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Today Oct 11 

 

• Bayesian Networks Approx. Inference 

• Temporal Probabilistic  Models 

Markov Chains 

Hidden Markov Models 
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Approximate Inference 

 

 Basic idea: 

 Draw N samples from a sampling distribution S 

 Compute an approximate probability 

 Show this converges to the true probability P 
 

 Why sample? 

 Inference: getting a sample is faster than computing 
the right answer (e.g. with variable elimination) 
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Prior Sampling 
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Example 

 We’ll get a bunch of samples from the BN: 

 +c, -s, +r, +w 

 +c, +s, +r, +w 

 -c, +s, +r,  -w 

 +c, -s, +r, +w 

 -c,  -s,  -r, +w 

 If we want to know P(W) 

 We have counts <+w:4, -w:1> 

 Normalize to get P(W) = <+w:0.8, -w:0.2> 

 This will get closer to the true distribution with more samples 

 Can estimate anything else, too 

 What about P(C| +w)?   P(C| +r, +w)?  P(C| -r, -w)? 

what’s the drawback?  Can use fewer samples ? 
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Rejection Sampling 

 Let’s say we want P(C) 

 No point keeping all samples around 

 Just tally counts of C as we go 

 

 Let’s say we want P(C| +s) 

 Same thing: tally C outcomes, but 

ignore (reject) samples which don’t 

have S=+s 

 This is called rejection sampling 

 It is also consistent for conditional 

probabilities (i.e., correct in the limit) 

 +c, -s, +r, +w 

 +c, +s, +r, +w 

 -c, +s, +r,  -w 

 +c, -s, +r, +w 

 -c,  -s,  -r, +w 
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Likelihood Weighting 

 Problem with rejection sampling: 
 If evidence is unlikely, you reject a lot of samples 

 You don’t exploit your evidence as you sample 

 Consider P(B|+a) 

 

 

 

 Idea: fix evidence variables and sample the rest 

 

 

 

 Problem: sample distribution not consistent! 

 Solution: weight by probability of evidence given parents 

Burglary Alarm 

Burglary Alarm 
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Likelihood Weighting 
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Likelihood Weighting 

 Likelihood weighting is good 

 We have taken evidence into account as 

we generate the sample 

 E.g. here, W’s value will get picked 

based on the evidence values of S, R 

 More of our samples will reflect the state 

of the world suggested by the evidence 

  Likelihood weighting doesn’t solve 

all our problems 

 Evidence influences the choice of 

downstream variables, but not upstream 

ones (C isn’t more likely to get a value 

matching the evidence) 

 We would like to consider evidence 

when we sample every variable 12 
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Markov Chain Monte Carlo 

 Idea: instead of sampling from scratch, create samples 

that are each like the last one. 
 

 Procedure: resample one variable at a time, conditioned 

on all the rest, but keep evidence fixed.  E.g., for P(b|+c): 

 

 

 Properties: Now samples are not independent (in fact 

they’re nearly identical), but sample averages are still 

consistent estimators! And can be computed efficiently 
 

 What’s the point: both upstream and downstream 

variables condition on evidence. 
13 
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Today Oct 11 

 

 Bayesian Networks Approx. Inference 

 Temporal Probabilistic  Models 

Markov Chains 

Hidden Markov Models 

 

 

 

 

 



Modelling static Environments 

So far we have used Bnets to perform inference in static 

environments  

• For instance,  the system keeps collecting evidence to 

diagnose the cause of a fault in a system (e.g., a car).  

 

• The environment (values of the evidence, the true 

cause) does not change as new evidence is gathered 

 

 

• What does change? The system’s beliefs over 
possible causes 
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Modeling Evolving Environments: Dynamic Bnets 
 • Often we need to make inferences about evolving 

environments.  

• Represent the state of the world at each specific 
point in time via  a series of snapshots, or time 
slices,  

Tutoring system tracing student knowledge and morale 

Knows-Subtraction t-1 

Morale t-1 Morale t 

SolveProblem t-1 SolveProblemt 

Knows-Subtraction t  
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Today Oct 11 

 

• Bayesian Networks Approx. Inference 

• Temporal Probabilistic  Models 

Markov Chains 

Hidden Markov Models 
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Simplest Possible DBN 

 

• Thus 

 

• Intuitively St  conveys all of the information about the 

history that can affect the future states. 

• “The future is independent of the past given the present.” 

• One random variable for each time slice: let’s assume St 

represents the state at time t. with domain {s1 …sn } 

 

 

 

 

• Each random variable depends only on the previous one 

 



Simplest Possible DBN (cont’) 

• Stationary process assumption:  the mechanism 
that regulates how state variables change 
overtime is stationary, that is it can be described 
by a single transition model   

• P(St|St-1) 

• How many CPTs do we need to specify? 
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Stationary Markov Chain (SMC) 

A stationary Markov Chain : for all t >0 

• P (St+1| S0,…,St) = P (St+1|St) and  

• P (St +1|St) is the same 

 

 
We only need to specify P (S0) and P (St +1 |St)  

• Simple Model, easy to specify 

• Often the natural model 

• The network can extend indefinitely 

• Variations of SMC are at the core of most Natural 

Language Processing (NLP) applications! 

Slide 21 
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Stationary Markov-Chain: Example 

Probability of initial state 
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Markov-Chain: Inference 

Probability of a sequence of states S0 … ST 
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Key problems in NLP 

Assign a probability to a sentence 

• Part-of-speech tagging 

• Word-sense disambiguation, 

• Probabilistic Parsing 

Predict the next word 

• Speech recognition 

• Hand-writing recognition 

• Augmentative communication for the disabled 

 ?),..,( 1 nwwP Impossible to 

estimate  

?),..,( 1 nwwP“Book me a room near UBC”  

Summarization, Machine 
Translation…..... 



CPSC 502, Lecture 9 25 

Impossible to estimate! 

Assuming 105 words in Dictionary and average 
sentence contains 10 words ……. 
 

 

Google language repository (22 Sept. 2006) 

contained “only”: 95,119,665,584 sentences 
 

 

?),..,( 1 nwwP

Most sentences will not appear or appear only once  
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What can we do? 

Make a strong simplifying assumption! 

 Sentences are generated by a Markov Chain 

 

P(The big red dog barks)= 

 P(The|<S>) * 

  

)|()|(),..,( 1
2

11 
 kk

n

k
n wwPSwPwwP
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Today Oct 11 

 

• Bayesian Networks Approx. Inference 

• Temporal Probabilistic  Models 

Markov Chains 

(Intro) Hidden Markov Models 

 

 

 

 

 

 



How can we minimally extend Markov Chains? 

• Maintaining the Markov and stationary assumption 

A useful situation to model is the one in which:  

• the reasoning system does not have access to the 
states 

• but can make observations  that give some 
information about the current state 
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Hidden Markov Model 

 

• P (S0) specifies initial conditions 

 

• P (St+1|St) specifies the dynamics 

 

• P (Ot |St) specifies the sensor model 

 

 

• A Hidden Markov Model (HMM) starts with a Markov 

chain, and adds a noisy observation about the state at 

each time step: 

 

 

 

• |domain(S)| = k 

 

• |domain(O)| = h 
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Example: Localization for “Pushed around” Robot 

• Localization (where am I?) is a fundamental problem 

in robotics 

• Suppose a robot is in a circular corridor with 16 

locations 

• There are four doors at positions: 2, 4, 7, 11 

• The Robot initially doesn’t know where it is 

• The Robot is pushed around. After a push it can stay in 

the same location, move left or right. 

• The Robot has Noisy sensor  telling whether it is in front of 

a door  
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This scenario can be represented as… 

• Example Stochastic Dynamics: when pushed, it stays in the 

same location p=0.2, moves left or right with equal probability 

 
P(Loct + 1 | Loc t) 

 

P(Loc1) 
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This scenario can be represented as… 

Example of Noisy sensor  telling 

whether it is in front of a door.  

• If it is in front of a door P(O t = T) = .8 

• If not in front of a door P(O t = T) = .1 

 

P(O t | Loc t) 

 



Useful inference in HMMs 

• Localization: Robot starts at an unknown 
location and it is pushed around t times. It wants 
to determine where it is 

• In general (Filtering): compute the posterior 

distribution over the current state given all 

evidence to date 

P(Xt  | o0:t )    or   P(Xt  | e0:t )  
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Other HMM Inferences (next time) 

• Smoothing   (posterior distribution over a past state 
given all evidence to date) 

 

                   P(Xk | e0:t )  for 1 ≤ k < t 

 

• Most Likely Sequence (given the evidence seen so far) 

 

      argmaxx0:t 
P(X0:t | e0:t ) 
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Also Do exercise 6.E (parts on importance 

sampling and particle filtering are optional) 

http://www.aispace.org/exercises.shtml 

 

 

 

TODO for this Thurs 

• Work on Assignment2 

 

• Study the Handout (on approx. inference) 
Available outside my office after 1pm 

  

http://www.aispace.org/exercises.shtml
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Example : Robot Localization 

• Suppose a robot wants to determine its location based on its 

actions and its sensor readings 

• Three actions: goRight, goLeft, Stay 

• This can be represented by an augmented HMM 
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Robot Localization Sensor and Dynamics Model 

• Sample Sensor Model (assume same as for pushed around) 

 • Sample Stochastic Dynamics: P(Loct + 1 | Actiont , Loc t) 

 P(Loct + 1 = L | Action t = goRight , Loc t = L) = 0.1 

P(Loct + 1 = L+1 | Action t = goRight , Loc t = L) = 0.8 

P(Loct + 1 = L + 2 | Action t = goRight , Loc t = L) = 0.074 

P(Loct + 1 = L’ | Action t = goRight , Loc t = L) = 0.002  for all other locations L’ 

• All location arithmetic is modulo 16 

• The action goLeft works the same but to the left 
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Dynamics Model More Details 

• Sample Stochastic Dynamics: P(Loct + 1 | Action, Loc t) 

 P(Loct + 1 = L | Action t = goRight , Loc t = L) = 0.1 

P(Loct + 1 = L+1 | Action t = goRight , Loc t = L) = 0.8 

P(Loct + 1 = L + 2 | Action t = goRight , Loc t = L) = 0.074 

P(Loct + 1 = L’ | Action t = goRight , Loc t = L) = 0.002  for all other locations L’ 
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Robot Localization additional sensor 

• Additional Light Sensor: there is light coming through an 

opening at location 10 

 

P (Lt  | Loct) 

 

• Info from the two sensors is combined :“Sensor Fusion” 
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The Robot starts at an unknown location and must 

determine where it is 

The model appears to be too ambiguous 

• Sensors are too noisy 

• Dynamics are too stochastic to infer anything 

http://www.cs.ubc.ca/spider/poole/demos/localization

/localization.html 

But inference actually works pretty well.  

Let’s check: 

You can use standard Bnet inference. However you typically take 

advantage of the fact that time moves forward (not in 322) 
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Sample scenario to explore in demo 

• Keep making observations without moving. What 

happens? 

• Then keep moving without making observations. 

What happens? 

• Assume you are at a certain position alternate 

moves and observations 

• …. 
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HMMs have many other applications…. 

Natural Language Processing: e.g., Speech Recognition 

• States:   phoneme      \  word  

 

• Observations:      acoustic signal  \   phoneme 

Bioinformatics: Gene Finding 

• States: coding / non-coding region 

• Observations: DNA Sequences 

For these problems the critical inference is:  

find the most likely sequence of states given a 

sequence of observations  



NEED to explain Filtering  

Because it will be used in POMDPs 
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Markov Models 

Markov Chains 

Hidden Markov 
Model 

Markov Decision 
Processes (MDPs) 

Simplest Possible 
Dynamic Bnet 

Add noisy 
Observations 

about the state 
at time t 

Add Actions and 
Values (Rewards) 
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Answering Query under Uncertainty 

Static Belief Network 
& Variable Elimination 

Dynamic Bayesian 

Network 

Probability Theory 

Hidden Markov Models 

Email spam filters 

Diagnostic 

Systems (e.g., 

medicine) 

Natural 

Language 

Processing 

Student Tracing in 

tutoring Systems Monitoring 

(e.g credit cards) BioInformatics 
Markov Chains 
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Lecture Overview 

• Recap  

• Temporal Probabilistic Models 

• Start Markov Models 

Markov Chain 

Markov Chains in Natural Language 

Processing 
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Sampling a discrete probability 

distribution 
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Answering Query under Uncertainty 

Static Belief Network 
& Variable Elimination 

Dynamic Bayesian 

Network 

Probability Theory 

Hidden Markov Models 

Email spam filters 

Diagnostic 

Systems (e.g., 

medicine) 

Natural 

Language 

Processing 

Student Tracing in 

tutoring Systems Monitoring 

(e.g credit cards) BioInformatics 
Markov Chains 
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Answering Queries under Uncertainty 

Static Belief Network 
& Variable Elimination 

Dynamic Bayesian 

Network 

Probability Theory 

Hidden Markov Models 

Email spam filters 

Diagnostic 

Systems (e.g., 

medicine) 

Natural 

Language 

Processing 

Student Tracing in 

tutoring Systems Monitoring 

(e.g credit cards) BioInformatics 

Markov Chains 

Robotics 



Stationary Markov Chain (SMC) 

A stationary Markov Chain : for all t >0 

• P (St+1| S0,…,St) =   and  

• P (St +1| 

 

 
We only need to specify   and   

• Simple Model, easy to specify 

• Often the natural model 

• The network can extend indefinitely 

• Variations of SMC are at the core of most Natural 

Language Processing (NLP) applications! 
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