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Key points Recap

« \We model the environment as a set of random vars

Xp - Xy 3D PO - X))
* Why the joint is not an adequate representation ?

“Representation, reasoning and learning” are
“‘exponential” in the number of variables

Solution: Exploit marginal&conditional independence

PN =F0) Plely 2)=P(x| 2)

But how does independence allow us to simplify the
joint? 1 air RULE |

ow
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Belief Nets: Burglary Example

There might be a burglar in my house
B

The anti-burglar alarm in my house may go off

A

| have an agreement with two of my neighbors, John and
Mary, that they call me if they hear the alarm go off when |
am at work -

F J

Minor earthquakes may occur and sometimes they set off
the alarm. C

Variables: G A4 MJ & w= 5

5 "
Jointhas £ — 1 entries/probs 2 -4



Belief Nets: Simplify the joint

* Typically order vars to reflect causal knowledge

(i.e., causes before effects) 3 =
* Aburglar (B) can set the alarm (A) off N
* An earthquake (E) can set the alarm (A) off A
* The alarm can cause Mary to call (M) / \
* The alarm can cause John to call (J) M R
F(B E A M U‘\ e
A2\ ol élé/\ adef

« Apply Chain Rule %

() P(g/a)f?(ﬂf)ﬁ@?@)/xf/_@PéYWAE@

« Simplify according to marginal&conditional
independence




Belief Nets: Structure + Probs
P(B)+P(E) « P(AIB,E) « P(M | )+ P |A)

* EXxpress remaining dependencies as a network

* Each varis a node

* For each var, the conditioning vars are its parents

* Associate to each node corresponding conditional
probabilities o@ﬁ,)

£®
g’
IS Ao
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PCB) <

Burglary complete BN fE)”

P(B=T) | P(B=F) P(E=T) | P(E=F)
001 | .999 002 | .998
PCA [,
P(A=T | B,E) | P(A=F | B,E)
95 05
94 06
29 71
001 999
JohunCall s P(ﬂ /A)
p(TIA)
A P(J=T | A) | P(J=F | A) P(M:7TO|A) P(M:Z; A)
90 10 ' '
(.o1) 99
F (05) .95 =
SN—" (/
\ o o
Yol 4o Y Hienr vressons .
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Burglary Example: Bnets inference

Our BN can answer any probabilistic query that can
be answered by processing the joint!

(Ex1) I'm at work, L
= neighbor John calls to say my alarm is ringing, <
__* neighbor Mary doesn't call. /(9}

_—* No news of any earthquakes. EE
* |s there a burglar?

(Ex2) I'm at work, -

* Receive message that neighbor John called ,

g W
* News of minor earthquakes. /(9

* |s there a burglar?
AJ)space @’m@
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Bayesian Networks — Inference Types

Diagnostic Predictive Intercausal Mixed

Burgl P(E) = 1.
| urgiary | | Burglary | (E)=1.0 | Earthquake |
(B) = 0.001 =1.0 | Earthquake |
0016 P(—E)=1.0
Alarm Alarm | Burglary | Alarm
P(B) = 0.00 =0.003
7 O 003 O 033
- Alarm JohnCalls
JohnCalls | |JohnCaIIs | | |
=1.0 P(M) = 1.0
PUJ)=1.0 P(J) =0.011
0.66

Revised probability
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P(B=T) | P(B=F)
001 999
o

BNnets: Compactness

06

999

A PU=T|A) | PA=F|A)
T .90 10
F .05 .95

&S?D\ = ’LS — |
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A

BNet—

P(E=T) | P(E=F)
002 998
A
| P(A=F | B,E) 7 [
W = = g‘

|——
. = 4
71 pant

=

P(M=T|A) | PM=F]|A)
.70 .30
.01 .99

2 lrG+1ed=]O
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s BNets: Compactness

\( .
[’O\n \0\\\)\"’(
\p? QD OO0 O D
C° 4
Haee + W/
In General: L

A@ for boolean X, with & boolean parents has 2%  rows for
the combinations of parent values

Each row requires one number p; for X = frue
(the number for X;= falseis just 7-p;)

If each on the /7 variable has no more than A parents, the
complete network requires  O(n1 2 %) numbers

For k<< n, this is a substantial improvement,

* the numbers required grow linearly with 72, vs. O(2 ") for

the full joint distribution
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Realistic BNet: Liver Diagnosis 57>
A 60 nodes Source: Onisko et al ) v £0 5 S—(Z 0
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Realistic BNet: Liver Diagnosis

Source: Onisko et al., 1999
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BNets: Construction General Semantics

The full joint distribution can be defined as the product of
conditional distributions:

PX,..,X)=1II_, P(X:/X, ..,X.,) (chain rule)
7 / 7

[

Simplify according to marginal&conditional independence

* EXxpress remaining dependencies as a network
* Fach varis a node
* For each var, the conditioning vars are its parents

* Associate to each node corresponding conditional
probabilities

PX,..,X)=1Il_,P(X Parents(X;))
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BNets: Construction General Semantics
(cont’)

P(X, ... X,)=TT_,P (X, Parents(X))

* By construction: Every node is independent from its

non-descend}:gzeiigarents
28 jéf ‘<
\

(7
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Additional Conditional Independencies

Or, blocking paths for probability propagation. Three ways in
which a path between X to Y can be blocked, (1 and 2 given
evidence E)

(v E X

FoN
[ OO O—C

O

O
O
X
_|

‘Note that, in 3, X and Y become dependent as soon as [ ge
evidence on Z or on any of its descendants le 17



3 Configuration blocking dependency (belief propagation)
"EVIDNENCE/OBRSERVED

| X
(D O—1-O %
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Today Oct 6

* R&R systems in Stochastic environments
* Bayesian Networks Representation
* Bayesian Networks Exact Inference
* Bayesian Networks Approx. Inference
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Bnet Inference: General
» Suppose the variables of the belief network areD(,,...,X;l

» Z is the query variable 7
*Y;=v,, ..., Y=V are the observed variables (with their values)

4

«Z,, ...,.Z, are the remaining variables
v

* What we want to compute: LP(Z Y =V,..., Y =V))

\>p(z,y =V,... Y. =V) P(Z)Y, =v,,..., Y. =V
1 1 J 17 1 1

L2 [P, =V, Y, =v)) D PE Y, =v,...Y, =Y,
/72
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What do we need to compute?
Remember conditioning and marginalization...

& P(L, szt Ry €
istRepy MRS

L S R |P(L, S=t, R=f)
Do they have fo
t t f S sum up to one?
Nno
ot | f D2
E D

L | S | R |P(L|S=t, R=f)

S
@—. __7 t t f ,é
f ' f LT )1




Variable Elimination Intro

» Suppose the variables of the belief network are X,..., X .

@is the query variable
Y=V, ..., Y=V are the observed variables (with their values)

@re the remaining variables

* What we want to compute: ( P(Z |Y1 = V.. °1Yj ZVﬂ

* We just showed before that what we actually need to

compute is
\P@EZ.Y, =V, Y, =) )

This can be computed in terms of operations between
factors (that satisfy the semantics of probability)
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» A factor is a representation of a function from a

* We will write factor 7/ on variables X,... ,X

/ %(Xi-wxj\

Factors

tuple of random variables into a number. /- 1\

as

« A factor denotes one or more (possibly partial)
distributions over the given tuple of variables

e.g., P(X, X,) is a factor f(X,, X,) Distribution

e.g., PIX,, X,, X5 =v;) isafactor partial distribution

HX7 XD x3=vs

e.qg., P(Z]X,Y)is a factor
ZXY)

e.qg., P(X,, X5 =v;/X,) is a factor Sef of partial (/

X X2 ) x3=v3

z//
Set of Distributions
f(X,Y,2)

Distributions
CPSC 502, Leci

P(&|xY)

L X

val

-

~ | ~—

-
\t—l- —

—h | =h

—h—h\—h\—h
LT




Manipulating Factors:

We can make new factors out of an existing factor

* Our first operation: we can ass/ign some or all of the
variables of a factor.

\ X Y Z val
> t t ] 0 What is the result of
R L L S assigning X=t ?
t f t | 0.2 —_—
f(X,Y,Z) t f f | 0.8 f(X=t,Y,Z)
T f f 04
t f 0.6
f——F 03" (X, Y, Z)x =4
f f f— 07
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Summing out a variable example

Our second operation: we can sum out a variable,
say X, with domain {v,, ...,v,}, from factor 7X,, X/
resulting in a factor on X, Xj defined by:

(Bl Al c| val
—t | ¢ t \ 0.03 Al e | va
t It [=#] 0.07 |
— f % t \| 0.54 ]t S+
i |G| Do.36 SefAC): (t | £33
fBAC): t | f | t |0.06 £ ot
t f f | 0.14 f f
£ f |t |o048
£ f | f|032
ij(x2 ..... X )= F (X =V, Xyrooo, X ) oot (X =V, Xy, X))
xl
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Multiplying factors

*Our third operation: factors can be multiplied together.

A

Val

¥ @
f,(AB): O t

—

0.1
0.9
0.2
0.8

)

Q R

f,(A,B)x f,(B,C):

Val

*
O f

£,(B,C):

0.3
0.7
0.6
0.4

CPSC 502, Lecture 8

B

val

(

—h

)

—h

6]

—

f
t
t
f
f

f
t
f
t
f

C
D
B

. 0%,

. O 54
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Factors Summary

« A factor is a representation of a function from a tuple of random
variables into a number.

* (X,... . X).
* We have defined three operations on factors:
1.Assigning one or more variables.

* (X;=v, X, ..., X) isafactoron X, ..., X, also written as
f(X7’ " X/X7—V7

2.Summing out variables
o (2')(7 }7()(2, . /) f(X7_V7, XZ»' ,X/ + ... 1 f(X7=Vk, XZ; ;X/)

3\Multiplying factors

. f,(A, B)f, (B, C) = (f, x £L,)(A, B, C)
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Variable Elimination Intro
* If we express the joint as a factor,

O\,Qgt”/(fﬁ"A /guuvvt a@b’
) ¢«

fz Y..bvV,2..2
\L 7 \j\lg()x/ SEy
N
» We can compute P(Z,Y,=v,, ...,Y=v) by ??
*assigning Y,=v,, ..., Y=v,
*and summing out the variables Z,, ...,Z, J

P(Z,Y,=Vv,,...,Y, :li) :ﬁ]f (Z,Y,.. Y, 2,0, Zk_)levaj:Vj
— Zy Z, )

Are we done? NO Joiut Too 3G
CPSC 502, Lecture 8 Slide 30




Variable Elimination Intro (1)
P(Z)Y,=v,,....Y, =V,) =

; ..Zﬁﬁz,vl,..,vj,zl,..,z\ijlVl,myﬂ

- Using the chain rule and the definition of/a Bnet, we
can write P(X,, ..., X,)as 1_[|:>()(i | pX.)
1=1

4

* \We can express the joint factor as a product of
factors _

1z V..., Z...2 ) [T f(X:/pX))
=1
: %
P(Z,Y,=Vy,...,Y; =v) =) -+ Hf(xi,@
1=VyyeenY
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Variable Elimination Intro (2)

Inference in belief networks thus reduces to
computing “the sums of products..

@ 07 @
P(Z,Y, =V,,...,Y, = j\)):Z ST (X, pX) >
{ Zy Z; 1=l Yi=V,... Y Vg

1. Construct a factor for each conditional probability.

2. In each factor assign the observed variables to
their observed values.

3. Multiply the factors

4. For each of the other variables Z, € {Z,, ..., Z.}
sum out Z;




Key Simplification Step
P(G,D=t) =X,z ~ fA,G) f(B,A) f(C,G) f(B,C)

P(G,D=0 =2,4 f(A, G) ZB f(B,A) ZC@G) f(B, C))

- \>VL<KB®

| will add to the online slides a complete
example of VE
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Another Simplification before starting VE

 All the variables from which the query is conditional
independent given the observations can be pruned from

the Bnet

B2 =N
Y e.g., P(G [H=v,, F= v, C=v,).

» S

/\ ‘ \OOHA\) G 6 ls Col/\o]AJ’\\oné/}7
¢ , 3((9"’\ , A BD

o mole,pmolp/vﬂ' drowa V= rvert

<
. A \o\ocv‘@o\ ) ! &4

\LJ e ex Vs
Xg \ ¢ ety H,F €
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Variable elimination example

Compute P(G [ H=h,).
_PGCH) =24

llllll

G\
é I CPSC 322, Lecture 30
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Variable elimination example

Compute P(G | H=h,).

llllll

Chain Rule + Conditional Independence:
T P(GH) =3, 5cneri PIAP(BIA)P(C)P(DIB,C)P(EIC)P(FID)P(GIF, E)P(HIG)P(I|G)

/ \ CPSC 322, Lecture 30 Slide 36



Variable elimination example (step1)

-— 0 -— -

/ .

e

-, A

s

llllll

11111

* (A

- f(BA)

* AC)

- 14(D,B,C)
* T(E.C)

* Is(F. D)

* 1(G,F.E)
* IAH,G)

* i5(1,G)

Compute P(G | H=h,).

CPSC 322, Lecture 30
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Variable elimination example (step 2)

Compute P(G | H=h,).
Previous state:

;;;;;;

Observe H :
P(G,H=h,) = 3 gcoeri TolA) F(BA) F(C) F(D,B,C) f,(E,C) f5(F, D) fi(G,F.E) Io(G) f¢(1,G)
N ew ¢vzdo

A * 1A - 1,(G)
¢ - £,(BA)
B - + £(C)
¢ Pl « £,(D,B,C)
L + L(EC)
¢ &  4F, D)
R - G/

KN s

« fofl,

i i 8(/,.G)
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Variable elimination example (steps 3-4)

Compute P(G | H=h,).
Previous state:

111111

)

P(GH=h,) = 1,(G) 3 S, 1o(F, D) 35 5,1(1,G) ST G,F,E) S £(C) 1(D,B,C) F(E, 5§ 54T A) F(BA)

+ IfA) + 1(G)
« f(BA)

+ {C)

+ {D,B,C)

- [(EC)

 1(F, D)

T

* Is(G,F.E)

T — O ~— 0 >
\O

+ 1(1,G)
CPSC 322, Lecture 30 Slide 39

am
\/
Q.

o |



Variable elimination example(steps 3-4)

Compute P(G / H=h,). Elimination ordering A, C, E, I, B, D, F.
Previous state:

P(G,H=h,) =T(G) 22 T5(F, D) 252,7(l,G) 2 (G F,E) 2-7(C) i5(D,B,C) f(E,C) 2T )(A) [,(BA
Eliminate A: ’ o o ;\02 ’ ’ fw

PIGH=h) = 5lG) 2725 HF. D) X3 lB) 2/110) Ze HGF.E) 24 C) HDBO) E O

/ A
« £(G)

i * f10(B)
Y « £(C)
¢ C « £(D,B,C)
b s  (EC)
,L E « £(F, D)
F « 7(G,F,E)
N

G
¥ X < 1,(,G)
H I
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Variable elimination example(steps 3-4)

Compute P(G / H=h,). Elimination ordering A, C, E, I, B, D, F.

Previous state:
P(G.H=h,) = 5(G) X 3, fy(F, D) 35 1,0(B) 3, 14(1,G) S fo(G.F,E) 3o (C) £5(D,B,C) £,(E,C)

Eliminate C:
P(G,H=h,) = 1,(G) 3 Zp 1(F, D) X F10(B) Z,15(1,G) S (G, F,E) f,,(B,DE)

* 1o(G)
A
¢ * f10(B)
i *f,5(B,D,E)

D
,L « f(F, D)
F « 7(G,F,E)
N
G
¥ X < 1,(1,G)
H I
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Variable elimination example(steps 3-4)

Compute P(G / H=h,). Elimination ordering A, C, E, |, B, D, F.

Previous state:
P(G.H=h,) = 15(G) X 3p Iy(F, D) 35 £10(B) 2,141, G) S 15(G,F,E) f,o(B,D,E)
Eliminate E:

P(G,H=h;) =1(G) 2 2p15(F, D) 2511o(B) 15(B,D,F,G) 2,1(1,G)

« (G

o
¢ * f10(B)
B
¢ {
D/l *f15(B.D,F,G)
,L E  £(F, D)
5
N

G
¥ X < £,(1,G)
H I
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Variable elimination example(steps 3-4)

Compute P(G / H=h,). Elimination ordering A, C, E, |, B, D, F.

Previous state: P(G ,H=h,) =1(G) 22, 5(F, D) 25f,,(B) f,.5(B.D,F,G) 2, f1,G)

Eliminate I:
P(G,H=h,) =1y(G) [1/(G) 2 2pT(F, D) 251o(B) f;5(B,D,F,G)
* 1/(G)
A
¢ * f10(B)
B
&
¢ / l +f,4(B,D,F,G)
E « 1(F, D) "114(G)

E\Q/’ﬁ-(—U
/ _

Pt
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Variable elimination example(steps 3-4)

Compute P(G / H=h,). Elimination ordering A, C, E, I, B, D, F.

Previous state: P(G,H=h,) =1y(G) f,,(G) 22 Ts(F, D) 2 57,,(B) ,5(B.D,F,G)
Eliminate B:
P(G,H=h;) = 1s(G) ;/G) 2 2p Ts(F, D) f15(D,F,G)

* 1(G)
i
B
3
D
,L E * 1s(F, D) f,4(G)
F\ * 15(D,F,G)

=
%

Pt
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Variable elimination example(steps 3-4)

Compute P(G / H=h, ). Elimination ordering A, C, E, I, B, D, F.

Previous state: P(G,H=h,) =1y(G) f,,(G) 22 15(F, D) f,5(D,F,G)
Eliminate D:
P(G,H=h,) =1y(G) F,(G) 2cT1s(F, G)

* 1y(G)
A
.
B (!
D
¢ E *f14(G)
F
RN
* f16(F, G)

=
%

Pt
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Variable elimination example(steps 3-4)

Compute P(G / H=h,). Elimination ordering A, C, E, I, B, D, F.

Previous state: P(G,H=h,) =1y(G) F,,(G) 2T ,5(F, G)
Eliminate F:
P(G,H=hy) Lfg(G) 114(G) f77(GA « £,(G)

-f— U0 - — -

*f14G)

/’TJ"(—U

* 1,AG)

=
%

Pt
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Variable elimination example (step 5)

Compute P(G / H=h,). Elimination ordering A, C, E, I, B, D, F.

Previous state: P(G,H=h,) =1y(G) 7,,(G) 7,AG)
Multiply remaining factors:
P(G,H=h,) = [,5(G)

-f— U0 - — -
.,

D
g
N
G
/ \ - f15(G)
H I

CPSC 322, Lecture 30 Slide 47



Variable elimination example (step 6)

Compute P(G / H=h,). Elimination ordering A, C, E, /, B, D, F.
Previous state:
P(G,H=h,) = f,4(G)
Normalize:

P(G[H=h,) =F4(G)/ dedom(G) f15(G)
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Today Oct 6

* R&R systems in Stochastic environments
* Bayesian Networks Representation
* Bayesian Networks Exact Inference
* Bayesian Networks Approx. Inference
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Approximate Inference

= Basic idea:
= Draw N samples from a sampling distribution S
= Compute an approximate posterior probability
= Show this converges to the true probability P

= Why sample?

» |nference: getting a sample is faster than computing
the right answer (e.g. with variable elimination)

CPSC 502, Lecture 8
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Prior Sampling

P(S|0)
+c | +s [ 0.1
-s 1 0.9
-c | +s [ 0.5
-s [ 0.5
P(W|S, R)
+s +r
-W 0.01
-r +w | 0.90
-W 0.10
-s +r +w | 0.90
-W 0.10
-r +w | 0.01
-W 0.99

P(C
+C 0.5
-C 0.5

CPSC 502, Lecture 8

P(R|C)

+c | +r | 0.8

Samples:

+C, -S, +I, W
-C, *+S, -I, +W

o1



Example

= We'll get a bunch of samples from the BN:
+C, -S, +I, +W
+C, +S, +r, +W
-C, +S, +r, -w
+C, -S, +I, W
-C, -S, -, +w
* |f we want to know P(W)
= We have counts <+w:4, -w:1>
= Normalize to get P(W) = <+w:0.8, -w:0.2>
= This will get closer to the true distribution with more samples
» Can estimate anything else, too
= What about P(C| +w)? P(C| +r, +w)? P(C| -r, -w)?

what's the drawback? Can use fewer samples ?
CPSC 502, Lecture 8
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Rejection Sampling

= Let's say we want P(C)

= No point keeping all samples around

= Just tally counts of C as we go

= Let's say we want P(C| +s)

= Same thing: tally C outcomes, but
ignore (reject) samples which don'’t
have S=+s

» This is called rejection sampling

= |t is also consistent for conditional

probabilities (i.e., correct in the limit)
CPSC 502, Lecture 8

+C, -S, +I, +W
+C, +8, +, +W
-C, +S, +I, -W
+C, -S, +I, +W
-C, -S, -I, +W
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Likelihood Weighting

= Problem with rejection sampling:
= [f evidence is unlikely, you reject a lot of samples
* You don’t exploit your evidence as you sample

_ -b, -a

= Consider P(B|+a) b -a
-b, -a

+b, +a

» |dea: fix evidence variables and sample the rest

-b +a

-b, +a

-b, +a

+b, +a

= Problem: sample distribution not consistent!
= Solution: weight by probability of evidence given parents

CPSC 502, Lecture 8



Likelihood Weighting

P(S|0)
+c | +s [ 0.1
-s 1 0.9
-c | +s [ 0.5
-s [ 0.5
P(W|S, R)

+S +r +w | 0.99

-w | 0.01

-r +w | 0.90

-W 0.10

-S +r +w | 0.90

-W 0.10

-r +w | 0.01

-W 0.99

P(C
+C 0.5
-C 0.5

P(R|C)

+c | +r | 0.8

r | 0.2

c | +r [0.2

r | 0.8

Samples:

+C, +S, +r, +W

w = 1.0x0.1x0.99
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Likelihood Weighting

= Likelihood weighting is good
= We have taken evidence into account as
we generate the sample

= E.g. here, W’s value will get picked
based on the evidence values of S, R

= More of our samples will reflect the state
of the world suggested by the evidence
= Likelihood weighting doesn’t solve
all our problems

= Evidence influences the choice of
downstream variables, but not upstream
ones (C isn’t more likely to get a value
matching the evidence)

= \We would like to consider evidence
when we sample every variable

CPSC 502, Lecture 8
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Markov Chain Monte Carlo

* |dea: instead of sampling from scratch, create samples
that are each like the last one.

= Procedure: resample one variable at a time, conditioned
on all the rest, but keep evidence fixed. E.g., for P(b|+c):

= Properties: Now samples are not independent (in fact
they’re nearly identical), but sample averages are still
consistent estimators! And can be computed efficiently

= What’s the point. both upstream and downstream

variables condition on evidence.
CPSC 502, Lecture 8
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TODO for this Tue

Finish Reading Chp 6 of textbook
(Skip 6.4.2.5 Importance Sampling 6.4.2.6 Particle Filtering,
we have covered instead likelihood weighting and MCMC

methods)

Also Do exercises 6.E
http.//www.aispace.org/exercises.shtml
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In/Dependencies in a Bnet : Example 1
1Y O——O —O——O "
| O4—O  O—O

3| (O —(
7

Is A conditionally
independent of | given F?

false




In/Dependencies in a Bnet : Example 2

1Y O——O—@F—O—0O
| O4—O  O—O

Ly

Is H conditionally
independent of E

given - 1w

p@@@




Sampling a discrete probability

distribution |
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Problem and Solution Plan

« \We model the environment as a set of random vars

Xp - Xy 3D PO - X))
* Why the joint is not an adequate representation ?

“Representation, reasoning and learning” are
“‘exponential” in the number of variables

Solution: Exploit marginal&conditional independence

PN =F0) Plely 2)=P(x| 2)

But how does independence allow us to simplify the
joint? 4 RULE |

v
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Look for weaker form of independence

12 "
P( 7oothache, Cavily, Catch)
CCatdn D

Are Toothache and Ce/n‘ch marginally independent ?
POV | 4 D = Plitacke ) 1

BUT If | have a cavity, does the probability that the probe
catches depend on whether | have a toothache?

(1)P(catch | toothache, cavity) = P(cstcy | <> vﬁ—vo

What if | haven't got a cavity?
(2) P(catch | toothache,—cavity) = P etk \ L C“‘”‘h’]\

« Each is directly caused by the cavity, but neither
has a direct effect on the other
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Conditional independence

In general, Catchis conditionally independent of 7oothache given

Cavity. >

@ P(Catch | Toothache, Cavity) = P(Catch | Cavity) <

Equivalent statements:
@ P(7oothache | Catch, Cavily) = P(Toothache [ Cavity)

@ P( Toothache, Catch | Cavity) =
P(7oothache | Cavily) P(Catch | Cavity)

?(x, \/@Z P(xgz FCY/>Z
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Proof of equivalent statements

a P(x,2) - PCZ) —

\N\A -
(3 Plxv 1 2)= Tl 2 0y 2) P 2 )
A S
P () P (&) e

) e _(P(y([=) - PEe))
P2 PG
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Conditional Independence: Formal Detf.

Sometimes, two variables might not be marginally
Independent. However, they become independent
after we observe some third variable

DEF. Random variable X is conditionally independent of
random variable Y given random variable Z if, for all
X; € dom(X), y, € dom(Y), z., € dom(Z)
P(X=x [ Y=y, Z2=2,)=P(X=x|Z=2z,)
That is, knowledge of Y's value doesn’t affect your
belief in the value of X, given a value of Z
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Conditional independence: Use

Write out full joint distribution using chain rule:

( P(Cavn‘\y_C"az‘,ch ZQQL‘ZZ&C[?@
= P(7oothache [ Catch, Cavily) P(Catch | Cavity) P(Cavily)

=

= P(Toothache | Cen b )\Fl’—f,fi\\l‘Ch | Cavity), P(Cavity)

2 '3 2. 1.
how many probabilities? 2°-1-= v
2 +2+4 =5

The use of conditional independence often reduces the size of the
representation of the joint distribution from exponential in n7to
linear in n. nis the number of vars

Conditional independence is our most basic and robust form of
knowledge about uncertain egyirgnments. Slide 70



Approximate Inference

Sampling / Simulating / Observing G
Sampling is a hot topic in machine learning,
and it's really simple a
Basic idea:
* Draw N samples from a sampling distribution S
* Compute an approximate posterior probability Q

* Show this converges to the true probability P

Why sample?
* Learning: get samples from a distribution you don’t know

* Inference: getting a sample is faster than computing the right

answer (e.g. with variable elimination)
CPSC 502, Lecture 8 71



