regular expressions as a way of specifying searches
in texts and proceed to other uses. Section 2.3 shows that the use of just three regular
expression operators is sufficient to characterize strings, but we use the more conve-
nient and commonly used regular expression syntax of the Perl language throughout
this section. Since common text-processing programs agree on most of the syntax of
regular expressions, most of what we say extends to all UNIX and Microsoft Word
regular expressions.

Regular expression search requires a pattern that we want to search for and a cor-
pus of texts to search through. A regular expression search function will search through
the corpus, returning all texts that match the pattern. In an information retrieval (IR)
system such as a Web search engine, the texts might be entire documents or Web pages.
In a word processor, the texts might be individual words or lines of a document. In the
rest of this chapter, we use this last paradigm. Thus, when we give a search pattern,
we assume that the search engine returns the line of the document returned. This is
what the Unix grep command does. We underline the exact part of the pattern that
matches the regular expression. A search can be designed to return all matches to a
regular expression or only the first match. We show only the first match.

2.1.1 Basic Regular Expression Patterns

The simplest kind of regular expression is a sequence of simple characters. For ex-
ample, to search for woodchuck, we type /woodchuck/. So the regular expression
/Buttercup/ matches any string containing the substring Buttercup. for example,
the line I'm called little Buttercup (recall that we are assuiming a search application that
returns entire lines).

From here on we put slashes around each regular expression to make it clear what
is a regular expression and what is a pattern. We use the slash since this is the notation
used by Perl. but the slashes are nof part of the regular expressions.

The search string can consist of a single character (like /1/) or a sequence of
characters (like /urgl/). The first instance of each match to the regular expression is
underlined below (although a given application might choose to return more than just
the first instance):

Section 2.1. Regular Expressions 19

Range

RE Example Patterns Matched

/woodchucks/ “interesting links to woodchucks and lemurs”
/a/ “Mary Ann stopped by Mona’s™
/Claire_says,/ *““Dagmar, my gift please.” Claire says,”
/DOROTHY / “SURRENDER DOROTHY”

/Y “You've left the burglar behind again!” said Nori

Regular expressions are case sensitive; lower case /s/ is distinct from upper case
/8/ (/s/ matches a lower case s but not an uppercase). This means that the pattern
/woodchucks/ will not match the string Woodchucks. We can solve this problem
with the use of the square braces [and]. The string of characters inside the braces
specify a disjunction of characters to match. For example, Fig. 2.1 shows that the
pattern / [wW]/ matches patterns containing either w or W,

RE Match Example Patterns

/ [wW]oodchuck/ Woodchuck or woodchuck “Woodchuck”
/[abcl/ ‘a’, ‘b’ or ‘¢’ “In vomini, in soldati”
/[12345678901/ any digit - : “plenty of 7 to 57

JYEXFR] The use of the brackets [] to specify a disjunction of characters.

The regular expression /[1234567890]/ specified any single digit. While such
classes of characters as digits or letters are important building blocks in expressions,
they can get awkward (e.g., it’s inconvenient to specity

/ [ABCDEFGHIJKLMNOPQRSTUVWXYZ 1/
to mean “any capital letter”). In these cases the brackets can be used with the dash =)
to specify any one character in a range. The pattern /[2-57/ specifies any one of the
characters 2, 3,4, or 5. The pattern / [b~g]/ specifies one of the characters b,c,d, e,
Ji or g. Some other examples are shown in Fig. 2.2.

RE . Match : Example Patterns Matched

/[A-Z1/ an upper case letter “we should call it ‘Drenched Blossoms’ ”
/{a-z]/ - alower case letter “my beans were impatient to be hoed!”
/[0~-91/ a single digit “Chapter 1: Down the Rabbit Hole”

LW The use of the brackets [] plus the dash - to specify a range.

The square braces can also be used to specify what a single character cannot be,
by use of the caret ™. If the caret ~ is the first symbol after the open square brace [,
the resulting pattern is negated. For example, the pattern /[“al/ matches any single
character (including special characters) except a. This is only true when the caret is the
first symbol after the open square brace. If it occurs anywhere else, it usually stands
for a caret; Fig. 2.3 shows some examples.

The use of square braces solves our capitalization problem for woodchucks. But
we still haven’t answered our original question; how do we specity both woodchuck
and woodchucks? We can’t use the square brackets, because while they allow us to say
“s or S”, they don’t allow us to say “s or nothing”. For this we use the question mark
/?/, which means “the preceding character or nothing”, as shown in Fig. 2.4.

20 Chapter 2.

Regular Expressions and Automata

Kleene *

Kleene +

- RE - Match (single characters) Example Patterns Matched
["A-Z] not an upper case letter . « “Oyfn pripetchik” . e

[7ss] - neither ‘S’ nor ‘s AR Havg‘nq exquisite reason for’t”
RS i motaperiod. - “ourresident Djinn” :
[e”1 - either'e’ or <~ _ - “lookup? now”

"ath o "'i-;,thépattem‘a‘b’ T SN s “‘I;ookﬁp_ii_“:_lz'noi&'” :

[Figure 2.3] Uses of the caret = for negation or just to mean ~. We discuss below the need to
escape the period by a backslash.

_RE T Mawh - Example Patterns Matched
- -woodchucks? - dehuck or woodchucks ‘woodehuck”
_ colou?r . colororcolour. .~ colour”

The question mark ? marks optionality of the previous expression.

We can think of the question mark as meaning “zero or one instances of the previous
character”. That is, it’s a way of specifying how many of something that we want,
So far we haven’t needed to specify that we want more than one of something. But
sometimes we need regular expressions that allow repetitions, For example, consider
the language of (certain) sheep, which consists of strings that look like the following:

baa!
baaa!
baaaa!
baaaaa!

This language consists of strings with a b, followed by at least two a’s, followed by
an exclamation point. The set of operators that allows us to say things like “some num-
ber of a’s” are based on the asterisk or x, commonly called the Kleene * (pronounced
“cleany star”). The Kleene star means “zero or more occurrences of the immediately
previous character or regular expression”. So /a+/ means “any string of zero or more
as”. This will match g or aaaaaa, but it will also match Off Minor since the string Off
Minor has zero a’s. So the regular expression for matching one or more a is /aax/,
meaning one a followed by zero or more as. More complex patterns can also be re-
peated. So /[ab]+/ means “zero or more a’s or 5’s” (not “zero or more right square
braces”). This will match strings like aaaa or ababab or bbbb.

We now know enough to specify part of our regular expression for prices: multiple
digits. Recall that the regular expression for an individual digit was /[0-9]/. So the
regular expression for an integer (a string of digits) is /[0-9][0-9 Ix/. (Why isn't
itjust /[0-97%/7)

Sometimes it’s annoying to have to write the regular expression for digits twice,
so there is a shorter way to specify “at least one” of some character. This is the
Kleene +, which means “one or more of the previous character”. Thus, the expres-
sion /[0-97+/ is the normal way to specify “a sequence of digits”. There are thus
tWo ways to specify the sheep language: /baaax!/ or /baa+! /.

One very important special character is the period (/. /). a wildcard expression
that matches any single character (except a carriage return). as shown in Fig. 2.5.

Section 2.1. Regular Expressions 21

Anchors

Disjunction

Precedence

- RE - Match vz, Example Patterns
~ /beg.n/ . any character between beg and n ~ begin, beg’n, begun

The use of Athe period . to specify any character.

Figure 2.5

The wildcard is often used together with the Kleene star to mean “any string of
characters”. For example, suppose we want to find any line in which a particular word,
for example, aardvark, appears twice. We can specify this with the regular expression
/aardvark.xaardvark/.

Anchors are special characters that anchor regular expressions to particular places
in a string. The most common anchors are the caret ~ and the dollar sign $. The caret
" matches the start of a line. The pattern /~The/ matches the word The only at the
start of a line. Thus, the caret ~ has three uses: to match the start of a line, to indicate
a negation inside of square brackets, and just to mean a caret. (What are the contexts
that allow Perl to know which function a given caret is supposed to have?) The dollar
sign $ matches the end of a line. So the pattern .S is a useful pattern for matching
a space at the end of a line, and /"The dog\.$/ matches a line that contains only
the phrase The dog. (We have to use the backslash here since we want the . to mean
“period” and not the wildcard.)

There are also two other anchors: \b matches a word boundary, and \ B matches a
non-boundary. Thus, /\bthe\b/ matches the word the but not the word other. More
technically, Perl defines a word as any sequence of digits, underscores, or letters; this
is based on the definition of “words” in programming languages like Perl or C. For
example, /\b99\b/ will match the string 99 in There are 99 borties of beer on the
wall (because 99 follows a space) but not 99 in There are 299 bottles of beer on the
wall (since 99 follows a number). But it will match 99 in $99 (since 99 follows a dollar
sign ($), which is not a digit, underscore, or letter).

2.1.2 Disjunction, Grouping, and Precedence

Suppose we need to search for texts about pets; perhaps we are particularly interested
in cats and dogs. In such a case, we might want to search for either the string cat or
the string dog. Since we can’t use the square brackets to search for “cat or dog” (why
not?), we need a new operator, the disjunction operator, also called the pipe symbol
|. The pattern /cat | dog/ matches either the string cat or the string dog.

Sometimes we need to use this disjunction operator in the midst of a larger se-
quence. For example, suppose I want to search for information about pet fish for my
cousin David. How can I specify both guppy and guppies? We cannot simply say
/guppy | ies/. because that would match only the strings guppy and ies. This is be-
cause sequences like guppy take precedence over the disjunction operator |. To make
the disjunction operator apply only to a specific pattern. we need to use the parenthesis
operators (and). Enclosing a pattern in parentheses makes it act like a single charac-
ter for the purposes of neighboring operators like the pipe | and the Kleenex. So the
pattern /gupp (y | ies)/ would specify that we meant the disjunction only to apply
to the suffixes y and ies.

22 Chapter 2.

Regular Expressions and Automata

|
!
|

Operator
precedence

Greedy

|

The parenthesis operator (is also useful when we are using counters like the
Kleenex. Unlike the | operator, the Kleene « operator applies by default only to a sin-
gle character, not to a whole sequence. Suppose we want to match repeated instances
of a string. Perhaps we have a line that has column labels of the form Column 1 Col-
umn 2 Column 3. The expression /Column_[0~-91+_x/ will not match any number
of columns; instead, it will match a single column followed by any number of spaces!
The star here applies only to the space , that precedes it, not to the whole sequence,
With the parentheses, we could write the expression /(Column_[0-9]+_x)«*/ to
match the word Column, followed by a number and optional spaces, the whole pattern
repeated any number of times.

This idea that one operator may take precedence over another, requiring us to some-
times use parentheses to specify what we mean, is formalized by the operator prece-
dence hierarchy for regular expressions. The following table gives the order of RE
operator precedence, from highest precedence to lowest precedence.

Parenthesis ()
Counters x + 7 {}
Sequences and anchors the "my end$
Disjunction vl .
Thus, because counters have a higher precedence than sequences,

/thex/ matches theeeee but not thethe. Because sequences have a higher precedence
than disjunction, /the | any/ matches the or any but not theny.

Patterns can be ambiguous in another way. Consider the expression /[a-z]/
when matching against the text once upon a time. Since / [a-z]%/ matches zero or
more letters, this expression could match nothing, or just the first letter o, on, onc, or
once. In these cases regular expressions always match the largest string they can; we
say that patterns are greedy, expanding to cover as much of a string as they can.

2.1.3 A Simple Example

Suppose we wanted to write a RE to find cases of the English article the. A simple (but
incorrect) pattern might be:

/the/

One problem is that this pattern will miss the word when it begins a sentence and
hence is capitalized (i.e.. The). This might lead us to the following pattern:

/[tT1he/

But we will still incorrectly return texts with the embedded in other words (e.g..
other or theology). So we need to specify that we want instances with a word boundary
on both sides:

/\b[tT]he\b/

Suppose we wanted to do this without the use of /\b/. We might want this since
/\b/ won't treat underscores and numbers as word boundaries: but we might want to

e

Section 2.1. Regular Expressions 23

False positive

False negative

find the in some context where it might also have underlines or numbers nearby (the_
or the25). We need to specify that we want instances in which there are no alphabetic
letters on either side of the the:

/[a-zA-Z][tT]lhe[“a-zA-Z]/

But there is still one more problem with this pattern: it won’t find the word the when
it begins a line. This is because the regular expression [“a-zA~2%], which we used
to avoid embedded instances of rhe, implies that there must be some single (although
non-alphabetic) character before the the. We can avoid this by specifying that before
the the we require either the beginning-of-line or a non-alphabetic character, and the
same at the end of the line:

/("|["a-2zA-2])[tT]lhe([a-zA-Z]|$)/

The process we just went through was based on fixing two kinds of errors: false
positives, strings that we incorrectly matched like other or there, and false negatives,
strings that we incorrectly missed, like The. Addressing these two kinds of errors
comes up again and again in implementing speech and language processing systems.
Reducing the error rate for an application thus involves two antagonistic efforts:

e Increasing accuracy (minimizing false positives)
¢ Increasing coverage (minimizing false negatives)

2.1.4 A More Complex Example

Let’s try out a more significant example of the power of REs. Suppose we want to build
an application to help a user buy a computer on the Web. The user might want “any PC
with more than 6 GHz and 256 GB of disk space for less than $1000”. To do this kind
of retrieval, we first need to be able to look for expressions like 6 GHz or 256 GB or
Dell or Mac or $999.99. In the rest of this section we’ll work out some simple regular
expressions for this task.

First, let’s complete our regular expression for prices. Here's a regular expression
for a dollar sign followed by a string of digits. Note that Perl is smart enough to realize
that $ here doesn’t mean end-of-line; how might it know that?

/$[0-9]1+/

Now we just need to deal with fractions of dollars. We'll add a decimal point and
two digits afterwards:
/$[0-9]1+\.[0-97[0-9]/

This pattern only allows $799.99 but not $/99. We nced to make the cents optional
and to make sure we're at a word boundary:

/\BS$[0-9]+(\.[0-9][0-9])?\b/

How about specifications for processor speed (in megaherts = NMHz or vigahertz =
GHzy? Here's a pattern for that:

24 Chapter 2.

Regular Expressions and Automata

Newline

/\b[0—9}+u*(MHz][Mm]egahertszHzf[Gg}igahertz)\b/

Note that we use /_+/ to mean “zero or more spaces” since there might always be
extra spaces lying around. Dealing with disk Space or memory size (in GB = gigabytes),
we need to allow for optional fractions again (5.5 GB). Note the use of ? for making
the final s optional: '

/\b[0—9]+(\.[0—9}+)?u*(GB][Gg]igabytes?)\b/
Finally, we might want some simple patterns to specify operating systems:

/\b(Windows_*(Vista [XP)2)\b/
/\b(Mac|Macintosh|Apple |0S_X)\b/

2.1.5 Advanced Operators

There are also some useful advanced regular expression operators. Figure 2.6 shows
some aliases for common ranges, which can be used mainly to save typing. Besides
the Kleene * and Kleene + we can also use explicit numbers as counters, by enclosing
them in curly brackets. The regular expression / {3}/ means “exactly 3 occurrences
of the previous character or expression”. So /a\.{24}z/ will match g followed by
24 dots followed by z (but not @ followed by 23 or 25 dots followed by a z).

RE Expansion Match ‘ Examples
\d [0-9)] : any digit : “Party,_of 5
\D ~[70-9] ' any non-digit . ' Blue,_moon
\w [a~2A-70-9_] any alphanumeric/underscore Daiyu

\W ["\w] . anon-alphanumeric = nn

\s [Nr\t\n\f] - whitespace (space, tab) R

\s ["\&] ~_Non-whitespace ; in_Concord |

LITUTYRY Aliases for common sets of characters.

A range of numbers can also be specified. So /{n,m}/ specifies from n to m oc-
currences of the previous char or expression, and / {n, } / means at least » occurrences
of the previous expression. REs for counting are summarized in Fig. 2.7.

RE Match

* Zero or more occurrences of the previous char or expression

+ one or more occurrences of the previous char or expression

? exactly zero or one occurrence of the previous char or expression
{n} e occurrences of the previous char or expression

{n,m} from n to m occurrences of the previous char or expression

{n,} at least n occurrences of the previous char or expression

PR Regular expression operators for counting.

Finally. certain special characters age referred to by special notation based on the
backslash (\) (see Fig. 2.8). The most common of these are the newline character \n
and the tab character \t. To refer to characters that are special themselves (like S
[and \). precede them with a backslash. e /\No/ /N« /. /N[/. and /\\ /).

Section 2.1. Regular Expressions 25

Substitution

Register

RE Match Example Patterns Matched

\ % an asterisk “*” “KRAFPHL* AN

\. a period “.” “Dr, Livingston, I presume”

\? a question mark “Why don’t they come and lend a hand?”
\n anewline \

Nt atab

Some characters that need to be backslashed.

2.1.6 Regular Expression Substitution, Memory, and ELIZA

An important use of regular expressions is in substitutions. For example, the Perl sub-
stitution operator s/regexpl/pattern/ allows a string characterized by a regular
expression to be replaced by another string:

s/colour/color/

It is often useful to be able to refer to a particular subpart of the string matching the
first pattern. For example, suppose we wanted to put angle brackets around all integers
in a text, for example, changing the 35 boxes to the <35> boxes. We'd like a way to
refer to the integer we’ve found so that we can easily add the brackets. To do this, we
put parentheses (and) around the first pattern and use the number operator \ 1 in the
second pattern to refer back. Here’s how it looks:

s/([0-91+)/<\1>/

The parenthesis and number operators can also specify that a certain string or ex-
pression must occur twice in the text. For example, suppose we are looking for the
pattern “the Xer they were, the Xer they will be”, where we want to constrain the two
X’s to be the same string. We do this by surrounding the first X with the parenthesis
operator, and replacing the second X with the number operator \1, as follows:

/the (.+)er they were, the \ler they will be/

Here the \ 1 will be replaced by whatever string matched the first item in parenthe-
ses. So this will match The bigger they were, the bigger they will be but not The bigger
they were, the faster they will be.

The number operator can be used with other numbers. If you match two different
sets of parenthesis. \ 2 means whatever matched the second set. For example,

/the (.+)er they (.x), the \ler we \2/

will match The faster they ran, the faster swe ran but not The faster they ran, the faster
we ate. These numbered memories are called registers (e.g.. register 1, register 2.
register 3). This memory feature is not part of every regular expression language and
is often considered an “extended” feature of regular expressions.

Substitutions using memory are useful in implementing simple natural-language-
understanding programs like ELIZA (Weizenbaum, 1966). Recall that ELIZA simu-
lates a Rogerian psychologist by carrying on conversations like the following:

26 Chapter 2. Regular Expressions and Automata

User;: Men are all alike.

ELIZA;: IN WHAT WAY

Users: They’reralways bugging us about something or other.
ELIZA,: CAN YOU THINK OF A SPECIFIC EXAMPLE
Users: Well, my boyfriend made me come here.

ELIZA3;: YOUR BOYFRIEND MADE YOU COME HERE
Users: He says I'm depressed much of the time.

ELIZA4: 1 AM SORRY TO HEAR YOU ARE DEPRESSED

ELIZA works by having a cascade of regular expression substitutions that each
match some part of the input lines and changes them. The first substitutions change alt
instances of my to YOUR, and I’'m to YOU ARE, and so on. The next set of substitutions
matches and replaces other patterns in the input. Here are some examples:

s/.x YOU ARE (depressed|sad) .x/I AM SORRY TO HEAR YOU ARE \1/
s/.%x YOU ARE (depressed|sad) .x/WHY DO YOU THINK YOU ARE \1/
s/.x all .x/IN WHAT WAY/

s/.* always .%/CAN YOU THINK OF A SPECIFIC EXAMPLE/

Since multiple substitutions can apply to a given input, substitutions are assigned a
rank and applied in order. Creating patterns is the topic of Exercise 2.2.

2.2 Finite-State Automata

The regular expression is more than just a convenient metalanguage for text searching.
Finite-state Pirst, a regular expression is one way of describing a finite-state automaton (FSA).
FsA Finite-state automata are the theoretical foundation of a good deal of the computational
work we describe in this book. Any regular expression can be implemented as a finite-
state automaton (except regular expressions that use the memory feature; more on this
later). Symmetrically, any finite-state automaton can be described with a regular ex-
pression. Second, a regular expression is one way of characterizing a particular kind of
Regular language formal language called a regular language. Both regular expressions and finite-state
automata can be used to describe regular languages. A third equivalent method of char-
acterizing the regular languages, the regular grammar, is introduced in Chapter 16.
The relation among these theoretical constructions is sketched in Fig. 2.9.

finite
automata

regular
expressions

regular
languages

regular
grammars

JQPIPR] Three equivalent ways of describing regular languages.

Section 2.2. Finite-State Automata 27

Automaton

State

Start state

This section begins by introducing finite-state automata for some of the regular
expressions from the last section and then suggests how the mapping from regular
expressions to automata proceeds in general. Although we begin with their use for
implementing regular expressions, FSAs have a wide variety of other uses that we
explore in this chapter and the next.

2.2.1 Use of an FSA to Recognize Sheeptalk

After a while, with the parrot’s help, the Doctor got 1o learn the language of the animals
so well thar he could talk to them himself and understand everything they said.
Hugh Lofting, The Story of Doctor Dolittle

Let’s begin with the “sheep language” we discussed previously. Recall that we
defined the sheep language as any string from the following (infinite) set:

baa!
baaa!
baaaa!
baaaaa!

The regular expression for this kind of “sheeptalk” is /baa+1/. Figure 2.10 shows
an automaton for modeling this regular expression. The automaton (i.e., machine,
also called finite automaton, finite-state automaton, or FSA) recognizes a set of
strings, in this case the strings characterizing sheep talk in the same way that a regular
expression does. We represent the automaton as a directed graph: a finite set of vertices
(also called nodes), together with a set of directed links between pairs of vertices called
arcs. We’ll represent vertices with circles and arcs with arrows. The automaton has five
states, which are represented by nodes in the graph. State 0 is the start state. In our
examples, state 0 will generally be the start state; to mark another state as the start state,
we can add an incoming arrow to the start state. State 4 is the final state or accepting
state, which we represent by the double circle. It also has five transitions, which we
represent by arcs in the graph.

@@ @ @ 6@

(WAL A finite-state automaton for talking sheep.

The FSA can be used for recognizing (we also say accepting) strings in the follow-
ing way. First, think of the input as being written on a long tape broken up into cells,
with one symbol written in each cell of the tape, as in Fig. 2.11.

The machine starts in the start state (go) and iterates the following process: Check
the next letter of the input. If it matches the symbol on an arc leaving the current
state, then cross that arc, move to the next state, and also advance one symbol in the
input. If we are in the accepting state (g4) when we run out of input, the machine has

28

Chapter 2.

Regular Expressions and Automata

Rejecting

State-transition
table

Deterministic

[P REY A tape with cells.

successfully recognized an instance of sheeptalk. If the machine never gets to the final
state, either because it runs out of input or it gets some input that doesn’t match an arc
(as in Fig. 2.11), or if it just happens to get stuck in some non-final state, we say the
machine rejects or fails to accept an input.

We can also represent an automaton with a state-transition table. As in the graph
notation, the state-transition table represents the start state, the ac-

cepting states, and what transitions leave each state with which State bIngut'
symbols. On the right is the state-transition table for the FSA of 0 1 3 0
Fig. 2.10. We’ve marked state 4 with a colon to indicate that it’s a i) 020
final state (you can have as many final states as you want), and the 2 S 0 ‘ 30
0 indicates an illegal or missing transition. We can read the first 31*) 0 34
row as “if we’re in state 0 and we see the input b we must go to 4 000

state 1. If we’re in state O and we see the input a or !, we fail”.
More formally, a finite automaton is defined by the following five parameters:

0=qoq192...qn~1 . a finite set of N states

b a finite input alphabet of symbols

qo k the start state) o

F the set of final states, ¥ C Q

d(g,i) the transition function or transition matrix be-

tween states. Given a state ¢ € and an input
symbol i € Z, 8(qg,{) returns a new state ¢’ € Q.
0 is thus a relation from Q x 2 to Q;

For the sheeptalk automaton in Fig. 2.10, QO = {40,91,92,93,q4}, = = {a,b, '},
F = {q4}, and 8(q,1) is defined by the transition table above.

Figure 2.12 presents an algorithm for recognizing a string using a state-transition
table. The algorithm is called D-RECOGNIZE for “deterministic recognizer”. A deter-
ministic algorithm is one that has no choice points; the algorithm always knows what
to do for any input. The next section introduces non-deterministic automata that must
make decisions about which states to move to.

D-RECOGNIZE takes as input a tape and an automaton. It returns accept if the string
it is pointing to on the tape is accepted by the automaton, and rejecr otherwise. Note
that since D-RECOGNIZE assumes it is already pointing at the string to be checked, its
task is only a subpart of the general problem that we often use regular expressions for.
finding a string in a corpus. (The general problem is left as Exercise 2.9 for the reader.)

D-RECOGNIZE begins by setting the variable index to the beginning of the tape, and
current-state to the machine’s initial state. D-RECOGNIZE then enters a loop that drives

Section 2.2. Finite-State Automata 29

function D-RECOGNIZE(tape, machine) returns accept or reject

index «— Beginning of tape
current-state +— Initial state of machine
loop
if End of input has been reached then
if current-state is an accept state then
return accept
else
return reject
elsif rransition-table[current-state,tape[indexj] is empty then
return reject
else
current-state — transition-table[current-state,tapefindex]]
index «— index + 1
end

LAFIPAP] An algorithm for deterministic recognition of FSAs. This algorithm returns ac-
cept if the entire string it is pointing at is in the language defined by the FSA, and reject if the
string is not in the language.

the algorithm. It first checks whether it has reached the end of its input. If so, it either
accepts the input (if the current state is an accept state) or rejects the input (if not).

If there is input left on the tape, D-RECOGNIZE looks at the transition table to decide
which state to move to. The variable current-state indicates which row of the table to
consult, and the current symbol on the tape indicates which column of the table to
consult. The resulting transition-table cell is used to update the variable current-state
and index is incremented to move forward on the tape. If the transition-table cell is
empty, then the machine has nowhere to go and must reject the input.

Figure 2.13 traces the execution of this algorithm on the sheep language FSA given
the sample input string baaa/. ‘

OO0

(AT AR] Tracing the execution of FSA #1 on some sheeptalk.

Before examining the beginning of the tape, the machine is in state go. Finding a b
on input tape, it changes to state g, as indicated by the contents of transition-table[qy,b)
on page 28. It then finds an a and switches to state g», another a puts it in state g3, a
third a leaves it in state g3, where it reads the ! and switches to state q4. Since there
is no more input, the end of input condition at the beginning of the loop is satisfied for
the first time and the machine halts in g4. State g4 is an accepting state, so the machine
has accepted the string baaa/ as a sentence in the sheep language.

30 Chapter 2,

Regular Expressions and Automata

Fuil stare

Formal language

Alphabet

The algorithm fails whenever there is no legal transition for a given combination of
state and input. The input abe will fail 1o be recognized since there is no legal transition
out of state ¢o on the input a (i.c., this entry of the transition table on page 28 has a 01,
Even if the automaton had allowed an initial a, it would have certainly failed on ¢ since
¢ isn’teven in the sheeptalk alphabet! We can think of these “empty” elements in the
table as if they all pointed at one “empty™ state, which we might call the fail state or
sink state. In a sense then. we could view any machine with empty transitions as if we
had augmented it with a fail state and had drawn in all the extra arcs so that we always
had somewhere to go from any state on any possible input. Just for completeness.
Fig. 2.14 shows the FSA from Fig. 2.10 with the fail state ¢ filled in.

WHINE] Adding a fail state to Fig. 2.10.

2.2.2 Formal Languages

We can use the same graph in Fig. 2.10 as an automaton for GENERATING sheeptalk.
If we do, we would say that the automaton starts at state go and crosses arcs to new
states, printing out the symbols that label each arc it follows. When the automaton gets
to the final state it stops. Notice that at state ¢3. the automaton has to choose between
printing a ! and going to state ¢4. or printing an a and returning to state gs. Let’s suy
for now that we don’t care how the machine makes this decision; maybe it flips a coin.
For now. we don’t care which exact string of sheeptalk we generate. as long as it’s a
string captured by the regular expression for sheeptalk above.

Formal Language: A model that can both generate and recognize all and only
the strings of a formal language acts as a definition of the formal language.

A formal language is a set of strings, each string composed of symbols from a
finite symbol set called an alphabet (the same alphabet used above for defining an
automaton). The alphabet for the sheep language is the set £ = {a.h. !}, Given «
model m (such as a particular FSA). we can use Lim) to mean “the formal language
characterized by m”. So the formal language defined by our sheeptalk automaton i in
Fig. 2.10 (and the transition table on page 28) is the infinite set

Lim) = {baa!.buaa!.baaaa!. baaaaa. baaaaaa. . ..} 2.1

The usefulness of an automaton for defining a language is that it can express an in-
finite set (such as the one above) in a closed form. Formal languages are not the same

Section 2.2. Finite-State Automata 31

Naural language as natural languages, which are the languages that real people speak. In fact, a formal
language may bear no resemblance at all to a real language (e.g., a formal language can
be used to model the different states of a soda machine). But we often use a formal lan-
guage to model part of a natural language, such as parts of the phonology, morphology,
or syntax. The term generative grammar is sometimes used in linguistics to mean a
grammar of a formal language; the origin of the term is this use of an automaton to
define a language by generating all possible strings.

2.2.3 Another Example

In the previous examples, our formal alphabet consisted of letters; but we can also
have a higher-level alphabet consisting of words. In this way we can write finite-state
automata that model facts about word combinations. For example, suppose we wanted
to build an FSA that modeled the subpart of English dealing with amounts of money.
Such a formal language would model the subset of English consisting of phrases like
ten cents, three dollars, one dollar thirty-five cents, and so on.

We might break this down by first building just the automaton to account for the
numbers from 1 to 99, since we’ll need them to deal with cents. Figure 2.15 shows

this.
one S eleven fifteen
two sgv;n twelve sixteen
three ©I9 thiteen seventsen

four

fourteen eighteen
nineteen

twenty sixty
thity seventy

two seven

forty eighty three eight
fifty ninety four nine
five

NP RE] An FSA for the words for English numbers 1-99.

We could now add cents and dollars to our automaton. Figure 2.16 shows a simple
version of this, where we just made two copies of the automaton in Fig. 2.15 with
minor changes, and appended the words cents and dollars.

one six ten sixty eleven sixteen
two seven twenty sevenly twelve seventeen
three eight thity eighty thiteen eighteen
four nine forly ninety fourteen nineteen
cents five fift ifteen

one six ten sixty eleven sixteen
two seven twenty sevently twelve seventeen
three eight thity eighty thitteen eighteen
four nine forty ninety fourteen nineteen
five fift i

doliars

twenty sixty twenty sixty six

thirty seventy two seven thirty seventy two seven

forty eighty three eight forty eighty three exght

fifty ninety four nine fity mnety four nne
five five

m FSA for the simple dollars and cents.

We would now need to add in the grammar for difterent amounts of dollars: in-
cluding higher numbers like fundred. thousand. We'd also need to make sure that the

32 Chapter 2.

Regular Expressions and Automata

Non-deterministic
NFSA

DFSA

€-transition

nouns like cents and dollars are singular when appropriate (one cent, one dollar). and
plural when appropriate (ren cents, fwo dollars). This is left as an exercise for the
reader (Exercise 2.3). We can think of the FSAs in Fig. 2.15 and Fig. 2.16 as simple
grammars of parts of English. We return to grammar-building in Part I1I of this book,
particularly in Chapter 12.

2.2.4 Non-Deterministic FSAs
Let’s extend our discussion now to another class of FSAs: non-deterministic FSAs

(or NFSAs). Consider the sheeptalk automaton in Fig. 2.17, which is much like our
first automaton in Fig. 2.10.

[GTCPANl A non-deterministic finite-state automaton for talking sheep (NFSA #1). Com-
pare with the deterministic automaton in Fig. 2.10.

The only difference between this automaton and the previous one is that here in
Fig. 2.17 the self-loop is on state 2 instead of state 3. Consider using this network as
an automaton for recognizing sheeptalk. When we get to state 2, if we see an a we
don’t know whether to remain in state 2 or go on to state 3. Automata with decision
points like this are called non-deterministic FSAs (or NFSAs). Recall by contrast
that Fig. 2.10 specified a deterministic automaton, that is one whose behavior during
recognition is fully determined by the state it is in and the symbol it is looking at. A
deterministic automaton can be referred to as a DFSA. That is not true for the machine
in Fig. 2.17 (NFSA #1).

Another common type of non-determinism is one caused by arcs that have no sym-
bols on them (called e-transitions). The automaton in Fig. 2.18 defines exactly the
same language as the last one and our first one, but it does it with an e-transition.

ISR WBE] Another NFSA for the sheep language (NFSA #2). It differs from NFSA #1 in
Fig. 2.17 in having an e-transition.

We interpret this new arc as follows: If we are in state g3, we are allowed to move
to state g, without looking at the input or advancing our input pointer. So this intro-
duces another kind of non-determinism—we might not know whether to follow the
¢-transition or the ! arc.

Section 2.2. Finite-State Automata 33

Backup

Look-ahead

Parallelism

Search-state

2.2.5 Use of an NFSA to Accept Strings

If we want to know whether a string is an instance of sheeptalk and if we use a non-
deterministic machine to recognize it, we might follow the wrong arc and reject it
when we should have accepted it. That is, since there is more than one choice at some
point, we might take the wrong choice. This problem of choice in non-deterministic
models will come up again and again as we build computational models, particularly
for parsing. There are three standard solutions to the problem of non-determinism:

e Backup: Whenever we come to a choice point, we could put a marker to mark
where we were in the input and what state the automaton was in. Then if it turns
out that we took the wrong choice, we could back up and try another path.

e Look-ahead: We could look ahead in the input to help us decide which path to
take.

¢ Parallelism: Whenever we come to a choice point, we could look at every
alternative path in parallel.

We focus here on the backup approach and defer discussion of the look-ahead and
parallelism approaches to later chapters.

The backup approach suggests that we should blithely make choices that might
lead to dead ends, knowing that we can always return to the unexplored alternatives.
There are two keys to this approach: we need to remember all the alternatives for each
choice point, and we need to store sufficient information about each alternative so that
we can return to it when necessary. When a backup algorithm reaches a point in its
processing where no progress can be made (because it runs out of input or has no
legal transitions), it returns to a previous choice point, selects one of the unexplored
alternatives, and continues from there. Applying this notion to our non-deterministic
recognizer, we need only remember two things for each choice point: the state, or
node, of the machine that we can go to and the corresponding position on the tape. We
will call the combination of the node and position the search-state of the recognition
algorithm. To avoid confusion, we will refer to the state of the automaton (as opposed
to the state of the search) as a node or a machine-state.

Before going on to describe the main part of this algorithm, Input
we should note two changes to the transition table that drives State b a |
it. First, to represent nodes that have outgoing e-transitions, 0 16 0
we add a new e-column to the transition table. If a node has 1 62 0
an e-transition, we list the destination node in the e-column for 2 0 230

3 00 4
4 e 0

that node’s row. The second addition is needed to account for
multiple transitions to different nodes from the same input sym-
bol. We let each cell entry consist of a list of destination nodes
rather than a single node. On the right we show the transition table for the machine in
Fig. 2.17 (NFSA #1). While it has no e*transitions. it does show that in machine-state
g>. the input @ can lead back to ¢» or on to ¢s.

Figure 2.19 shows the algorithm for using a non-deterministic FSA to recognize an
input string. The function ND-RECOGNIZE uses the variable agenda to keep track of
all the currently unexplored choices generated during the course of processing. Each

TS S,

34 Chapter 2.

Regular Expressions and Automata

choice (search-state) is a tuple consisting of a node (state) of the machine and a posi-
tion on the tape. The variable current-search-state represents the branch choice being
currently explored.

ND-RECOGNIZE begins by creating an initial search-state and placing it on the
agenda. For now we don’t specify in what order the search-states are placed on the
agenda. This search-state consists of the initial machine-state of the machine and a
pointer to the beginning of the tape. The function NEXT is then called to retrieve an
item from the agenda and assign it to the variable current-search-state.

As with D-RECOGNIZE, the first task of the main loop is to determine if the en-
tire contents of the tape have been successfully recognized. This is done by a call
to ACCEPT-STATE?, which returns accept if the current search-state contains both an
accepting machine-state and a pointer to the end of the tape. If we're not done, the
machine generates a set of possible next steps by calling GENERATE-NEW-STATES,
which creates search-states for any e-transitions and any normal input-symbol transi-
tions from the transition table. All of these search-state tuples are then added to the
current agenda.

Finally, we attempt to get a new search-state to process from the agenda. If the
agenda is empty, we’ve run out of options and have to reject the input. Otherwise, an
unexplored option is selected and the loop continues.

It is important to understand why ND-RECOGNIZE returns a value of reject only
when the agenda is found to be empty. Unlike D-RECOGNIZE, it does not return reject
when it reaches the end of the tape in a non-accept machine-state or when it finds
itself unable to advance the tape from some machine-state. This is because, in the non-
deterministic case, such roadblocks indicate failure only down a given path, not overall
failure. We can only be sure we can reject a string when all possible choices have been
examined and found lacking.

Figure 2.20 illustrates the progress of ND-RECOGNIZE as it attempts to handle the
input baaa!. Each strip illustrates the state of the algorithm at a given point in its
processing. The current-search-state variable is captured by the solid bubbles repre-
senting the machine-state along with the arrow representing progress on the tape. Each
strip lower down in the figure represents progress from one current-search-state to the
next.

Little of interest happens until the algorithm finds itself in state g, while looking at
the second a on the tape. An examination of the entry for transition-table[g,a] returns
both ¢» and g3. Search states are created for each of these choices and placed on the
agenda. Unfortunately, our algorithm chooses to move to state g3, a move that results
in neither an accept state nor any new states since the entry for transition-table[gs,
a] is empty. At this point, the algorithm simply asks the agenda for a new state to
pursue. Since the choice of returning to ¢, from g2 is the only unexamined choice
on the agenda, it is returned with the tape pointer advanced to the next a. Somewhat
diabolically, ND-RECOGNIZE finds itself faced with the same choice. The entry for
transition-table[¢2.a] still indicates that looping back to ¢ or advancing to g1 are valid
choices. As before, states representing both are placed on the agenda. These search
states are not the same as the previous ones since their tape index values have advanced.
This time the agenda provides the move to ¢z as the next move. The move to ¢4. and
success, Is then uniquely determined by the tape and the transition table.

Section 2.2, Finite-State Automata 35

SWEES e t

function ND—RECOGNIZE(mpe, machine) returns accept or reject

agenda — {(Initial state of machine, beginning of tape)}
current-search-state «— N EXT(agenda)
loop
if ACCEPT—STATE?(current-search-srate) returns true then
return accept
else
agenda — agenda U GENERATE-N EW-§ TATES(current-search-state)
if agenda is empty then
return reject
else
current-search-stare «— NEX T(agenda)
end

function GENERATE—NEW—STATES(current-state) returns a set of search-states

current-node «— the node the current search-state is in
index +—the point on the tape the current search-state is looking at
return a list of search states from transition table as follows:
(transition-table/ current-node,e], index)
U
(transition—table[current—node, tape[index]], index + I)

function ACCEPT-STATE ?(search-state) returns true or false

current-node — the node search-state is in
index « the point on the tape search-state is looking at
if index is at the end of the tape and current-node is an accept state of machine
then

return true
else
return false

Figure 2. 19N algorithm for NFSA recognition. The word node means a state of the FSA,
and state or search-state means “the state of the search process”, i.e., a combination of node and
tape position.

2.2.6 Recognition as Search

ND-RECOGNIZE accomplishes the task of recognizing strings in a regular language by
providing a way to systematically explore all the possible paths through a machine. If
this exploration yields a path ending in an accept state. ND-RECOGNIZE accepts the
string: otherwise. it rejects the string. This systematic exploration is made possible by
the agenda mechanism. which on cuch iteration selects a partial path to explore and
keeps track of any remaining. as vet unexplored. partial paths.

Algorithms. such as ND-RECOGNIZE, which operate by systematically searching
for solutions. are known as state-space search algorithms. In such algorithms. the
problem definition creates space of possible sofutions: the goal is to explore this

spdce. returning an answer when one is found or rejecting the mput when the spiee

36 Chapter 2.

Regular Expressions and Automata

Depth-first

@

1 {lelalala[t[[]7

has been exhaustively explored. In ND-RECOGNIZE, search states consist of pairings
of machine-states with positions on the input tape. The state-space consists of all the
pairings of machine-state and tape positions that are possible given the machine in
question. The goal of the search is to navigate through this space from one state to
another, looking for a pairing of an accept state with an end of tape position.

The key to the effectiveness of such programs is often the order in which the states
in the space are considered. A poor ordering of states may lead to the examination of
a large number of unfruitful states before a successful solution is discovered. Unfortu-
nately, it is typically not possible to tell a good choice from a bad one, and often the
best we can do is to ensure that each possible solution is eventually considered.

Careful readers may have noticed that the ordering of states in ND-RECOGNIZE has
been left unspecified. We know only that unexplored states are added to the agenda
as they are created and that the (undefined) function NEXT returns an unexplored state
from the agenda when asked. How should the function NEXT be defined? Consider
an ordering strategy by which the states that are considered next are the most recently
created ones. We can implement such a policy by placing newly created states at the
front of the agenda and having NEXT return the state at the front of the agenda when
called. Thus, the agenda is implemented by a stack. This is commonly referred to as a
depth-first search or last in first out (LIFO) strategy.

Section 2.2. Finite-State Automata 37

Such a strategy dives into the search space following newly developed leads as
they are generated. It will only return to consider earlier options when progress along
a current lead has been blocked. The trace of the execution of ND-RECOGNIZE on the
string baaa! as shown in Fig. 2.20 illustrates a depth-first search. The algorithm hits
the first choice point after seeing ba when it has to decide whether to stay in g, or
advance to state g3. At this point, it chooses one alternative and follows it until sure
the choice was wrong. The algorithm then backs up and tries another older alternative.

Depth-first strategies have one major pitfall: under certain circumstances they can
enter an infinite loop. This is possible either if the search space happens to be set up
in such a way that a search-state can be accidentally revisited, or if there are an infinite
number of search states. We revisit this question when we turn to more complicated
search problems in parsing in Chapter 13.

The second way to order the states in the search space is to consider states in the
order in which they are created. We can implement such a policy by placing newly
created states at the back of the agenda and still have NEXT return the state at the
front of the agenda. Thus, the agenda is implemented via a queue. This is commonly

Breadthfirst— referred to as a breadth-first search or first in first out (FIFO) strategy. Consider a
different trace of the execution of ND-RECOGNIZE on the string baaa! as shown in
Fig. 2.21. Again, the algorithm hits its first choice point after seeing ba when it had to
decide whether to stay in ¢» or advance to state g3. But now rather than picking one
choice and following it up, we imagine examining all possible choices, expanding one
ply of the search tree at a time.

1
2
3
4 lolalala[t] T 1 4 {[bfafaal1[T [7
E . .
5 [plafafa[T] T T} 5 ilofalala[TT T [7 5 [T6[alalalI] [[}
.
6 {lefafalalt] [}

A breadth-first trace of FSA #1 on some sheeptalk.

40 Chapter 2. Regular Expressions and Automata

OmOR

(a)r=e (b) =0 (c) r=a

|Gl e»d Automata for the base case (no operators) for the induction showing that any
regular expression can be turned into an equivalent automaton.

e concatenation: As shown in Fig. 2.23, we just string two FSAs next to each
other by connecting all the final states of FSA; to the initial state of FSA; by an
e-transition.

e closure: As shown in Fig. 2.24, we create a new final and initial state, connect
the original final states of the FSA back to the initial states by e-transitions (this
implements the repetition part of the Kieene *), and then put direct links between
the new initial and final states by e-transitions (this implements the possibility of
having zero occurrences). We’d omit this last part to implement Kleene + instead.

AT El The closure (Kleene *) of an FSA.

e union: Finally, as shown in Fig. 2.25, we add a single new initial state g, and
add new e-transitions from it to the former initial states of the two machines to
be joined.

We return to regular languages and regular grammars in Chapter 16.

Section 2.4. Summary 41

[ITIMREERE] The union (]) of two FSAs.

2.4 Summary

This chapter introduced the most important fundamental concept in language process-
ing, the finite automaton, and the practical tool based on automaton, the regular ex-
pression. Here’s a summary of the main points we covered about these ideas:

The regular expression language is a powerful tool for pattern-matching.

Basic operations in regular expressions include concatenation of symbols, dis-
Jjunction of symbols ([1, |, and .), counters (%, +, and {n,m}), anchors (",
$) and precedence operators ((,)).

Any regular expression can be realized as a finite-state automaton (FSA).
Memory (\1 together with ()) is an advanced operation that is often considered
part of regular expressions but that cannot be realized as a finite automaton.

An automaton implicitly defines a formal language as the set of strings the
automaton accepts over any vocabulary (set of symbols).

The behavior of a deterministic automaton (DFSA) is fully determined by the
state it is in.

A non-deterministic automaton (NFSA) sometimes has to choose between mul-
tiple paths to take given the same current state and next input.

Any NFSA can be converted to a DFSA.

The order in which an NFSA chooses the next state to explore on the agenda de-
fines its search strategy. The depth-first search or LIFO strategy corresponds
to the agenda-as-stack: the breadth-first search or FIFO strategy corresponds
to the agenda-as-queue.

Any regular expression can automatically be compiled into a NFSA and hence
into a FSA.

42 Chapter 2.

Regular Expressions and Automata

Bibliographical and Historical Notes

McCulloch-Pitts
neuron

Exercises

Finite automata arose in the 1950s out of Turing’s (1936) model of algorithmic com-
putation, considered by many to be the foundation of modern computer science. The
Turing machine was an abstract machine with a finite control and an input/output tape,
In one move, the Turing machine could read a symbol on the tape, write a different
symbol on the tape, change state, and move left or right. Thus, the Turing machine
differs from a finite-state automaton mainly in its ability to change the symbols on its
tape. ‘

Inspired by Turing’s work, McCulloch and Pitts built an automata-like model of the
neuron (see von Neumann, 1963, p. 319). Their model, which is now usually called
the McCulloch-Pitts neuron (McCulloch and Pitts, 1943), was a simplified model
of the neuron as a kind of “computing element” that could be described in terms of
propositional logic. The model was a binary device, at any point either active or not,
that took excitatory and inhibitory input from other neurons and fired if its activation
passed some fixed threshold. Based on the McCulloch-Pitts neuron, Kleene (1951) and
(1956) defined the finite automaton and regular expressions and proved their equiva-
lence. Non-deterministic automata were introduced by Rabin and Scott (1959), who
also proved them equivalent to deterministic ones.

Ken Thompson was one of the first to build regular expressions compilers into edi-
tors for text searching (Thompson, 1968). His editor ed included a command “g/regular
expression/p”, or Global Regular Expression Print, which later became the Unix grep
utility.

There are many general-purpose introductions to the mathematics underlying au-
tomata theory, such as Hopcroft and Ullman (1979) and Lewis and Papadimitriou
(1988). These cover the mathematical foundations of the simple automata of this chap-
ter, as well as the finite-state transducers of Chapter 3, the context-free grammars of
Chapter 12, and the Chomsky hierarchy of Chapter 16. Friedl (1997) is a useful com-
prehensive guide to the advanced use of regular expressions.

The metaphor of problem-solving as search is basic to Artificial Intelligence (AI);
more details on search can be found in any Al textbook such as Russell and Norvig
(2002).

2.1 Write regular expressions for the following languages. You may use either
Perl/Python notation or the minimal “algebraic”™ notation of Section 2.3. but
make sure to say which one you are using. By “word”, we mean an alphabetic
string separated from other words by whitespace, any relevant punctuation, line
breaks. and so forth.

1. the set of all alphabetic strings:

2. the setof all lower case alphabetic strings ending in a b:

Exercises 43
3. the set of all strings with two consecutive repeated words (e.g., “Humbert

Humbert” and “the the” but not “the bug” or “the big bug™);

4. the set of all strings from the alphabet a, b such that each a is imrnediately
preceded by and immediately followed by a b;

5. all strings that start at the beginning of the line with an integer and that end
at the end of the line with a word;

6. all strings that have both the word grotio and the word raven in them (but
not, e.g., words like grottos that merely contain the word groto),

7. write a pattern that places the first word of an English sentence in a register.
Deal with punctuation,

2.2 Implement an ELIZA-like program, using substitutions such as those described

23 Complete the FSA for English money expressions in Fig. 2.15 ag suggested in the
text following the figure. You should handle amounts up to $100,000, and make
sure that “cent” and “dollar” have the proper plural endings when appropriate.

2.4 Design an FSA that recognizes simple date expressions like March 15, the 22nd
of November, Christmas. You should try to include all such “absolute” dates
(e.g., not “deictic” ones relative to the current day, like the day before Yesterday).
Each edge of the graph should have a word or a set of words on it. You should
use some sort of shorthand for clagses of words to avoid drawing too many arcs
(e.g., furniture —s desk, chair, table).

2.5 Now extend your date FSA to handle deictic expressions like yesterday, tomor-
row, a week from tfomorrow, the day before Yesterday, Sunday, nex: Monday,
three weeks from Saturday.

2.6 Write an FSA for time-of-day expressions like eleven o ‘clock, twelve-thirty, mid-
night, or g quarter to ten, and others.

2.7 (Thanks to Pauline Welby; this problem probably requires the ability to knit.)
Write a regular expression (or draw an FSA) that matches ali knitting patterns
for scarves with the following specification: 32 stitches wide, K1p] ribbing on
both ends, stockinerre stitch body, exactly rwo raised stripes. All knitting patterns
must include a cast-on row (to put the correct number of stitches on the needle)
and a bind-off row (to end the pattern and prevent unraveling). Here's g sample
pattern for one possible scarf matching the above description:? i

B S

> Knir and purl are two different tvpes of stitches. The notation Kn means do n knit stitches, Similarly for
purl stitches. Ribbing has a striped texture — most sweaters have ribbing at the sleeves, bottom, and neck.
Stockinette stitch is a series of knit and purl rows that produces a plain pattern— Socks or stockings are knit
with this basic pattern, hence the name.

44 Chapter 2. Regular Expressions and Automata

1. Cast on 32 stitches. cast on; puts stitches on needle
2. K1 P1 across row (i.e., do (K1 P1) 16 times). K/P/ ribbing
3. Repeat instruction 2 seven more times. adds length
4. K32,P32. stockinette stitch
5. Repeat instruction 4 an additional 13 times. adds length
6. P32,P32. raised stripe stitch
7. K32, P32 stockinette stitch
8. Repeat instruction 7 an additional 251 times. adds length
9. P32,P32. raised stripe stitch
10. K32, P32. stockinette stitch
11. Repeat instruction 10 an additional 13 times. adds length
12. K1 P1 across row. KI1PI ribbing
13. Repeat instruction 12 an additional 7 times. adds length
14. Bind off 32 stitches. binds off row: ends pattern

2.8 Write a regular expression for the language accepted by the NFSA in Fig. 2.26.

(GNP A mystery language.

2.9 Currently the function D-RECOGNIZE in Fig. 2.12 solves only a subpart of the
important problem of finding a string in some text. Extend the algorithm to solve
the following two deficiencies: (1) D-RECOGNIZE currently assumes that it is
already pointing at the string to be checked, and (2) D-RECOGNIZE fails if the
string it is pointing to includes as a proper substring a legal string for the FSA.
That is, D-RECOGNIZE fails if there is an extra character at the end of the string.

2.10 Give an algorithm for negating a deterministic FSA. The negation of an FSA
accepts exactly the set of strings that the original FSA rejects (over the same
alphabet) and rejects all the strings that the original FSA accepts.

2.11 Why doesn’t your previous algorithm work with NFSAs? Now extend your al-
gorithm to negate an NFSA.

Chapter 3
Words and Transducers

Morphological
parsing
Parsing

Surface form

How can there be any sin in sincere?
Where is the good in goodbye?
Meredith Willson, The Music Man

Chapter 2 introduced the regular expression, showing, for example, how a single search
string could help us find both woodchuck and woodchucks. Hunting for singular or
plural woodchucks was easy; the plural just tacks an s on to the end. But suppose we
were looking for another fascinating woodland creatures; let’s say a fox, a Jish, that
surly peccary, and perhaps a Canadian wilgd goose. Hunting for the plurals of these
animals takes more than Just tacking on an 5. The plural of fox is foxes; of peccary,
peccaries; and of goose, geese. To confuse matters further, fish don’t usually change
their form when they are plural.!

It takes two kinds of knowledge to correctly search for singulars and plurals of
these forms. Orthographic rules tell us that we pluralize English words ending in -y
by changing the -y to -i- and adding an -es. Morphological rules tel] us that fish has a
null plural and that the plural of goose is formed by a vowel change.

The problem of recognizing that a word (like Joxes) breaks down into component
morphemes (fox and -es) and building a structured representation of this fact is called
morphological parsing.

Parsing means taking an input and producing some sort of linguistic structure for
it. We use the term parsing very broadly throughout this book to include many kinds
of structures that might be produced; morphological, syntactic, semantic, discourse; in
the form of a string, a tree, or a network. Morphological parsing or stemming applies to
many affixes other than plurals; for example, we might need to take any English verb
form ending in -ing (going, talking, congratulating) and parse it into its verbal stem
plus the -ing morpheme. So given the surface or input form going, we might want to
produce the parsed form VERB-go + GERUND-ing.

Morphological parsing is important throughout speech and language processing, It
plays a crucial role in Web search for morphologically complex languages like Russian
or German; in Russian the word Moscow has different endings in the phrases Moscow,
of Moscow, from Moscow. and so on. We want to be able to automatically search for the
inflected forms of the word even if the user only typed in the base form. Morphologi-
cal parsing also plays a crucial roje in part-of-speech tagging for these morphologically
complex languages, as we show in Chapter 5. 1t is important for producing the large
dictionaries that are necessary for robust spell-checking. We need it in machine trans-
lation to realize, for example. that the French words vq and aller should both translate
to forms of the English verb go.

To solve the morphological parsing problem. why couldn't we Just store all the
plural forms of English nouns and -ing forms of English verbs in a dictionary and do
parsing by lookup? Sometimes we can do this, and, for example, for English speech

See, for example. Seuss 1 1960,

——

S

46 Chapter 3.

Productive

Stemming

Words and Transducers

recognition this ig exactly what we do. Byt for many NLP applications this jsn’t pos-
sible because -ing is a productive suffix; by this we mean that it applies to every verb,
Similarly -¢ applies to almost every noun. Productive suffixes even apply to new words:
thus, the new word Jax can automatically be used in the -ing form: Jaxing. Since new
words (particularly acronyms and proper nouns) are created every day, the class of
nouns in English Increases constantly and we need to be able to add the plural mor-
pheme -s to each of these. Additionally, the plural form of these new nouns depends
on the spelling/pronunciation of the singular form; for example, if the noun ends in -z,
then the plural form 18 -es rather thap -5, We’ll need to encode these rujes somewhere,

Finally, we certainly cannot [ist ajf the morphological variants of every word in

3.1 uygarla§t1ramad1k1ar1mlzdannn§s1mzcasma
uygar +lay +nr tama +dik g +imiz +dan RIS 451z +casing
civilized +Bgc +CAUS +NABL +PART +PL +PIPL +ABL +pAST +2PL +ASIf

“(behaving) as if You are among those whom we could not civiljze”

The various pieces of this word (the morphemes) have thege meanings:

+CAUS the causative verb marker (‘cause to X"

+NABL “not able”

+PART past participle form

+PIPL Ist person p! possessive agreement

+2PL 2nd person pl

+ABL ablatjve (from/among) case marker

+AslIf derivationally forms an adverp from a finite verb

Not all Turkish words look like this; the average Turkish word has about three mor-
phemes. But such long words do exist; indeed, Kemal Oflazer, who came up with this
€xample, notes (p-c.) that verbs in Turkish have 40,000 possible forms, not counting
derivationa] suffixes. Adding derivationa] suffixes, such ag Causatives, allows g theoret-
Ically infinite number of words, since causativization can be fepeated in a single word
(You cause X 1o cause Yto .. . do W). Thus, we ¢annot store all possible Turkish words
in advance and must do morphological parsing dynamicaHy.

In the next section, we survey morphological knowledge for English and some
other languages. We then introduce the key algorithm for morphological parsing, the
finite-state transducer. Finite-state transducers are a crucia] technology throughout
Speech and language processing. so we return to them again in later chapters.

After describing morphological parsing, we introduce some related algorithms in
this chapter. In some applications we don’t need to barse a word, hut we do need to
map from the word to its root or stem. For example, in information retrieval (IR) and
web search, we might want to map from foxes to fox. but might not need tq also know
that foves is plural. Just stripping off such word endings is cajled stemming in IR, We
describe a simple stemming algorithm calleq the Porter stemmer.

For other speech and language processing tasks. we peed to know that two words
have a simijar root, despite their surface differences. For example. the words sang.
Sing.and sings are g forms of the verb sing. The word sing iy sometimes called

Section 3.1. Survey of (Mostly) English Morphology 47

Lennatization

Jokeuization

the common lemma of these words, and mapping from all of these to sing is called
lemmatization.’

Next, we introduce another task related to morphological parsing. Tokenization
or word segmentation is the task of separating out (tokenizing) words from running
text. In English, words are often separated from each other by blanks (whitespace), but
whitespace is not always sufficient; we’ll need to notice that New York and rock 'n’ roll
are individual words despite the fact that they contain spaces, but for many applications
we’ll need to separate /'m into the two words I and aim.

Finally, for many applications we need to know how similar two words are or-
thographically. Morphological parsing is one method for computing this similarity;
another is to use the minimum edit distance algorithm to compare the letters in the
two words. We introduce this important NLP algorithm and also show how it can be
used in spelling correction.

3.1 Survey of (Mostly) English Morphology

Viorphene

Stem

Affix

Morphology is the study of the way words are built up from smaller meaning-bearing
units, morphemes. A morpheme is often defined as the minimal meaning-bearing unit
in a language. So, for example, the word fox consists of one morpheme (the morpheme
Jox) and the word cats consists of two: the morpheme car and the morpheme -s.

As this example suggests, it is often useful to distinguish two broad classes of
morphemes: stems and affixes. The exact details of the distinction vary from language
to language, but intuitively, the stem is the “main” morpheme of the word, supplying
the main meaning, and the affixes add “additional” meanings of various kinds.

Affixes are further divided into prefixes, suffixes, infixes, and circumfixes. Pre-
fixes precede the stem, suffixes follow the stem, circumfixes do both, and infixes are
inserted inside the stem. For example, the word eats is composed of a stem ear and the
suffix -s. The word unbuckle is composed of a stem buckle and the prefix un-. English
doesn’t really have circumfixes, but many other languages do. In German, for exam-
ple, the past participle of some verbs is formed by adding ge- to the beginning of the
stem and -7 to the end; so the past participle of the verb sagen (to say) is gesagt (said).
Infixes, in which a morpheme is inserted in the middle of a word, occur commonly,
for example, in the Philipine language Tagalog. For example, the affix wm, which
marks the agent of an action, is infixed to the Tagalog stem hingi “borrow” to produce
humingi. There is one infix that occurs in some dialects of English in which the taboo
morphemes “f**king” or “bl**dy” or others like them are inserted in the middle of
other words (““Man-f**king-hattan”, “abso-bl"‘*dy-lutely’“) (McCawley, 1978).

A word can have more than one affix. For example, the word rewrites has the prefix
re-, the stem write, and the suffix -s. The word unbelievably has a stem (beljeve) plus
three affixes (un-, -able. and -Iv). While English doesn’t tend to stack more than four

2 Lemmatization is actually more complex. since it sometimes involves deciding on which sense of a word
is present. We return to this issue in Chapter 20.

Alan Jay Lemer. the Iyricist of My Fair Lady. bowdlerized the latter to abso-bloomin ' furely in the Iyric o
“Wouldn't It Be Loverly 27 therner. 1978, p. 60).

48

Chapter 3.

Words and Transducers

Inflection
Derivation
Compounding

Cliticization

Clitic

Plural

Singular

or five affixes, languages like Turkish can have words with nine or ten affixes, as we
saw above. Languages that tend to string affixes together as Turkish does are called
agglutinative languages.

There are many ways to combine morphemes to create words. Four of these meth-
ods are common and play important roles in speech and language processing: inflec-
tion, derivation, compounding, and cliticization.

Inflection is the combination of a word stem with a grammatical morpheme, usu-
ally resulting in a word of the same class as the original stem and usually filling some
syntactic function like agreement. For example, English has the inflectional morpheme
-s for marking the plural on nouns and the inflectional morpheme -ed for marking the
past tense on verbs. Derivation is the combination of a word stem with a grammatical
morpheme, usually resulting in a word of a different class, often with a meaning hard
to predict exactly. For example, the verb computerize can take the derivational suf-
fix -ation to produce the noun computerization. Compounding is the combination of
multiple word stems together. For example, the noun doghouse is the concatenation of
the morpheme dog with the morpheme Aouse. Finally, cliticization is the combination
of a word stem with a clitic. A clitic is a morpheme that acts syntactically like a word
but is reduced in form and attached (phonologically and sometimes orthographically)
to another word. For example the English morpheme *ve in the word I've is a clitic, as
is the French definite article 7 in the word l'opera. In the following sections we give
more details on these processes.

3.1.1 Inflectional Morphology

English has a relatively simple inflectional system; only nouns, verbs, and some adjec-
tives can be inflected, and the number of possible inflectional affixes is quite small.

English nouns have only two kinds of inflection: an affix that marks plural and an
affix that marks possessive. For example, many (but not all) English nouns can either
appear in the bare stem or singular form or take a plural suffix. Here are examples of
the regular plural suffix -s (also spelled -es), and irregular plurals.

Regular Nouns Irregular Nouns
Singular cat thrush mouse ox
Plural cats thrushes mice oxen

While the regular plural is spelled -s after most nouns, it is spelled -es after words
ending in -5 (ibis/ibises), -z (waltz/waltzes), -sh (thrush/thrushes), -ch (finch/finches),
and sometimes -x (box/boxes). Nouns ending in -y preceded by a consonant change the
v to -i (butterflv/butterflies).

The possessive suffix is realized by apostrophe + -5 for regular singular nouns
(llarna’s) and plural nouns not ending in -s (children’s) and often by a lone apostro-
phe after regular plural nouns ({lamas’y and some names ending in -s or -z (Euripides’
comedies).

English verbal inflection is more complicated than nominal inflection. First. En-
glish has three kinds of verbs: main verbs. (car. sleep, impeach), modal verbs (can.
will, should), and primary verbs (be, have, do) tusing the terms of Quirk et al.. [985).

Section 3.1. Survey of (Mostly) English Morphology 49

Regular verb

Irregular verb

Preterite

Progressive

In this chapter, we are mostly concerned with the main and primary verbs because these
have inflectional endings. Of these verbs a large class are regular, that is, all verbs of
this class have the same endings marking the same functions. These regular verbs (e.g.,
walk or inspect) have four morphological forms, as follows:

Morphological Class Regularly Inflected Verbs

stem walk merge try map
-s form walks merges tries maps
-ing participle walking merging trying mapping

Past form or -ed participle ~ walked merged tried mapped

These verbs are called regular because just by knowing the stem we can predict
the other forms by adding one of three predictable endings and making some regular
spelling changes (and as we show in Chapter 7, regular pronunciation changes). These
regular verbs and forms are significant in the morphology of English: first, because they
cover a majority of the verbs; and second, because the regular class is productive. As
discussed earlier, a productive class is one that automatically includes any new words
that enter the language. For example, the recently created verb fax (My mom faxed me
the note from cousin Everett) takes the regular endings -ed, -ing, -es. (Note that the -s
form is spelled faxes rather than faxs; we will discuss spelling rules below).

The irregular verbs are those that have some more or less idiosyncratic forms of
inflection. Irregular verbs in English often have five different forms but can have as
many as eight (e.g., the verb be) or as few as three (e.g., cur or hir). While irregular
verbs constitute a much smaller class of verbs (Quirk et al. (1985) estimate there are
only about 250 irregular verbs, not counting auxiliaries), this class includes most of the
very frequent verbs of the language.* The table below shows some sample irregular
forms. Note that an irregular verb can inflect in the past form (also called the preterite)
by changing its vowel (eat/ate), its vowel and some consonants (catch/caught), or with
no change at all (cut/cur).

Morphological Class Irregularly Inflected Verbs

stem eat catch cut
-s form eats catches cuts
-ing participle eating catching cutting
preterite ate caught cut
past participle eaten caught cut

The way these forms are used in a sentence is discussed in the syntax and semantics
chapters but is worth a brief mention here. The -s form is used in the “habitual present”
form to distinguish the third-person singular ending (She jogs every Tuesday) from the
other choices of person and number (IIyounve/they jog every Tuesday). The stem form
is used in the infinitive form and also after certain other verbs (/'d rather walk home,
[want to swalk home). The -ing participle is used in the progressive construction to

* I general. the more frequent a ward form. the more likely ttis to have idiosyneratic pry perties: this is due
toa factabout language change: very frequent words tend to preserve their form even if other words around
them are changing o as to become more regular

50 Chapter 3. Words and Transducers

Gerund
Pezfevt

185G
28G
358G
1PL
2PL
3PL

mark present or Ongoing activity (It is raining) ot when the verb is treated as a noun;
this latter kind of nominal use of a verb is called a gerund: Fishing is fine if you live
near water. The -ed/-en participle is used in the perfect construction (He’s eaten lunch
already) or the passive construction (The verdict was overturned yesterday).

In addition to noting which suffixes can be attached to which stems, we need to cap-
ture the fact that a number of regular spelling changes occur at these morpheme bound-
aries. For example, a single consonant letter is doubled before the -ing and -ed suffixes
(beg/begging/begged) is added. If the final letter is «“c” the doubling is spelled “ck”
(picnic/picnicking/picnicked)‘ If the base ends in a silent -e, it is deleted before -ing
and -ed (merge/merging/merged) are added. Just as for nouns, the -s ending is spelled
-es after verb stems ending in -s (toss/tosses), -Z (waltz/waltzes), -sh (wash/washes)
-ch (catchlcatches), and sometimes -x (tax/taxes). Also like nouns, verbs ending in -y
preceded by a consonant change the -y to -i (tryltries).

The English verbal system is much simpler than for example the European Spanish
system, which has as many as 50 distinct verb forms for each regular verb. Figure 31
shows just a few of the examples for the verb amar, “to love”. Other languages can
have even more forms than this Spanish example.

Present Imperfect Future Preterite Present Conditional Imperfect Future
Indicative Indicative Subjunctive Subjunetive Subjunctive

amo

amaba amaré amé ame amaria amara amare

amas amabas amards amaste ames amarias amaras amares

ama

amaba amara amd ame amaria amara amdreme

amamos amébamos amaremos amamos amemos amariamos améramos amaremos
amais amabais amaréis amasteis améis amarfais amarais amareis
aman amaban amaran amaron amen amarfan amaran amaren

“To love” in Spanish. Some of the inflected forms of the verb amar in European Spanish. [SG stands
for “first-person singular”, 3PL for “third-person plural”, and so on.

Nominalization

3.1.2 Derivational Morphology

While English inflection is relatively simple compared to other languages, derivation
in English is quite complex. Recall that derivation is the combination of a word stem
with a grammatical morpheme, usually resulting in a word of a different class, often
with a meaning hard to predict exactly.

A common kind of derivation in English is the formation of new nouns, often from
verbs or adjectives. This process is called nominalization. For example, the suffix
-gtion produces nouns from verbs ending often in the suffix -ize (computerize — com-
puterization). Here are examples of some productive English nominalizing suffixes.

e
Suffix Base Verb/Adjective Derived Noun

Suffix base yery A e
“ation computerize (V) computerization
-ee appoint (V) appointee
-er kill (V) killer
-ness fuzzy (A) fuzziness

Adjectives can also be derived from nouns and verbs. Here are examples of a few
suffixes deriving adjectives from nouns or verbs.

Section 3.1. Survey of (Mostly) English Morphology 51

Proclitic

Enclitic

Suffix Base Noun/Verb Derived Adjective

-al computation (N) computational
-able embrace (V) embraceable
-less clue (N) clueless

Derivation in English is more complex than inflection for a number of reasons.
One is that it is generally less productive; even a nominalizing suffix like -ation, which
can be added to almost any verb ending in -ize, cannot be added to absolutely every
verb. Thus, we can’t say *earation or *spellation (we use an asterisk (*) to mark
“non-examples” of English). Another is that there are subtle and complex meaning
differences among nominalizing suffixes. For example, sincerity has a subtle difference
in meaning from sincereness.

3.1.3 (liticization

Recall that a clitic is a unit whose status lies between that of an affix and a word. The
phonological behavior of clitics is like affixes; they tend to be short and unaccented
(we talk more about phonology in Chapter 8). Their syntactic behavior is more like
words, often acting as pronouns, articles, conjunctions, or verbs. Clitics preceding a
word are called proclitics, and those following are enclitics.

English clitics include these auxiliary verbal forms:

Full Form Clitic Full Form Clitic
am ‘m have ve
are re has ’s

is ’s had ’d
will 1 would 'd

Note that the clitics in English are ambiguous; Thus she’s can mean she is or she
has. Except for a few such ambiguities, however, correctly segmenting clitics in En-
glish is simplified by the presence of the apostrophe. Clitics can be harder to parse
in other languages. In Arabic and Hebrew, for example, the definite article (rthe; Al
in Arabic, ia in Hebrew) is cliticized on to the front of nouns. It must be segmented
in order to do part-of-spcech tagging. parsing, or other tasks. Other Arabic proclitics
include prepositions like b “by/with® and conjunctions like w “and’. Arabic also has
enclitics marking certain pronouns. For example, the word and by their virtues has
clitics meaning and. by. and their, a stem virtue, and a plural affix. Note that since
Arabic is read right to left, these would actually appear ordered from right to left in an
Arabic word.

Proclitic Proclitic Stem Affix Enclitic
'Arabic w b Hsn At hm
 Gloss and by virtue s their ¢

3.1.4 Non-Concatenative Morphology

The kind of morphology we have discussed <o fars in swhich a word is composed of
a string of concatenated morphemes is often called concatenative morphology. A

52 Chapter 3.

Words and Transducers

Agreement

Gender

Noun class

number of languages have extensive non-concatenative morphology, in which mor-
phemes are combined in more complex ways. The Tagalog infixation example above is
one example of non-concatenative morphology since two morphemes (hingi and um)
are intermingled.

Another kind of non-concatenative morphology is called templatic morphology or
root-and-pattern morphology. This is common in Arabic, Hebrew, and other Semitic
languages. In Hebrew, for example, a verb (as well as other parts-of-speech) is con-
structed from two components: a root, consisting usually of three consonants (CCC)
and carrying the basic meaning; and a template, which gives the ordering of conso-
nants and vowels and specifies more semantic information about the resulting verb,
such as the semantic voice (e.g., active, passive, middle). For example, the Hebrew
tri-consonantal root /md, meaning ‘learn’ or ‘study’, can be combined with the active
voice CaCaC template to produce the word lamad, ‘he studied’, or the intensive Ci-
CeC template to produce the word limed, ‘he taught’, or the intensive passive template
CuCaC to produce the word lumad, ‘he was taught’. Arabic and Hebrew combine this
templatic morphology with concatenative morphology (like the cliticization example
shown in the previous section).

3.1.5 Agreement

We introduced the plural morpheme above and noted that plural is marked on both
nouns and verbs in English. We say that the subject noun and the main verb in English
have to agree in number, meaning that the two must either be both singular or both
plural. There are other kinds of agreement processes. For example, nouns, adjectives,
and sometimes verbs in many languages are marked for gender. A gender is a kind
of equivalence class that is used by the language to categorize the nouns; each noun
falls into one class. Many languages (e.g., Romance languages like French, Spanish,
or Italian) have 2 genders, which are referred to as masculine and feminine. Other
languages (like most Germanic and Slavic languages) have three (masculine, feminine,
neuter). Some languages, for example, the Bantu languages of Africa, have as many as
20 genders. When the number of classes is very large, we often refer to them as noun
classes instead of genders.

Gender is sometimes marked explicitly on a noun; for example, Spanish masculine
words often end in -0 and feminine words in -a. But in many cases the gender is not
marked in the letters or phones of the noun itself. Instead, it is a property of the word
that must be stored in a lexicon. We see an example of this in Fig. 3.2.

3.2 Finite-State Morphological Parsing

Fearure

Let’s now proceed to the problem of parsing morphology. Our goal is to take input
forms like those in the first and third columns of Fig. 3.2 and produce output forms like
those in the second and fourth column.

The second column contains the stem of each word as well as assorted morpho-
logical features. These features specify additional information about the stem. For

el

Section 3.2. Finite-State Morphological Parsing 53

Lexicon

Morphotactics

Orthographic
rules

_English- -~ ‘ Spanish
Input Morphological Parse = = Input Morphological Parse Gloss
cats cat +N +PL pavos pavo +N +Masc +P] ‘ducks’
cat cat +N +SG ‘ pavo pavo +N +Masc +Sg ‘duck’
cities city +N +P1 bebo beber +V +PInd +1P +Sg ‘I drink’
geese goose +N +P1 canto cantar +V +PInd +1P +Sg ‘I sing’
goose goose +N +Sg canto canto +N +Masc +Sg ‘song’
goose goose +V puse poner +V +Perf +1P +Sg ‘I was able’
gooses goose +V +3P +8g vino venir +V +Perf +3P +Sg ‘he/she came’
merging merge +V +PresPart vino vino +N +Masc +Sg ‘wine’
caught catch +V +PastPart lugar lugar +N +Masc +Sg ‘place’

caught catch +V +Past .
Output of a morphological parse for some English and Spanish words. Spanish
output modified from the Xerox XRCE finite-state language tools.

example, the feature +N means that the word is a noun; +8g means it is singular; +P1
that it is plural. Morphological features are referred to again in Chapter 5 and in more
detail in Chapter 15; for now, consider +Sq to be a primitive unit that means “singular”.
Spanish has some features that don’t occur in English; for example, the nouns lugar
and pavo are marked +Masc (masculine). Because Spanish nouns agree in gender with
adjectives, knowing the gender of a noun will be important for tagging and parsing.

Note that some of the input forms (like caught, goose, canto, or Vine) are am-
biguous between different morphological parses. For now, we will consider the goal
of morphological parsing merely to list all possible parses. We return to the task of
disambiguating among morphological parses in Chapter 5.

To build a morphological parser, we’ll need at least the following:

1. Lexicon: the list of stems and affixes, together with basic information about
them (whether a stem is a noun stem or a verb stem, etc.).

2. Morphotactics: the model of morpheme ordering that explains which classes of
morphemes can follow other classes of morphemes inside a word. For example,
the fact that the English plural morpheme follows the noun rather than preceding
it is a morphotactic fact.

3. Orthographic rules: these spelling rules are used to model the changes that
occur in a word, usually when two morphemes combine (e.g., the y — ie spelling
rule discussed above that changes city + -5 to cities rather than citys).

The next section discusses how to represent a simple version of the lexicon just for
the sub-problem of morphological recognition, including how to use FSAs to model
morphotactic knowledge.

In following sections we then introduce the finite-state transducer (FST) as a way of
modeling morphological features in the lexicon and addressing morphological parsing.
Finally, we show how to use FSTs to model orthographic rules.

54 Chapter 3.

Words and Transducers

3.3 Construction of a Finite-State Lexicon

A lexicon is a repository for words. The simplest possible lexicon would consist of
an explicit list of every word of the language (every word, i.e., including abbreviations
(“AAA”) and proper names (“Jane” or “Beijing”)) as follows:

a, AAA, AA, Aachen, aardvark, aardwolf, aba, abaca, aback, ...

Since it will often be inconvenient or impossible, for the various reasons we dis-
cussed above, to list every word in the language, computational lexicons are usually
structured with a list of each of the stems and affixes of the language together with a
representation of the morphotactics that tells us how they can fit together. There are
many ways to model morphotactics; one of the most common is the finite-state au-
tomaton. A very simple finite-state mode! for English nominal inflection might look
like Fig. 3.3.

reg-noun

irreg-sg-noun
IIPIERIR] A finite-state automaton for English nominal inflection.

plural -s

The FSA in Fig. 3.3 assumes that the lexicon includes regular nouns (reg-noun)
that take the regular -s plural (e.g., cat, dog, fox, aardvark). These are the vast majority
of English nouns since for now we will ignore the fact that the plural of words like fox
have an inserted e: foxes. The lexicon also includes irregular noun forms that don’t
take -s, both singular irreg-sg-noun (goose, mouse) and plural irreg-pl-noun (geese,
mice).

reg-noun irreg-pl-noun irreg-sg-noun plural

fox geese goose -8
cat sheep sheep
aardvark mice mouse

A similar model for English verbal inflection might look like Fig. 3.4.

This lexicon has three stem classes {(reg-verb-stem, irreg-verb-stem. and irreg-
past-verb-form). plus four more affix classes (-ed past. -ed participle, -ing participle.
and third singular -s):

reg-verb-stem irreg-verb-stem irreg-past-stem past past-part pres-part 3sg

walk cut caught -ed -ed -ing -8
fry speak ate

talk sing eaten

impeach sang

—d

Section 3.3. Construction of a Finite-State Lexicon 55

irreg-past-verb-form

reg-verb-stem

reg-verb-stem

irreg-verb-stem

JUCRRT A finite-state automaton for English verbal inflection.

English derivational morphology is significantly more complex than English inflec-
tional morphology, and so automata for modeling English derivation tend to be quite
complex. Some models of English derivation, in fact, are based on the more complex
context-free grammars of Chapter 12 (see also (Sproat, 1993)).

Consider a relatively simpler case of derivation: the morphotactics of English ad-
Jectives. Here are some examples from Antworth (1990):

big, bigger, biggest, cool, cooler, coolest, coolly
happy, happier, happiest, happily red, redder, reddest
unhappy, unhappier, unhappiest, unhappily real, unreal, really

clear, clearer, clearest, clearly, unclear, unclearly

An initial hypothesis might be that adjectives can have an optional prefix (#n-), an
obligatory root (big, cool, etc.), and an optional suffix (-e, -est, or -ly). This might
suggest the FSA in Fig. 3.5.

adj-root ___ -er -est

€

JPUCRE] An FSA for a fragment of English adjective morphology: Antworth’s Proposal #1.

Alas, while this FSA will recognize all the adjectives in the table above, it will also
recognize ungrammatical forms like unbig, unfast, oranger, or smally. We need to set
up classes of roots and specify their possible suffixes. Thus, adj-root; would include
adjectives that can occur with un- and -ly (clear, happy, and real), and adj-root; will
include adjectives that can’t (big, small), and so on.

This gives an idea of the complexity to be expected from English derivation. As a
further example, we give in Fig. 3.6 another fragment of an FSA for English nominal
and verbal derivational morphology, based on Sproat (1993), Bauer (1983), and Porter
(1980). This FSA models a number of derivational facts, such as the well-known gener-
alization that any verb ending in -ize can be followed by the nominalizing suffix -ation
(Bauer, 1983; Sproat, 1993). Thus, since there is a word Jossilize, we can predict the
word fossilization by following states qo, ¢1, and g;. Similarly, adjectives ending in
-al or -able at gs (equal, formal, realizable) can take the suffix -ity, or sometimes the
suffix -ness to state ge (naturalness, casualness). We leave it as an exercise for the

S

56 Chapter 3.

Words and Transducers

reader (Exercise 3.1) to discover some of the individual exceptions to many of these
constraints and also to give examples of some of the various noun and verb classes.

-ation/N

Ll el

[BTTIYER] An FSA for another fragment of English derivational morphology.

We can now use these FSAs to solve the problem of morphological recognition;

that is, of determining whether an input string of letters makes up a legitimate English

word. We do this by taking the morphotactic FSAs and plugging each “sub-lexicon™ -
into the FSA. That is, we expand each arc (e.g., the reg-noun-stem arc) with all the -
morphemes that make up the set of reg-noun-stem. The resulting FSA can then be |

defined at the level of the individual letter.

Figure 3.7 shows the noun-recognition FSA produced by expanding the nominal
inflection FSA of Fig. 3.3 with sample regular and irregular nouns for each class. We |

can use Fig. 3.7 to recognize strings like aardvarks by simply starting at the initial state
and comparing the input letter by letter with each word on each outgoing arc, and so
on, just as we saw in Chapter 2.

Expanded FSA for a few English nouns with their inflection. Note that this au-
tomaton will incorrectly accept the input foxs. We see, beginning on page 62, how to correctly
deal with the inserted ¢ in foxes.

Section 3.4, Finite-State Transducers 57

3.4 Finite-State Transducers

FST

We’ve now seen that FSAs can represent the morphotactic structure of a lexicon and can
be used for word recognition. In this section, we introduce the finite-state transducer.
The next section shows how transducers can be applied to morphological parsing.

A transducer maps between one representation and another: a finite-state trans-
ducer, or FST, is a type of finite automaton which maps between two sets of symbols.
We can visualize an FST as a two-tape automaton that recognizes or generates pairs of
strings. Intuitively, we can do this by labeling each arc in the finite-state machine with
two symbol strings, one from each tape. Figure 3.8 shows an example of an FST where
each arc is labeled by an input and output string, separated by a colon.

[GTONYOREY A finite-state transducer.

The FST thus has a more general function than an FSA; where an FSA defines a
formal language by defining a set of strings, an FST defines a relation between sets of
strings. Another way of looking at an FST is as a machine that reads one string and
generates another. Here’s a summary of this fourfold way of thinking about transduc-
ers:

o FST as recognizer: a transducer that takes a pair of strings as input and outputs;
accept if the string-pair is in the string-pair language, and reject if it is not.

« FST as generator: a machine that outputs pairs of strings of the language. Thus,
the output is a yes or no, and a pair of output strings.

o FST as translator: a machine that reads a string and outputs another string.

o FST as set relater: a machine that computes relations between sets.

All of these have applications in speech and language processing. For morpholog-
ical parsing (and for many other NLP applications), we apply the FST as translator
metaphor, taking as input a string of letters and producing as output a string of mor-
phemes. .

Let’s begin with a formal definition. An FST can be formally defined with seven
parameters:

58 Chapter 3.

Words and Transducers

Regular relation

Intersection

Inversion

Compaosition

Preosjes tton

[

|

Q a finite set of NV states gg,q1,...,gn-1

Z a finite set corresponding to the input alphabet

A a finite set-corresponding to the output alphabet

go € Q the start state

FCQ the set of final states .
d(q,w) the transition function or transition matrix between stateé. Given a

state g € Q and a string w € £*, § (g, w), returns a set of new states
Q' € Q. 8 is thus a function from 0 X £* to 29 (because there are
29 possible subsets of Q). 8 returns a set of states rather than a
single state because a given input may be ambiguous as to which
state it maps to.

o(gq,w) the output function giving the set of possible output strings for each
state and input. Given a state ¢ € Q and a string w € ¥, o(q,w)
gives a set of output strings, each a string 0 € A*. o is thus a func-
tion from Q x £* to 28",

Whereas FSAs are isomorphic to regular languages, FSTs are isomorphic to regu-
lar relations. Regular relations are sets of pairs of strings, a natural extension of the
regular languages, which are sets of strings. Like FSAs and regular languages, FSTs
and regular relations are closed under union, although in general they are not closed un-
der difference, complementation, and intersection (although some useful subclasses of
FSTs are closed under these operations; in general, FSTs that are not augmented with
the € are more likely to have such closure properties). Besides union, FSTs have two
additional closure properties that turn out to be extremely useful:

Inversion: The inversion of a transducer 7 (7~!) simply switches the
input and output labels. Thus, if T maps from the input alphabet I to
the output alphabet O, T~ maps from O to I.

Composition: If T is a transducer from /; to O; and T, a transducer
from O to O, then T} o T maps from /; to O,.

Inversion is useful because it makes it easy to convert an FST-as-parser into an
FST-as-generator.

Composition is useful because it allows us to replace two transducers that run in
series with one, more complex, transducer. Composition works as in algebra; apply-
ing Ty o T» to an input sequence S is identical to applying Ty to S and then 75 to the
result: thus, Ty o T2(S) = T2 (T1(S)). Figure 3.9 shows, for example, the composition of
[a:b]+ with [b:c]+toproduce [azc]+.

Figure 3.9

The projection of an FST is the FSA that is produced by extracting onfy one side

Section 3.4. Finite-State Transducers 59

Sequential
transducers

Subsequential
transducer

of the relation. We can refer to the projection to the left or upper side of the relation as
the upper or first projection and the projection to the lower or right side of the relation
as the lower or second projection.

3.4.1 Sequential Transducers and Determinism

Transducers as we have described them may be nondeterministic, in that a given input
may translate to many possible output symbols. Thus, using general FSTs requires
the kinds of search algorithms discussed in Chapter 2, making FSTs quite slow in
the general case. This suggests that it would nice to have an algorithm to convert
a non-deterministic FST to a deterministic one. But while every non-deterministic
FSA is equivalent to some deterministic FSA, not all finite-state transducers can be
determinized.

Sequential transducers, by contrast, are a subtype of transducers that are deter-
ministic on their input. At any state of a sequential transducer, each given symbol of
the input alphabet X can label at most one transition out of that state. Figure 3.10 gives
an example of a sequential transducer from Mohri (1997); note that here, unlike the
transducer in Fig. 3.8, the transitions out of each state are deterministic, based on the
state and the input symbol. Sequential transducers can have epsilon symbols in the
output string, but not on the input.

. b
ab ‘

TN CRBI] A sequential finite-state transducer, from Mohri (1997).

Sequential transducers are not necessarily sequential on their output. Mohri’s trans-
ducer in Fig. 3.10 is not, for example, since two distinct transitions leaving state 0 have
the same output (b). Since the inverse of a sequential transducer may thus not be se-
quential, we always need to specify the direction of the transduction when discussing
sequentiality. Formally, the definition of sequential transducers modifies the § and o
functions slightly; 8 becomes a function from Q x X* to Q (rather than to 29), and o
becomes a function from Q x Z* to A* (rather than to 22%).

A generalization of sequential transducers, the subsequential transducer, gen-
erates an additional output string at the final states, concatenating it onto the output
produced so far (Schiitzenberger, 1977). What makes sequential and subsequential
transducers important is their efficiency; because they are deterministic on input, they
can be processed in time proportional to the number of symbols in the input (they are
linear in their input length) rather than proportional to some much larger number that
is a function of the number of states. Another advantage of subsequential transduc-
ers is that there exist efficient algorithms for their determinization (Mohri, 1997) and
minimization (Mohri, 2000), extending the algorithms for determinization and mini-
mization of finite-state automata that we saw in Chapter 2.

While both sequential and subsequential transducers are deterministic and efficient.
neither of them can handle ambiguity. since they transduce each input string to exactly

60 Chapter 3.

Words and Transducers

one possible output string. Since ambiguity is a crucial property of natural language,
it will be useful to have an extension of subsequential transducers that can deal with
ambiguity but still retain the efficiency and other useful properties of sequential trans-
ducers. One such generalization of subsequential transducers is the p-subsequential
transducer. A p-subsequential transducer allows for p(p > 1) final output strings to
be associated with each final state (Mohri, 1996). They can thus handle a finite amount
of ambiguity, which is useful for many NLP tasks. Figure 3.11 shows an example of a
2-subsequential FST.

BTNl A 2-subsequential finite-state transducer, from Mohri (1997).

Mohri (1996, 1997) shows a number of tasks whose ambiguity can be limited in
this way, including the representation of dictionaries, the compilation of morphological
and phonological rules, and local syntactic constraints. For each of these kinds of
problems, he and others have shown that they are p-subsequentializable and thus can
be determinized and minimized. This class of transducers includes many, although not
necessarily all, morphological rules.

3.5 FSTs for Morphological Parsing

Surface level

Lexical rape

Let’s now turn to the task of morphological parsing. Given the input cats, for instance,
we’d like to output car +N +Pl, telling us that cat is a plural noun. Given the Spanish
input bebo (“I drink™), we’d like beber +V +Plnd +1P +Sg, telling us that bebo is the
present indicative first person singular form of the Spanish verb beber, “to drink”.

In the finite-state morphology paradigm that we use, we represent a word as a cor-
respondence between a lexical level, which represents a concatenation of morphemes
making up a word, and the surface level, which represents the concatenation of let-
ters making up the actual spelling of the word. Figure 3.12 shows these two levels for
(English) cats.

Lexical

Surface

[TTIIRRB P Schematic examples of the lexical and surface tapes; the actual transducers in-
volve intermediate tapes as well.

For finite-state morphology, it’s convenient to view an FST as having two tapes.
The upper or lexical tape is composed from characters from one alphabet Z. The

Section 3.5. FSTs for Morphological Parsing 61

Feasible pair

Default pair

Morpheme
boundary

#
Word boundary

lower or surface tape is composed of characters from another alphabet A. In the two-
level morphology of Koskenniemi (1983), each arc is allowed to have a single symbol
from each alphabet. We can then combine the two symbol alphabets T and A to create
a new alphabet, £’, which makes the relationship to FSAs quite clear. 3’ is a finite
alphabet of complex symbols. Each complex symbol is composed of an input-output
pair i : o, that has one symbol i from the input alphabet %, and one symbol ¢ from an
output alphabet A; thus, =’ C X x A. 2 and A may each also include the epsilon symbol
€. Thus, whereas an FSA accepts a language stated over a finite alphabet of single
symbols, such as the alphabet of our sheep language:

2={b,a,'} 3.2)
an FST defined this way accepts a language stated over pairs of symbols, as in
Y={aia,b:b:l,a:l,a:e e:1} (3.3)

In two-level morphology, the pairs of symbols in X’ are also called feasible pairs.
Thus, each feasible pair symbol a : b in the transducer alphabet 3’ expresses how the
symbol a from one tape is mapped to the symbol b on the other tape. For example,
a : € means that an a on the upper tape will correspond to nothing on the lower tape.
Just as for an FSA, we can write regular expressions in the complex alphabet X', Since
it’s most common for symbols to map to themselves, in two-level morphology we call
pairs like a : a default pairs and just refer to them by the single letter a.

We are now ready to build an FST morphological parser out of our earlier mor-
photactic FSAs and lexica by adding an extra “lexical” tape and the appropriate mor-
phological features. Figure 3.13 shows an augmentation of Fig. 3.3 with the nominal
morphological features (+Sg and +P1) that correspond to each morpheme. The sym-
bol " indicates a morpheme boundary, and the symbol # indicates a word boundary.
The morphological features map to the empty string € or the boundary symbols since
no segment on the output tape corresponds to them.

reg-noun

irreg-sg-noun

irreg-pl-noun o

A schematic transducer for English nominal number inflection Tpym,. The sym-
bols above each arc represent elements of the morphological parse in the lexical tape; the symbols
below each arc represent the surface tape (or the intermediate tape, described later), using the
morpheme-boundary symbol * and word-boundary marker #. The labels on the arcs leaving gg
are schematic and must be expanded by individual words in the lexicon.

In order for us to use Fig. 3.13 as a morphological noun parser, it needs to be
expanded with all the individual regular and irregular noun stems, replacing the labels

Section 3.6, Transducers and Orthographic Rules 63

Spelling rule

Lexical § | f] o] x [+N]+P] R

Intermediate § | f[o[x]4] s|#] [{

A schematic view of the lexical and intermediate tapes.

Figure 3.15

which there is a spelling change; it would incorrectly reject an input like foxes and
accept an input like foxs. We need to deal with the fact that English often requires
spelling changes at morpheme boundaries by introducing spelling rules (or ortho-
graphic rules) This section introduces a number of notations for writing such rules
and shows how to implement the rules as transducers. In general, the ability to im-
plement rules as a transducer turns out to be useful throughout speech and language
processing. Here are some spelling rules:

Name Description of Rule ; Example

Consonant 1-letter consonant doubled before -ing/-ed beg/begging
doubling FEN R : ; ‘ it =R A

E deletion silent e dropped before -ing and -ed - - make/making

E insertion - e added after -s,-z,-x,-ch, -sh before -5 . watch/watches

Y replacement -y changes to -ie before -s, -i before -ed try/tries

K insertion verbs ending with vowel + -cadd -k panic/panicked

We can think of these spelling changes as taking as input a simple concatenation of
morphemes (the “intermediate output” of the lexical transducer in Fig. 3.14) and pro-
ducing as output a slightly modified (correctly spelled) concatenation of morphemes.
Figure 3.16 shows in schematic form the three levels we are talking about: lexical,
intermediate, and surface. So, for example, we could write an E-insertion rule that
performs the mapping from the intermediate to surface levels shown in Fig. 3.16.

Lexical § | £ o] x[+N[+PI] g

ermediste TTTTRTXIATSTEITT

Surface E [fio|x]a[s]] P{
WITCRRT] An example of the lexical, intermediate, and surface tapes. Between each pair
of tapes is a two-level transducer; the lexical transducer of Fig. 3.14 between the lexical and
intermediate levels, and the E-insertion spelling rule between the intermediate and surface levels.
The E-insertion spelling rule inserts an ¢ on the surface tape when the intermediate tape has a
morpheme boundary " followed by the morpheme -s.

Such a rule might say something like “insert an ¢ on the surface tape just when
the lexical tape has a morpheme ending in x (or z, etc.) and the next morpheme is -5
Here's a formalization of the rule:

64 Chapter 3.

Words and Transducers

-

e—e/ —S# (3.4)

%)

&1

This is the rule notation of Chomsky and Halle (1968); a rule of the form a —
b/c___d means “rewrite a as b when it occurs between ¢ and 4 . Since the symbol
¢ means an empty transition, replacing it means inserting something. Recall that the
symbol " indicates a morpheme boundary. These boundaries are deleted by inclusion
of the symbol "¢ in the default pairs for the transducer; thus, morpheme boundary
markers are deleted on the surface level by default. The # symbol is a special symbol
that marks a word boundary. Thus (3.4) means “insert an € after a morpheme-final x,
s, or z, and before the morpheme s”. Figure 3.17 shows an automaton that corresponds
to this rule.

other

The transducer for the E-insertion rule of (3.4), extended from a similar trans-
ducer in Antworth (1990). We additionally need to delete the # symbol from the surface string;
we can do this either by interpreting the symbol # as the pair #:¢ or by postprocessing the output
to remove word boundaries.

The idea in building a transducer for a particular rule is to express only the con-~
straints necessary for that rule, allowing any other string of symbols to pass through
unchanged. This rule ensures that we can only see the e:e pair if we are in the proper
context. So state g, which models having seen only default pairs unrelated to the rule,
is an accepting state, as is g1, which models having seen a z. s. or X. g models hav-
ing seen the morpheme boundary after the -, s, or x, and again is an accepting state.
State ¢3 models having just seen the E-insertion: it is not an accepting state. since the
insertion is allowed only if it is followed by the s morpheme and then the end-of-word
symbol #.

The other symbol is used in Fig. 3.17 to safcly pass through any parts of words that
don’t play a role in the E-insertion rule: other means “any feasible pair that is not in
this transducer™. So. for example, when leaving state go. We go Lo ¢y on the z. s, or X
svmbols. rather than following the orher arc and staying in go. The semantics of other
depends on what symbols are on other arcs: since # is mentioned on some arcs, it is
(by definition) not included in other and thus. for example. is explicitly mentioned on
the are from ¢z to go.

”“

Section 3.7. The Combination of an FST Lexicon and Rules 65

A transducer needs to correctly reject a string that applies the rule when it shouldn’t.
One possible bad string would have the correct environment for the E-insertion but
have no insertion. State gs is used to ensure that the e is always inserted whenever
the environment is appropriate; the transducer reaches gs only when it has seen an s
after an appropriate morpheme boundary. If the machine is in state gs and the next
symbol is #, the machine rejects the string (because there is no legal transition on #
from gs). Figure 3.18 shows the transition table for the rule that makes the illegal
transitions explicit with the “~” symbol. The next section shows a trace of this E-

insertion transducer running on a sample input string.

State \ Input s:s X:X z2:2 e €re # other
qo: 1 1 1 0 - 0 0
qr: 1 1 1 2 - 0 0
q2: 5 1 1 0 3 0 0
4 4 : . : . - -
Qs - - - - - 0o -
gs 1 1 1 2 - - 0

ITTICRAE] The state-transition table for the E-insertion rule of Fig. 3.17, extended from a
similar transducer in Antworth (1990).

37 The Combination of an FST Lexicon and Rules

Cascade

We are now ready to combine our lexicon and rule transducers for parsing and gener-
ating. Figure 3.19 shows the architecture of a two-level morphology system, whether
used for parsing or generating. The lexicon transducer maps between the lexical level,
with its stems and morphological features and an intermediate level that represents a
simple concatenation of morphemes. Then a host of transducers, each representing a
single spelling rule constraint, all run in parallel to map between this intermediate level
and the surface level. (We could instead have chosen to run all the spelling rules in
series (as a long cascade) if we slightly changed each rule.)

The architecture in Fig. 3.19 is a two-level cascade of transducers. Cascading two
automata means running them in series with the output of the first feeding the input to
the second. Cascades can be of arbitrary depth, and each level might be built out of
many individual transducers. The cascade in Fig. 3.19 has two transducers in series:
the transducer mapping from the lexical to the intermediate levels and the collection of
parallel transducers mapping from the intermediate to the surface level. The cascade
can be run top-down to generate a string. or bottom-up to parse it: Fig. 3.20 shows a
trace of the system accepting the mapping from fox +N +PL 1o foxes.

The power of finite-state transducers is that exactly the same cascade with the same
state sequences is used when the machine is generating the surface tape from the lexical
tape or when it is parsing the lexical tape from the surface tape. For exampte. for
generation, imagine leaving the Intermediate and Surface tapes blank. Now 1f we run
the lexicon transducer. given fox +N +PL. it will produce fox s# on the Intermediate

66 Chapter 3.

Words and Transducers

Ambiguity

Disambivuaiing

3 flo | X |+N|+PL | 5
| T
LEXICON-FST

JOTTIRIRAE] Generating or parsing with FST lexicon and rules.

Lexical

Tlex

Intermediate

T

e-insert

Surface

[HTRORaR] Accepting foxes: The lexicon transducer 7j,, from Fig. 3.14 cascaded with the
E-insertion transducer in Fig. 3.17.

tape via the same states that it accepted the Lexical and Intermediate tapes in our earlier
example. If we then allow all possible orthographic transducers to run in parallel, we
will produce the same surface tape.

Parsing can be slightly more complicated than generation because of the problem
of ambiguity. For example. foxes can also be a verb (albeit a rare one, meaning “to
baffle or confuse™). and hence the lexical parse for foxes could be fox +V +38g as
well as fox +N +PL. How are we to know which one is the proper parse? In fact. for
ambiguous cases of this sort. the transducer is not capable of deciding. Disambiguat-
ing will require some external evidence such as the surrounding words. Thus. foxes
is likely to be a noun in the sequence [saw nwvo foxes yesterday, but a verb in the se-
guence Thart trickster foxes me every time!. We discuss such disambiguation algorithms

il

The Combination of an FST Lexicon and Rules 67

Section 3.7.

Intersection

in Chapter 5 and Chapter 20. Barring such external evidence, the best our transducer
can do is just enumerate the possible choices so we can transduce fox"s# into both fox
+V +3SGand fox +N +PL.

There is a kind of ambiguity that we do need to handle: local ambiguity that occurs
during the process of parsing. For example, imagine parsing the input verb assess.
After seeing ass, our E-insertion transducer may propose that the e that follows is
inserted by the spelling rule (e.g., as far as the transducer is concerned, we might have
been parsing the word asses). It is not until we don’t see the # after asses, but rather
run into another s, that we realize we have gone down an incorrect path.

Because of this non-determinism, FST-parsing algorithms need to incorporate some
sort of search algorithm. Exercise 3.7 asks the reader to modify the algorithm for non-
deterministic FSA recognition in Fig. 2.19 in Chapter 2 to do FST parsing.

Note that many possible spurious segmentations of the input, such as parsing assess
as "a"s"ses”s will be ruled out since no entry in the lexicon will match this string.

Running a cascade can be made more efficient by composing and intersecting the
transducers. We’ve already seen how to compose a cascade of transducers in series
into a single more complex transducer. The intersection of two transducers/relations F
and G (F A G) defines a relation R such that R(x,y) if and only if F(x,y) and G(x,y).
While transducers in general are not closed under intersection, as discussed on page 38,
transducers between strings of equal length (without €) are, and two-level rules can be
written this way by treating the € symbol as an ordinary symbol in the rule system. The
intersection algorithm takes the Cartesian product of the states, that is, for each state
g; in machine 1 and state ¢; in machine 2, we create a new state g;;. Then for any input
symbol a, if machine ! would transition to state g, and machine 2 would transition to
state g,,, we transition to state g,,,. Figure 3.21 sketches how this intersection (A) and
composition (o) process might be carried out.

0 0 I G (G 1

| Lexicon £sT [LEX/;;EF'S'T? i = ;
T e LEXICON-FST | |

TITIITTT LI pee| 0

‘ | |

FSTyE cee iFSTn; }u_n'(e(sgét : FST, (sFST,*FST,*. "FSTy) ‘ nl

HEREEN

7 I T SIS

igure 3:21

Intersection and composition of transducers.

Sinee there are a number of rule- -FST comptlers, it is almost never necessary in
practice to write an FST by hand. Kaplan and Kay (1994 give the mathematics that
define the mapping from rules to two-level relations, and Antworth (1990) gives details
of the algorithms for rule compiltion. Mohrt (1997 gives algorithms for transducer

minimization and determimization.

68 Chapter 3.

Words and Transducers

38 Lexicon-Free FSTs: The Porter Stemmer

Keyword

Stemming

Porter stemmer

While building a transducer from a lexicon plus rules is the standard algorithm for
morphological parsing, there are simpler algorithms that don’t require the large on-line
lexicon demanded by this algorithm, These are used especially in IR tasks like Web
search (Chapter 23), in which a query such as a Boolean combination of relevant key-
words or phrases, for example, (marsupial OR kangaroo OR koala) returns documents
that have these words in them. Since a document with the word marsupials might not
match the keyword marsupial, some IR systems first run a stemmer on the query and
document words. Morphological information in IR is thus only used to determine that
two words have the same stem; the suffixes are thrown away.

One of the most widely used stemming algorithms is the simple and efficient Porter
(1980) algorithm, which is based on a series of simple cascaded rewrite rules. Since
cascaded rewrite rules are just the sort of thing that could be easily implemented as an
FST, the Porter algorithm also can be viewed as a lexicon-free FST stemmer (this idea
is developed further in the exercises (Exercise 3.6). The algorithm contains a series of
rules like these:

ATIONAL — ATE (e.g., relational — relate)
ING — e if stem contains vowel (e.g., motoring — motor)

SSES — SS (e.g., grasses — grass)

Detailed rule lists for the Porter stemmer, as well as code (in Java, Python, etc.) can
be found on Martin Porter’s homepage; see also the original paper (Porter, 1980).

Stemming tends to improve the performance of information retrieval, especially
with smaller documents (the larger the document, the higher the chance the keyword
will occur in the exact form used in the query). But lexicon-free stemmers like the
Porter algorithm, while simpler than full lexicon-based morphological parsers, commit
errors like the following (Krovetz, 1993):

Errors of Commission Errors of Omission
organization organ Buropean Europe
doing doe analysis analyzes
numerical numerous noise noisy
policy police sparse sparsity

Modern stemmers tend to be more complicated because, for example, we don't
want to stem. say the word lllustrator to illustrate, since the capitalized form [llustrator
tends to refer to the software package. We return to this issue in Chapter 23.

3.9 Word and Sentence Tokenization

We have focused so far in this chapter on a problem of segmentation: how wards can be
segmented into morphemes. We turn now to a brief discussion of the related problem

Section 3.9. Word and Sentence Tokenization 69

Tokenization Of segmenting running text into words and sentences. This task is called tokenization.
Word tokenization may seem simple in a language like English that separates words

by a special ‘space’ character. As shown later, not every language does this (Chinese,

Japanese, and Thai, for example, do not). But a closer examination will make it clear

that whitespace is not sufficient by itself even for English. Consider the following

sentences from Wall Street Journal and New York Times articles, respectively: .

Mr. Sherwood said reaction to Sea Containers’ proposal |
has been "very positive." In New York Stock Exchange :
composite trading yesterday, Sea Containers closed at |
$62.625, up 62.5 cents.

''I said, ‘what’re you? Crazy?’ '’ said Sadowsky. ‘I |
can’‘t afford to do that.’’ I

Segmenting purely on whitespace would produce words like these: i

cents. said, positive." Crazy?

a word boundary. But punctuation often occurs word internally, in examples like m.p.4,,
Ph.D., AT&T, cap’n, 01/02/06, and google.com. Similarly, assuming that we want 62.5
to be a word, we’ll need to avoid segmenting every period, since that will segment
this number into 62 and 5. Number expressions introduce other complications as well;
while commas normally appear at word boundaries, commas are used inside numbers -
in English, every three digits: 555,500.50. Languages differ on punctuation styles for f
numbers; many continental European languages like Spanish, French, and German, by |
contrast, use a comma to mark the decimal point, and spaces (or sometimes periods) '
where English puts commas, for example, 555 500,50. i

A tokenizer can also be used to expand clitic contractions that are marked by apos- i
trophes, for example, converting whar 're above to the two tokens what are, and we re to '
we are. This requires ambiguity resolution, since apostrophes are also used as genitive !
markers (as in the book’s over or in Containers’ above) or as quotative markers (as in u::
‘what're you? Crazy?’ above). Such contractions occur in other alphabetic languages, E
including articles and pronouns in French (j’ai, [’homme). While these contractions
tend to be clitics, not all clitics are marked this way with contraction. In general, then,
segmenting and expanding clitics can be done as part of the process of morphological
parsing presented earlier in the chapter.

Depending on the application, tokenization algorithms may also tokenize multi-
word expressions like New York or rock 'n’ roll, which requires a multiword expression
dictionary of some sort. This makes tokenization intimately tied up with the task of de-
tecting names, dates, and organizations, a process called named entity detection which
is discussed in Chapter 22.

W,,ﬁfxiﬁ’,’{f;ﬁ In addition to word segmentation, sentence segmentation is a crucial first step in
text processing. Segmenting a text into sentences is generally based on punctuation.
This is because certain kinds of punctuation (periods, question marks, exclamation
points) tend to mark sentence boundaries. Question marks and exclamation points are

|
We could address these errors by treating punctuation, in addition to whitespace, as i |

e —e e

70 Chapter 3.

Words and Transducers

Maximum
matching

relatively unambiguous markers of sentence boundaries. Periods, on the other hand, are
more ambiguous. The period character “.” is ambiguous between a sentence boundary
marker and a marker of abbreviations like Mr. or Inc. The previous sentence that you
just read showed an even more complex case of this ambiguity, in which the final period
of Inc. marked both an abbreviation and the sentence boundary marker. For this reason,
sentence tokenization and word tokenization tend to be addressed jointly.

In general, sentence tokenization methods work by building a binary classifier
(based on a sequence of rules or on machine learning) that decides if a period is part
of the word or is a sentence-boundary marker. In making this decision, it helps to
know if the period is attached to a commonly used abbreviation; thus, an abbreviation
dictionary is useful.

State-of-the-art methods for sentence tokenization are based on machine learning
and are introduced in later chapters. But a useful first step can still be taken through
a sequence of regular expressions. We introduce here the first part; a word tokeniza-
tion algorithm. Figure 3.22 gives a simple Perl word tokenization algorithm based on
Grefenstette (1999). The algorithm is quite minimal, designed mainly to clarify many
of the segmentation issues we discussed in previous paragraphs.

The algorithm consists of a sequence of regular expression substitution rules. The
first rule separates unambiguous punctuation like question marks and parentheses. The
next rule segments commas unless they are inside numbers. We then disambiguate
apostrophes and pull off word-final clitics. Finally, we deal with periods, using a (toy)
abbreviation dictionary and some heuristics for detecting other abbreviations.

The fact that a simple tokenizer can be build with such simple regular expression
patterns suggest that tokenizers like the one in Fig. 3.22 can be easily implemented in
FSTs. This is indeed the case, and Karttunen et al. (1996) and Beesley and Karttunen
(2003) describe such FST-based tokenizers.

3.9.1 Segmentation in Chinese

We mentioned above that some languages, including Chinese, Japanese, and Thai, do
not use spaces to mark potential word-boundaries. Alternative segmentation methods
are used for these languages.

In Chinese, for example, words are composed of characters known as hanzi. Each
character generally represents a single morpheme and is pronounceable as a single
syllable. Words on average are about 2.4 characters long. A simple algorithm that does
remarkably well for segmenting Chinese, and often used as a baseline comparison for
more advanced methods, is a version of greedy search called maximum matching or
sometimes maxmatch. The algorithm requires a dictionary (wordlist) of the language.

‘The maximum matching algorithm starts by pointing at the beginning of a string. It
chooses the longest word in the dictionary that matches the input at the current position.
The pointer is then advanced past each character in that word. If no word matches. the
pointer is instead advanced one character (creating a one-character word). The algo-
rithm is then iteratively applied again starting from the new pointer position. To help
visualize this algorithm. Palmer (2000) gives an English analogy that approximates the
Chinese situation by removing the spaces from the English sentence the table down
there to produce thetubledownthere. The maximum match algorithm (given a long Fn-

Section 3.9. Word and Sentence Tokenization 71

#1/usr/bin/perl

$letternumber = "[A-Za-20-9]";

$notletter = "[A-Za-20-9]";

Salwayssep = "[\\21()\";/\\|"1";

$clitic = "('|:|-['8|'D| 'M['LL|'RE]'VE[N'T|'s|’'d| ‘m| 11| 're| 've[n’t)";

$abbr{"Co."} = 1; $abbr{"Dr."} = 1; $abbr{"Jan."} = 1; Sabbr{"Feb."} = 1;
while ($line = <>){ # read the next line from standard input

put whitespace around unambiguous separators
$line =~ s/$alwayssep/ $& /g;

put whitespace around commas that aren’t inside numbers
$line =~ s/([°0-91),/81 , /g;
$line =" s/,(["0-91)/ , $1/g;

distinguish singlequotes from apostrophes by

segmenting off single quotes not preceded by letter
$line =" s/"'/$& /g;

$line =" s/($notletter)’'/$1 '/g;

segment off unambiguous word-final clitics and punctuation
$line =~ s/$clitic$/ $s/g;
$line =" s/$clitic($notletter)/ $1 $2/g;

now deal with periods. For each possible word
@possiblewords=split(/\s+/,$line);
foreach $word (€possiblewords) {
if it ends in a period,
if (($word =~ /$letternumber\./)
&& ! (Sabbr{$word}) # and isn’t on the abbreviation list
and isn‘t a sequence of letters and periods (U.S.)
and doesn’'t resemble an abbreviation (no vowels: Inc.)
&& ! (Sword ="
/7 (1A-Za~z]\. ([A~Za-z]\.)+|[A-Z][bedfghj~nptvxz]+\.)$/)) {
then segment off the period
sword =~ s/\.$/ \./;
}
expand clitics
Sword ="s/’ve/have/;
$word ="s/’'m/am/;
print $word," ";

print "\n";

QIR A sample English tokenization script, adapted from Grefenstette (1999) and
Palmer (2000). A real script would have a longer abbreviation dictionary.

glish dictionary) would first match the word theta in the input since that is the longest
sequence of letters that matches a dictionary word. Starting from the end of theta, the
longest matching dictionary word is bled, followed by own and then there, producing
the incorrect sequence theta bled own there.

The algorithm seems to work better in Chinese (with such short words) than in
languages like English with long words, as our failed example shows. Even in Chinese,
however, maxmatch has a number of weakness, particularly with unknown words
(words not in the dictionary) or unknown genres (genres which differ a lot from the
assumptions made by the dictionary builder).

There is an annual competition (technically called a bakeoff) for Chinese segmen-
tation algorithms. The most successful modern algorithms for Chinese word segmen-
tation are based on machine learning from hand-segmented training sets. We return to
these algorithms after we introduce probabilistic methods in Chapter 5.

72 Chapter 3.

Words and Transducers

3.10 Detection and Correction of Spelling Errors

OCR

Reai-vord crroan

ALGERNON: Butr my own sweet Cecily, I have never written you any letters.

CECILY: You need hardly remind me of that, Ernest. I remember only too well

that I was forced to write your letters for you. [wrote always three times a week,

and sometimes oftener.

ALGERNON: Oh, do let me read them, Cecily?

CECILY: Oh, I couldn’t possibly. They would make you far too conceited. The

three you wrote me after I had broken off the engagement are so beautiful, and

so badly spelled, that even now I can hardly read them without crying a little.
Oscar Wilde, The Importance of Being Earnest

Like Oscar Wilde’s fabulous Cecily, a lot of people were thinking about spelling dur-
ing the last turn of the century. Gilbert and Sullivan provide many examples. The
Gondoliers’ Giuseppe, for example, worries that his private secretary is “shaky in his
spelling”, while Jolanthe’s Phyllis can “spell every word that she uses”. Thorstein Ve-
blen’s explanation (in his 1899 classic The Theory of the Leisure Class) was that a
main purpose of the “archaic, cumbrous, and ineffective” English spelling system was
to be difficult enough to provide a test of membership in the leisure class. Whatever
the social role of spelling, we can certainly agree that many more of us are like Ce-
cily than like Phyllis. Estimates for the frequency of spelling errors in human-typed
text vary from 0.05% of the words in carefully edited newswire text to 38% in difficult
applications like telephone directory lookup (Kukich, 1992).

In this section we introduce the problem of detecting and correcting spelling errors.
Since the standard algorithm for spelling error correction is probabilistic, we continue
our spell-checking discussion later in Chapter 5 after we define the probabilistic noisy
channel model. The detection and correction of spelling errors is an integral part of
modern word processors and search engines. It is also important in correcting errors in
optical character recognition (OCR), the automatic recognition of machine or hand-
printed characters, and in on-line handwriting recognition, the recognition of human
printed or cursive handwriting as the user is writing. Following Kukich (1992), we can
distinguish three increasingly broader problems:

1. Non-word error detection: detecting spelling errors that result in non-words
(like graffe for giraffe).

Isolated-word error correction: correcting spelling errors that result in non-
words, for example. correcting graffe to giruffe. but looking only at the word in
isolation.

[

3. Context-dependent error detection and correction: using the context o help
detect and correct spelling errors even if they accidentally result in an actual word
of English (real-word errors). This can happen from typographical errors (in-
sertion. deletion. transposition) that accidentally produce a real word (¢.g.. there
for threed. or because the writer substituted the wrong spelling of a homophone
or near-homophone te.g.. dessert for desert. or piece for peace).

Section 3.11. Minimum Edit Distance 73

Detecting non-word errors is generally done by marking any word that is not found
in a dictionary. For example, the misspelling graffe above would not occur in a dictio-
nary. Some early research (Peterson, 1986) had suggested that such spelling dictionar-
ies would need to be kept small because large dictionaries contain very rare words that
resemble misspellings of other words. For example the rare words wonr or veery are
also common misspelling of won’f and very. In practice, Damerau and Mays (1989)
found that while some misspellings were hidden by real words in a larger dictionary,
the larger dictionary proved more helpful than harmful by avoiding marking rare words
as errors. This is especially true with probabilistic spell-correction algorithms that can
use word frequency as a factor. Thus, modern spell-checking systems tend to be based
on large dictionaries.

The finite-state morphological parsers described throughout this chapter provide a
technology for implementing such large dictionaries. By giving a morphological parser
for a word, an FST parser is inherently a word recognizer. Indeed, an FST morpho-
logical parser can be turned into an even more efficient FSA word recognizer by using
the projection operation to extract the lower-side language graph. Such FST dictio-
naries also have the advantage of representing productive morphology like the English
-5 and -ed inflections. This is important for dealing with new legitimate combinations
of stems and inflection. For example, a new stem can be easily added to the dictionary,
and then all the inflected forms are easily recognized. This makes FST dictionaries
especially powerful for spell-checking in morphologically rich languages in which a
single stem can have tens or hundreds of possible surface forms,’

FST dictionaries can thus help with non-word error detection. But how about error
correction? Algorithms for isolated-word error correction operate by finding words
that are the likely source of the errorful form. For example, correcting the spelling
error graffe requires searching through all possible words like girajfe, graf, craft, grail,
etc., to pick the most likely source. To choose among these potential sources, we need a
distance metric between the source and the surface error. Intuitively, giraffe is a more
likely source than grail for graffe because giraffe is closer in spelling to graffe than
grail is to graffe. The most powerful way to capture this similarity intuition requires
the use of probability theory and is discussed in Chapter 5. The algorithm underlying
this solution, however, is the non-probabilistic minimum edit distance algorithm that
we introduce in the next section.

3.11 Minimum Edit Distance

String diviance

Deciding which of two words is closer to some third word inspelling is a special case of
the general problem of string distance. The distance between two strings is a measure
of how alike two strings are to each other.

Many important algorithms for finding string distance rely on some version of the

Earls spefi-checkers. by contrast, alfowed anv word o have amy sufiis: thus. corly ver f Unix
Y s \ 3 W thuss corly versions of Uniy
spell accepted bizarre prefived words like umvednn and antinndognigh and autised wirds from she. ke

diciiood and o,

74 Chapter 3.

Words and Transducers

Minimnm edit
distance

Alignment

Dynamic
programniing

minimum edit distance algorithm, named by Wagner and Fischer (1974) but indepen-
dently discovered by many people (summarized later, in the Historical Notes section of
Chapter 6). The minimum edit distance between two strings is the minimum number
of editing operations (insertion, deletion, substitution) needed to transform one string
into another. For example, the gap between the words intention and execution is five
operations, shown in Fig. 3.23 as an alignment between the two strings. Given two se-
quences, an alignment is a correspondence between substrings of the two sequences.
Thus, I aligns with the empty string, N with E, T with X, and so on. Beneath the aligned
strings is another representation; a series of symbols expressing an operation list for
converting the top string into the bottom string: d for deletion, s for substitution, i for
insertion.

ExNTION
LT
ECUTION

w o — =
o x—H
B — *
nog— =

I
|
*
d

[APTITEN.] Representing the minimum edit distance between two strings as an alignment.
The final row gives the operation list for converting the top string into the bottom string: d for
deletion, s for substitution, i for insertion.

We can also assign a particular cost or weight to each of these operations. The
Levenshtein distance between two sequences is the simplest weighting factor in which
each of the three operations has a cost of 1 (Levenshtein, 1966).6 Thus, the Levenshtein
distance between intention and execution is 5. Levenshtein also proposed an alternative
version of his metric in which each insertion or deletion has a cost of 1 and substitutions
are not allowed (equivalent to allowing substitution, but giving each substitution a cost
of 2 since any substitution can be represented by one insertion and one deletion). Using
this version, the Levenshtein distance between intention and execution is 8.

The minimum edit distance is computed by dynamic programming. Dynamic
programming is the name for a class of algorithms, first introduced by Bellman (1957),
that apply a table-driven method to solve problems by combining solutions to sub-
problems. This class includes the most commonly used algorithms in speech and
language processing; besides minimum edit distance, these include the Viterbi and
forward algorithms (Chapter 6) and the CKY and Earley algorithm (Chapter 13).

The intuition of a dynamic programming problem is that a large problem can be
solved by properly combining the solutions to various sub-problems. For example.
consider the sequence or “path™ of transformed words that comprise the minimum edit
distance between the strings infention and execution shown in Fig. 3.24.

Imagine some string (perhaps it is exenrion) that is in this optimal path (whatever it
is). The intuition of dynamic programming is that if exention is in the optimal operation
list. then the optimal sequence must also include the optimal path from inrention to
exention. Why? If there were a shorter path from infention to exention. then we could

© A\We assummie that the substitution of a letter for itself, for example, substitution £ for ¢, has 7ero cost.

Section 3.11. Minimum Edit Distance 75

intention)

«— delete |
ntentdion .

<— Substitute n by e
etention .

<— substitute t by x
e Xention

<+— nsert uy

@ XxXxenution)
<— Substitute n by ¢

e Xecutdion

R¥Z] Transformation list example of Kruskal (1983) from intention to execution,.

Figure

use it instead, resulting in a shorter overall path, and the optimal sequence wouldn’t be
optimal, thus leading to a contradiction.
Dynamic programming algorithms for Sequence comparison work by creating a

the first j characters of the source. Each cell can be computed as a simple function of
the surrounding cells; thus, starting from the beginning of the matrix it s possible to
fill in every entry. The value in each cell is computed by taking the minimum of the
three possible paths throu gh the matrix which arrive there:

distanceli — 1, j] + ins-cost(zarget;_,)
distanceli, j] = min distance[i— 1, j— 1] + sub-cost(source;.. | ylarget,)
distanceli, j— 1] +del-cost(source;_ 1))

cost of 1 (ins-cost(-) = del-cost(-) = 1), and substitutions have a cost of 2 (except that
substitution of identical letters has ZEro cost),

Knowing the minimum edit distance is useful for algorithms like finding potential
spelling error corrections. But the edit distance algorithm is important in another way;
with a small change, it can also provide the minimum cost alignment between two
strings. Aligning two strings is useful throughout speech and language processing. In
speech recognition, minimum edit distance alignment is used to compute word error
rate in speech recognition (Chapter 9). Alignment plays a role in machine translation,
in which sentences in a parallel corpus (a corpus with 4 text in two languages) need to
be matched to each other,

To extend the edit distance algorithm to produce an alignment, we can start by
visualizing an alignment as a path through the edit distance matrix. Figure 3.27 shows
this path with the boldfaced cell. Each holdfaced cell represents an alignment of a pair
of letters in the two strings. It two holdfaced cells oceur i the same row, there will
be an insertion in going from the source to the target. two boldfaced cells in the same
column indicates a deletion.

76 Chapter 3.

Words and Transducers

Backirace

function MIN-EDIT-DISTANCE(targer, source) returns min-distance

n+— LENGTH(targer)

m «— LENGTH(source)

Create a distance matrix distance/n+1,m+1]

Initialize the zeroth row and column to be the distance from the empty string

distance[0,0]1 =0
for each column i from 1 to » do
distance[i,0] — distance[i-1,0] + ins-cost(target[i])
for each row j from 1 to m do
distance[0,j] — distance[0,j-1] + del-cost(sourcel[}])
for each column i from 1 to » do
for each row j from 1 to m do
distance(i, j] — MIN(distance[i—1 »j1 + ins-cost(target;_),
distanceli—1,j~1] + sub-cost(sourcej_1 ,rarger;),
distance(i,j—1] + del-cost(sourcej_)
return distance[n,m]

JEAGTRRPE] The minimum edit distance algorithm, an example of the class of dynamic pro-
gramming algorithms. The various costs can either be fixed (e.g., Vx,ins-cost(x) = 1) or can
be specific to the letter (to model the fact that some letters are more likely to be inserted than
others). We assume that there is no cost for substituting a letter for itself (i.e., sub-cost(x, x) = Q).

n 9 8 9 10 11 12 11 10 9 8

0 8 7 8 9 10 11 10 9 8 9

i 7 6 7 8 9 10 9 8 9 10

t 6 5 6 7 8 9 8 9 10 11

n 5 4 5 6 7 8 9 10 11 10

e 4 3 4 5 6 7 8 9 10 9

t 3 4 5 6 7 8 7 8 9 8

n 2 3 4 5 6 7 8 7 8 7
| 1 2 3 4 5 6 7 6 7 8
] # 0 1 2 3 4 5 6 7 8 9
e X e ¢ u t i o n

LAUTRFI] Computation of minimum edit distance between infention and execution with the
algorithm of Fig. 3.25, using Levenshtein distance with cost of 1 for insertions or deletions. 2 for
substitutions. In italics are the initial values representing the distance from the empty string.

Figure 3.27 also shows the intuition of how to compute this alignment path. The
computation proceeds in two steps. In the first step. we augment the minimum edit dis-
tance algorithm to store backpointers in each cell. The backpointer from a cell points
to the previous cell (or cells) that we came from in entering the current cell. We've
shown a schematic of these backpointers in Fig. 3.27. after a similar diagram in Gus-
field (1997). Some cells have multiple backpointers because the minimum extension
could have come from multiple previous cells. In the second step, we perform a back-
trace. In a backtrace. we start from the last cell (at the final row and column). and

Section 3.12. Human Morphological Processing 77

follow the pointers back through the dynamic programming matrix. Each complete
path between the final cell and the initial cell is a minimum distance alignment. Exer-
cise 3.12 asks you to modify the minimum edit distance algorithm to store the pointers
and compute the backtrace to output an alignment.

n 9 181 /=910y 11 L) 12
0 8 VI /=18 =19 10— 11 B -
i 7 16| /=L T] =8| =191 10 i — 10
t 6 15{/~16 I8 sl O ® — 9 — 10— 11
n 5 14| /=15 fal R L~ 10— 11 |7 10
e 4] 3] —4EAsE , — 8| 19— 10] |9
t 3| 1 4) J=18 T 18] =19] |8
n 2 bk) 4 Sl T~ 8 L7118 /7
i 12 -3 sl6l—1T] 6] —T7] =8
1 2 5 6 7 8 9
#] e X e ¢ u t i 0 n

QTSR] When entering a value in each cell, we mark which of the three neighboring cells
we came from with up to three arrows. After the table is full we compute an alignment (min-
imum edit path) by using a backtrace, starting at the 8 in the upper-right corner and following
the arrows. The sequence of dark grey cells represents one possible minimum cost alignment
between the two strings.

There are various publicly available packages to compute edit distance, including
Unix diff and the NIST sclite program (NIST, 2005). Minimum edit distance can
also be augmented in various ways. The Viterbi algorithm, for example, is an extension
of minimum edit distance that uses probabilistic definitions of the operations. Instead
of computing the “minimum edit distance” between two strings, Viterbi computes the
“maximum probability alignment” of one string with another. The Viterbi algorithm is
crucial in probabilistic tasks like speech recognition and part-of-speech tagging.

3.12 Human Morphological Processing

Lt isting

I
QU

In this section we briefly survey psycholinguistic studies on how multimorphemic
words are represented in the minds of speakers of English. Consider the word walk
and its inflected forms walks and walked. Are all three in the human lexicon? Or
merely walk along with -ed and -s? How about the word happy and its derived forms
happily and happiness? We can imagine two ends of a spectrum of possible representa-
tions. The full listing hypothesis proposes that all words of a language are listed in the
mental lexicon without any internal morphological structure. In this view. morphologi-
cal structure is an epiphenomenon, and walk, walks, walked, happy. and happily are all
separately listed in the lexicon. This hypothesis is untenable for morphologically com-
plex languages like Turkish. The minimum redundancy hypothesis suggests that only
the constituent morphemes are represented in the lexicon and when processing walks.
(whether for reading. listening. or talking) we must always access both morphemes

78 Chapter 3. Words and Transducers

(walk and -5) and combine them. This view is probably too strict as well.

Some of the earliest evidence that the human lexicon represents at least some mor-
phological structure comes from speech errors, also called slips of the tongue. In
conversational speech, speakers often mix up the order of the words or sounds:

if you break it it’il drop

In slips of the tongue collected by Fromkin and Ratner (1998) and Garrett (1975),
inflectional and derivational affixes can appear separately from their stems. The ability
of these affixes to be produced separately from their stem suggests that the mental
lexicon contains some representation of morphological structure.

it’s not only us who have screw looses (for “screws loose”)
words of rule formation (for “rules of word formation™)
easy enoughly (for “easily enough”)

More recent experimental evidence suggests that neither the full listing nor the
minimum redundancy hypotheses may be completely true. Instead, it’s possible that
some but not all morphological relationships are mentally represented. Stanners et al.
(1979), for example, found that some derived forms (happiness, happily) seem to be
stored separately from their stem (happy) but that regularly inflected forms (pouring)
are not distinct in the lexicon from their stems (pour). Stanners et al. did this by
using a repetition priming experiment. In short, repetition priming takes advantage of

Priming the fact that a word is recognized faster if it has been seen before (if it is primed).
They found that lifting primed /ift, and burned primed burn, but, for example, selective
didn’t prime select. Marslen-Wilson et al. (1994) found that spoken derived words
can prime their stems, but only if the meaning of the derived form is closely related
to the stem. For example, government primes govern, but department does not prime
depart. A Marslen-Wilson et al. (1994) model compatible with their findings is shown
in Fig. 3.28.

-ure

-ing
TR Marslen-Wilson et al. (1994) result: Derived words are linked to their stems only
if semantically related.

In summary. these results suggest that (at least) productive morphology like inflec-
tion does play an online role in the human lexicon. More recent studies have shown
effects of non-inflectional morphological structure on word reading time as well, such

Morphological a3 the morphological family size. The morphological family size of a word is the
' number of other multimorphemic words and compounds in which it appears: the fam-

ily for fear. for example. includes fearful. fearfully. fearfulness, fearless, fearlessly.

fearlessness, fearsome, and godfearing (according to the CELEX database). for a total

size of 9. Baaven and others (Baayen et al.. 1997: De Jong et al.. 2002 Moscoso del

Prado Martin et al.. 2004a) have shown that words with a larger morphological family

size are recognized faster. Recent work has further shown that word recognition speed

Section 3.13. Summary 79

is affected by the total amount of information (or entropy) contained by the morpho-
logical paradigm (Moscoso del Prado Martin et al., 2004a); entropy will be introduced
in the next chapter.

3.13 Summary

This chapter introduced morphology, the arena of language processing dealing with
the subparts of words, and the finite-state transducer, the computational device that is
important for morphology but that also plays a role in many other tasks in later chapters.
We also introduced stemming, word and sentence tokenization, and spelling error
detection. Here’s a summary of the main points we covered about these ideas:

Morphological parsing is the process of finding the constituent morphemes in
aword (e.g., cat +N +PL for cats).

English mainly uses prefixes and suffixes to express inflectional and deriva-
tional morphology.

English inflectional morphology is relatively simple and includes person and
number agreement (-s) and tense markings (-ed and -ing). English derivational
morphology is more complex and includes suffixes like -ation and -ness and pre-
fixes like co- and re-. Many constraints on the English morphetactics (allowable
morpheme sequences) can be represented by finite automata.

Finite-state transducers are an extension of finite-state automata that can gener-
ate output symbols. Important FST operations include composition, projection,
and intersection.

Finite-state morphology and two-level morphology are applications of finite-
state transducers to morphological representation and parsing.

Automatic transducer compilers can produce a transducer for any rewrite rule.
The lexicon and spelling rules can be combined by composing and intersecting
transducers.

The Porter algorithm is a simple and efficient way to do stemming, stripping
off affixes. It is not as accurate as a lexicon-based transducer model but is rele-
vant for tasks like information retrieval in which exact morphological structure
is not needed.

Word tokenization can be done by simple regular expressions substitutions or
by transducers.

Spelling error detection is normally done by finding words that are not in a
dictionary; an FST dictionary can be useful for this.

The minimum edit distance between two strings is the minimum number of
operations it takes to edit one into the other. Minimum edit distance can be
computed by dynamic programming, which also results in an alignment of the
two strings.

80 Chapter 3.

Words and Transducers

Bibliographical and Historical Notes

Despite the close mathematical similarity of finite-state transducers to finite-state au-
tomata, the two models grew out of somewhat different traditions. Chapter 2 described
how the finite automaton grew out of Turing’s (1936) model of algorithmic computa-
tion, and McCulloch and Pitts finite-state-like models of the neuron. The influence of
the Turing machine on the transducer was somewhat more indirect. Huffman (1954)
proposed what was essentially a state-transition table to model the behavior of sequeén-
tial circuits, based on the work of Shannon (1938) on an algebraic model of relay cir-
cuits. Based on Turing and Shannon’s work, and unaware of Huffman’s work, Moore
(1956) introduced the term finite automaton for a machine with a finite number of
states with an alphabet of input symbols and an alphabet of output symbols. Mealy
(1955) extended and synthesized the work of Moore and Huffman.

The finite automata in Moore’s original paper and the extension by Mealy differed
in an important way. In a Mealy machine, the input/output symbols are associated
with the transitions between states. In a Moore machine, the input/output symbols
are associated with the state. The two types of transducers are equivalent; any Moore
machine can be converted into an equivalent Mealy machine, and vice versa. Further
early work on finite-state transducers, sequential transducers, and so on, was conducted
by Salomaa (1973) and by Schiitzenberger (1977).

Early algorithms for morphological parsing used either the bottom-up or top-down
methods that we discuss when we turn to parsing in Chapter 13. An early bottom-
up affix-stripping approach was Packard’s (1973) parser for ancient Greek that itera-
tively stripped prefixes and suffixes off the input word, making note of them, and then
looked up the remainder in a lexicon. It returned any root that was compatible with
the stripped-off affixes. AMPLE (A Morphological Parser for Linguistic Exploration)
(Weber and Mann, 1981; Weber et al., 1988; Hankamer and Black, 1991) is another
early bottom-up morphological parser. Hankamer’s (1986) keCi is an early top-down
generate-and-test or analysis-by-synthesis morphological parser for Turkish, guided by
a finite-state representation of Turkish morphemes. The program begins with a mor-
pheme that might match the left edge of the word, applies every possible phonological
rule to it, and checks each result against the input. If one of the outputs succeeds, the
program then follows the finite-state morphotactics to the next morpheme and tries to
continue matching the input.

The idea of modeling spelling rules as finite-state transducers is really based on
Johnson’s (1972) early idea that phonological rules (discussed in Chapter 7) have finite-
state properties. Johnson's insight unfortunately did not attract the attention of the
community and was independently discovered by Ronald Kaplan and Martin Kay. first
in an unpublished talk (Kaplan and Kay. 1981) and then finally in print (Kaplan and
Kay, 1994) (see page 13 for a discussion of multiple independent discoveries). Kaplan
and Kay's work was followed up and most fully worked out by Koskenniemi (1983},
who described finite-state morphological rules for Finnish. Karttunen (1983) built a
program called KIMMO bused on Koskenniemi's models. Antworth (1990) gives many
details of two-level morphology and its application to English.

Besides Koskenniemi's work on Finnish and that of Antworth (19907 on English.

80 Chapter 3.

Words and Transducers

Bibliographical and Historical Notes

Despite the close mathematical similarity of finite-state transducers to finite-state au-
tomata, the two models grew out of somewhat different traditions. Chapter 2 described
how the finite automaton grew out of Turing’s (1936) model of algorithmic computa-
tion, and McCulloch and Pitts finite-state-like models of the neuron. The influence of
the Turing machine on the transducer was somewhat more indirect. Huffman (1954)
proposed what was essentially a state-transition table to model the behavior of sequen-
tial circuits, based on the work of Shannon (1938) on an algebraic model of relay cir-
cuits. Based on Turing and Shannon’s work, and unaware of Huffman’s work, Moore
(1956) introduced the term finite automaton for a machine with a finite number of
states with an alphabet of input symbols and an alphabet of output symbols. Mealy
(1955) extended and synthesized the work of Moore and Huffman.

The finite automata in Moore’s original paper and the extension by Mealy differed
in an important way. In a Mealy machine, the input/output symbols are associated
with the transitions between states. In a Moore machine, the input/output symbols
are associated with the state. The two types of transducers are equivalent; any Moore
machine can be converted into an equivalent Mealy machine, and vice versa. Further
early work on finite-state transducers, sequential transducers, and so on, was conducted
by Salomaa (1973) and by Schiitzenberger 1977).

Early algorithms for morphological parsing used either the bottom-up or top-down
methods that we discuss when we turn to parsing in Chapter 13. An early bottom-
up affix-stripping approach was Packard’s (1973) parser for ancient Greek that itera-
tively stripped prefixes and suffixes off the input word, making note of them, and then
looked up the remainder in a lexicon. It returned any root that was compatible with
the stripped-off affixes. AMPLE (A Morphological Parser for Linguistic Exploration)
(Weber and Mann, 1981; Weber et al., 1988; Hankamer and Black, 1991) is another
early bottom-up morphological parser. Hankamer’s (1986) keCi is an early top-down
generate-and-test or analysis-by-synthesis morphological parser for Turkish, guided by
a finite-state representation of Turkish morphemes. The program begins with a mor-
pheme that might match the left edge of the word, applies every possible phonological
rule to it, and checks each result against the input. If one of the outputs succeeds, the
program then follows the finite-state morphotactics to the next morpheme and tries to
continue matching the input.

The idea of modeling spelling rules as finite-state transducers is really based on
Johnson’s (1972) early idea that phonological rules (discussed in Chapter 7) have finite-
state properties. Johnson’s insight unfortunately did not attract the attention of the
community and was independently discovered by Ronald Kaplan and Martin Kay, first
in an unpublished talk (Kaplan and Kay, 1981) and then finally in print (Kaplan and
Kay, 1994) (see page 13 for a discussion of multiple independent discoveries). Kaplan
and Kay’s work was followed up and most fully worked out by Koskenniemi (1983).
who described finite-state morphological rules for Finnish. Karttunen (1983) built a
program called KIMMO based on Koskenniemi's models. Antworth (1990) gives many
details of two-level morphology and its application to English.

Besides Koskenniemi’s work on Finnish and that of Antworth (1990) on English.

Exercises 81

Exercises

two-level or other finite-state models of morphology have been worked out for many
languages, such as Turkish (Oflazer, 1993) and Arabic (Beesley, 1996). Barton, Jr.
et al. (1987) bring up some computational complexity problems with two-level models,
which are responded to by Koskenniemi and Church (1988).

Readers with further interest in finite-state morphology should turn to Beesley and
Karttunen (2003). Readers with further interest in computational models of Arabic and
Semitic morphology should see SmurZ (1998), Kiraz (2001), and Habash et al. (2005).

A number of practical implementations of sentence segmentation were available by
the 1990s. Summaries of sentence segmentation history and various algorithms can be
found in Palmer (2000), Grefenstette (1999), and Mikheev (2003). Word segmentation
has been studied especially in Japanese and Chinese. While the max-match algorithm
we describe is commonly used as a baseline or when a simple but reasonably accurate
algorithm is required, more recent algorithms rely on stochastic and machine learning
algorithms; see, for example, such algorithms as Sproat et al. (1996), Xue and Shen
(2003), and Tseng et al. (2005a).

Gusfield (1997) is an excellent book covering everything you could want to know
about string distance, minimum edit distance, and related areas.

Students interested in automata theory should see Hopcroft and Ullman (1979) or
Lewis and Papadimitriou (1988). Roche and Schabes (1997b) is the definitive mathe-
matical introduction to finite-state transducers for language applications, and together
with Mohri (1997) and Mohri (2000), give many useful algorithms such as those for
transducer minimization and determinization.

The CELEX dictionary is an extremely useful database for morphological analysis,
containing full morphological parses of a large lexicon of English, German, and Dutch
(Baayen et al., 1995). Roark and Sproat (2007) is a general introduction to computa-
tional issues in morphology and syntax. Sproat (1993) is an older general introduction
to computational morphology.

3.1 Give examples of each of the noun and verb classes in Fig. 3.6, and find some
exceptions to the rules.

3.2 Extend the transducer in Fig. 3.17 to deal with sh and ch.
3.3 Write a transducer(s) for the K insertion spelling rule in English.
3.4 Write a transducer(s) for the consonant doubling spelling rule in English.

3.5 The Soundex algorithm (Knuth, 1973; Odell and Russell, 1922) is a method
commonly used in libraries and older census records for representing people’s
names. It has the advantage that versions of the names that are slightly misspelled
or otherwise modified (common, e.g., in hand-written census records) will still
have the same representation as correctly spelled names. (e.g., Jurafsky, Jarofsky,
Jarovsky, and Jarovski all map to J612).

82 Chapter 3.

Words and Transducers

3.6

3.7

3.8

3.9

3.10

3.11

3.12

1. Keep the first letter of the name, and drop all occurrences of non-initial a,
e, h,i,0,u,w,y.

2. Replace the remaining letters with the following numbers:
b,f,p,v—1
c 81k g s, x,z—2
d,t—3
1—4
m,n-—5
r—6

3. Replace any sequences of identical numbers, only if they derive from two or
more letters that were adjacent in the original name, with a single number
(e.g., 666 — 6).

4. Convert to the form Letter Digit Digit Digit by dropping digits
past the third (if necessary) or padding with trailing zeros (if necessary).

The exercise: write an FST to implement the Soundex algorithm.

Read Porter (1980) or see Martin Porter’s official homepage on the Porter stem-
mer. Implement one of the steps of the Porter Stemmer as a transducer.

Write the algorithm for parsing a finite-state transducer, using the pseudocode
introduced in Chapter 2. You should do this by modifying the algorithm ND-
RECOGNIZE in Fig. 2.19 in Chapter 2.

Write a program that takes a word and, using an on-line dictionary, computes
possible anagrams of the word, each of which is a legal word.

In Fig. 3.17, why is there a z, s, x arc from gstog?

Computing minimum edit distances by hand, figure out whether drive is closer
to brief or to divers and what the edit distance is. You may use any version of
distance that you like.

Now implement a minimum edit distance algorithm and use your hand-computed
results to check your code.

Augment the minimum edit distance algorithm to output an alignment; you will
need to store pointers and add a stage to compute the backtrace.

