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R&Rsys we'll cover in this course  

Environment 

Problem 
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Deterministic Stochastic 

Constraint 
Satisfaction Search 

Arc 
Consistency 

Search 

Search 

Logics 

STRIPS 

Vars +  
Constraints 

SLS 

Value Iteration 

Var. Elimination 
Belief Nets 

Decision Nets 

Markov Processes 

Var. Elimination 

Approx. Inference 

Temporal. Inference 

Static 

Sequential 

Representation 

Reasoning 

Technique 
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Key points Recap 

• We model the environment as a set of random vars 
 

• Why the joint is not an adequate representation ?  
 
“Representation, reasoning and learning” are 

“exponential” in the number of variables 
 

Solution: Exploit marginal&conditional independence  

 
 
 
But how does independence allow us to simplify the 

joint? 
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Belief Nets: Burglary Example 
There might be a burglar in my house 

 

The anti-burglar alarm in my house may go off 

 

I have an agreement with two of my neighbors,  John and 
Mary, that they call me if they hear the alarm go off when I 
am at work 

 

Minor earthquakes may occur and sometimes they set off 
the alarm.  

 

 

Variables: 
 

Joint has                 entries/probs 
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Belief Nets: Simplify the joint 
• Typically order vars to reflect causal knowledge 

(i.e., causes before effects) 
• A burglar (B) can set the alarm (A) off 

• An earthquake (E) can set the alarm (A) off 

• The alarm can cause Mary to call (M) 

• The alarm can cause John to call (J) 

 

 

• Apply Chain Rule 

 

 

• Simplify according to marginal&conditional 
independence 
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Belief Nets: Structure + Probs 

• Express remaining dependencies as a network 
• Each var is a node 

• For each var, the conditioning vars are its parents 

• Associate to each node corresponding conditional 
probabilities 

 

• Directed Acyclic Graph (DAG)  
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Burglary: complete BN 

B E P(A=T | B,E) P(A=F | B,E) 

T T .95 .05 

T F .94 .06 

F T .29 .71 

F F .001 .999 

P(B=T) P(B=F ) 

.001 .999 

P(E=T) P(E=F ) 

.002 .998 

A P(J=T | A) P(J=F | A) 

T .90 .10 

F .05 .95 

A P(M=T | A) P(M=F | A) 

T .70 .30 

F .01 .99 
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Burglary  Example: Bnets inference 

(Ex1) I'm at work,  

• neighbor John calls to say my alarm is ringing,  

• neighbor Mary doesn't call.  

• No news of any earthquakes.  

• Is there a burglar? 

(Ex2) I'm at work,  

• Receive message that neighbor John called ,  

• News of minor earthquakes.  

• Is there a burglar? 

 
 

 

 

Our BN can answer any probabilistic query that can 
be answered by processing the joint! 
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Bayesian Networks – Inference Types 

Diagnostic 

Burglary 

Alarm 

JohnCalls 

P(J) = 1.0 

P(B) = 0.001 

0.016 

Burglary 

Earthquake 

Alarm 

Intercausal 

P(A) = 1.0 

P(B) = 0.001 

0.003 

P(E) = 1.0 

JohnCalls 

Predictive 

Burglary 

Alarm 

P(J) = 0.011 

0.66 

P(B) = 1.0 

Revised probability 

Mixed 

Earthquake 

Alarm 

JohnCalls 

P(M) = 1.0 

P(E) = 1.0 

P(A) = 0.003 

 0.033 
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BNnets: Compactness 

B 
E P(A=T | B,E) P(A=F | B,E) 

T T .95 .05 

T F .94 .06 

F T .29 .71 

F F .001 .999 

P(B=T) P(B=F ) 

.001 .999 

P(E=T) 
P(E=F ) 

.002 .998 

A P(J=T | A) P(J=F | A) 

T .90 .10 

F .05 .95 

A P(M=T | A) P(M=F | A) 

T .70 .30 

F .01 .99 



CPSC 502, Lecture 8 Slide 12 

BNets: Compactness 

In General: 

A CPT for boolean Xi with k boolean parents has 2 k    rows for 
the combinations of parent values 

Each row requires one number pi  for Xi = true 
(the number for  Xi = false is just 1-pi ) 

 

If each on the n variable has no more than k parents, the 

complete network requires      O(n 2 k) numbers 

 

For k<< n, this is a substantial improvement,  

• the numbers required  grow linearly with n, vs. O(2 n) for 
the full joint distribution 
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Realistic BNet: Liver Diagnosis    
Source: Onisko et al., 1999 
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Realistic BNet: Liver Diagnosis    
Source: Onisko et al., 1999 
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BNets: Construction General Semantics 

The full joint distribution can be defined as the product of 
conditional distributions: 

 P (X1, … ,Xn) = πi = 1  P(Xi | X1, … ,Xi-1)  (chain rule)   

 

Simplify according to marginal&conditional independence 
 

 
 

                                     

n 

• Express remaining dependencies as a network 
• Each var is a node 

• For each var, the conditioning vars are its parents 

• Associate to each node corresponding conditional 
probabilities 

 
 P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi)) 

 

    

n 
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BNets: Construction General Semantics 

(cont’) 
n 

 P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi)) 

 

    

 
 

• By construction: Every node is independent from its 
non-descendants given it parents 
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Or, blocking paths for probability propagation. Three ways in 

which a path between X to Y can be blocked, (1 and 2 given 

evidence E ) 

 

Additional Conditional Independencies 

Z 

Z 

Z 

X Y E 

Note that, in 3, X and Y become dependent as soon as I get 

evidence on Z or on any of its descendants 

1 

2 

3 
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3 Configuration blocking dependency (belief propagation) 

Z 

Z 

Z 

X Y E 
1 

2 

3 
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Today Oct 6 

 

• R&R systems in Stochastic environments 

• Bayesian Networks Representation 

• Bayesian Networks Exact Inference 

• Bayesian Networks Approx. Inference 

 

 

 

 

 

 



CPSC 502, Lecture 8 Slide 20 

Bnet Inference: General 

• Suppose the variables of the belief network are X1,…,Xn. 

• Z is the query variable 

•Y1=v1, …, Yj=vj are the observed variables (with their values) 

• Z1, …,Zk are the remaining variables 

 

• What we want to compute:  ),,|( 11 jj vYvYZP  

 
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jj
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),,,( 11 jj vYvYZP  
 

• We can actually compute:  
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What do we need to compute? 
Remember conditioning and marginalization… 

P(L | S = t , R = f) 

 

L 

 

S R P(L, S=t, R=f ) 

t t f 

f t f 

Do they have to 
sum up to one? 

L 

 

S R P(L | S=t, R=f ) 

t t f 

f t f 
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Variable Elimination Intro 

• Suppose the variables of the belief network are X1,…,Xn. 

• Z is the query variable 

•Y1=v1, …, Yj=vj are the observed variables (with their values) 

• Z1, …,Zk are the remaining variables 

 

• What we want to compute:  ),,|( 11 jj vYvYZP  
 

• We just showed before that what we actually need to 
compute is  

),,,( 11 jj vYvYZP  

 This can be computed in terms of operations between 

factors (that satisfy the semantics of probability) 
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Factors 
• A factor is a representation of a function from a 

tuple of random variables into a number. 
• We will write factor f  on variables X1,… ,Xj  as     

 

• A factor denotes one or more (possibly partial) 
distributions over the given tuple of variables 

 

X Y Z val 

t t t 0.1 

t t f 0.9 

t f t 0.2 

f(X,Y,Z) t f f 0.8 

f t t 0.4 

f t f 0.6 

f f t 0.3 

f f f 0.7 

Distribution 
 

• e.g., P(X1, X2)  is a factor f(X1, X2) 
 

• e.g., P(X1, X2, X3 = v3)  is a factor  

       f(X1, X2) X3 = v3 

  

• e.g.,  P(Z | X,Y) is a factor 
             f(Z,X,Y) 
 
• e.g., P(X1, X3 = v3 | X2)  is a factor  

      f(X1, X2 ) X3 = v3 
 
            
 

Partial distribution 

Set of Distributions 

Set of  partial 
Distributions 
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Manipulating Factors: 
We can make new factors out of an existing factor 

 

• Our first operation: we can assign some or all of the 
variables of a factor. 

X Y Z val 

t t t 0.1 

t t f 0.9 

t f t 0.2 

f(X,Y,Z): t f f 0.8 

f t t 0.4 

f t f 0.6 

f f t 0.3 

f f f 0.7 

What is the result of  
assigning   X= t   ? 

f(X=t,Y,Z) 

f(X, Y, Z)X = t 
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Summing out a variable example 

B A C val 

t t t 0.03 

t t f 0.07 

f t t 0.54 

f t f 0.36 

f3(B,A,C): t f t 0.06 

t f f 0.14 

f f t 0.48 

f f f 0.32 

A C val 

t t 

Bf3(A,C): t f 

f t 

f f 

Our second operation: we can sum out  a variable, 

say X1  with domain {v1, …,vk} , from factor f(X1, …,Xj), 
resulting in a factor on X2, …,Xj  defined by: 
 

  ),,,(),,,(,, 212112

1

jkjj

X

XXvXfXXvXfXXf  














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Multiplying factors 

A B C val 

t t t 

t t f 

t f t 

f1(A,B)× f2(B,C): t f f 

f t t 

f t f 

f f t 

f f f 

A B Val 

t t 0.1 

f1(A,B): t f 0.9 

f t 0.2 

f f 0.8 

B C Val 

t t 0.3 

f2(B,C): t f 0.7 

f t 0.6 

f f 0.4 

•Our third operation: factors can be multiplied  together. 
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Factors Summary 

• A factor is a representation of a function from a tuple of random 
variables into a number. 

• f(X1,… ,Xj). 

• We have defined three operations on factors: 

1.Assigning one or more variables 

• f(X1=v1, X2, …,Xj)  is a factor on X2, …,Xj , also written as 
f(X1, …, Xj)X1=v1 

 
2.Summing out variables 

• (X1
 f)(X2, .. ,Xj) = f(X1=v1, X2, ,Xj) + … + f(X1=vk, X2, ,Xj) 

 

3.Multiplying factors 

• f1(A, B) f2 (B, C) = (f1 × f2)(A, B, C)  
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Variable Elimination Intro 
• If we express the joint as a factor, 

 

f (Z,  Y1…,Yj ,   Z1…,Zj   ) 

 

• We can compute P(Z,Y1=v1, …,Yj=vj)  by  ?? 

•assigning Y1=v1, …, Yj=vj  

•and summing out the variables Z1, …,Zk 

 
1

11 ,,1111 ),..,,,..,,(),,,(
Z

vYvYkj

Z

jj jj

k

ZZYYZfvYvYZP 

Are we done? 
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Variable Elimination Intro (1) 

• We can express the joint factor as a product of 

factors 

• Using the chain rule and the definition of a Bnet, we 

can write P(X1, …, Xn) as 

 



n

i

ii pXXP
1

)|(




n

i

ii pXXf
1

),(





1 11 ,,1

11 ),(),,,(
Z vYvY

n

i

ii

Z
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jjk

pXXfvYvYZP




f(Z,  Y1…,Yj ,   Z1…,Zj   ) 

 
1

11 ,,1111 ),..,,,..,,(),,,(
Z

vYvYkj

Z

jj jj

k

ZZYYZfvYvYZP 
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Variable Elimination Intro (2) 

1. Construct a factor for each conditional probability.  

2. In each factor assign the observed variables to 
their observed values. 

3. Multiply the factors 

4. For each of the other variables Zi ∈ {Z1, …, Zk }, 
sum out Zi  

Inference in belief networks thus reduces to 

computing “the sums of products….” 





1 11 ,,1

11 ),(),,,(
Z vYvY

n

i

ii

Z

jj

jjk

pXXfvYvYZP



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Key Simplification Step 

P(G,D=t) = A,B,C, f(A,G) f(B,A) f(C,G) f(B,C) 
 

P(G,D=t) = A f(A,G) B f(B,A) C f(C,G) f(B,C) 
 

I will add to the online slides a complete 

example of VE 
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Another Simplification before starting VE 
• All the variables from which the query is conditional 

independent given the observations can be pruned from 

the Bnet 
 

e.g., P(G | H=v1, F= v2, C=v3). 
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Variable elimination example 

Compute P(G | H=h1 ). 

• P(G,H) = A,B,C,D,E,F,I P(A,B,C,D,E,F,G,H,I) 
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Variable elimination example 
Compute P(G | H=h1 ). 

•  P(G,H) = A,B,C,D,E,F,I P(A,B,C,D,E,F,G,H,I) 

 

Chain Rule + Conditional Independence: 

 P(G,H) = A,B,C,D,E,F,I P(A)P(B|A)P(C)P(D|B,C)P(E|C)P(F|D)P(G|F,E)P(H|G)P(I|G) 
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Variable elimination example (step1) 
Compute P(G | H=h1 ). 

•  P(G,H) = A,B,C,D,E,F,I P(A)P(B|A)P(C)P(D|B,C)P(E|C)P(F|D)P(G|F,E)P(H|G)P(I|G) 
 

 

Factorized Representation: 

 P(G,H) = A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f7(H,G) f8(I,G) 

 • f0(A) 
 

• f1(B,A) 
 

• f2(C) 
 

• f3(D,B,C) 
 

• f4(E,C) 
 

• f5(F, D) 
 

• f6(G,F,E) 
 

• f7(H,G) 
 

• f8(I,G) 
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Variable elimination example (step 2) 
Compute P(G | H=h1 ). 

Previous state:  

  P(G,H) = A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f7(H,G) f8(I,G) 

Observe H : 

 P(G,H=h1) = A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G)  

• f9(G) 
 

• f0(A) 
 

• f1(B,A) 
 

• f2(C) 
 

• f3(D,B,C) 
 

• f4(E,C) 
 

• f5(F, D) 
 

• f6(G,F,E) 
 

• f7(H,G) 
 

• f8(I,G) 
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Variable elimination example (steps 3-4) 
Compute P(G | H=h1 ). 

Previous state:  

 P(G,H) = A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G)  

Elimination ordering A, C, E, I, B, D, F : 

  P(G,H=h1) = f9(G) F D f5(F, D) B I f8(I,G) E f6(G,F,E) C f2(C) f3(D,B,C) f4(E,C) A f0(A) f1(B,A)  

• f9(G) 
 

 

 

 

 

 

 

 

 

 

• f0(A) 
 

• f1(B,A) 
 

• f2(C) 
 

• f3(D,B,C) 
 

• f4(E,C) 
 

• f5(F, D) 
 

• f6(G,F,E) 
 

• f7(H,G) 
 

• f8(I,G) 
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Variable elimination example(steps 3-4) 
Compute P(G | H=h1 ). Elimination ordering A, C, E, I, B, D, F. 

Previous state:  

 P(G,H=h1) = f9(G) F D f5(F, D) B I f8(I,G) E f6(G,F,E) C f2(C) f3(D,B,C) f4(E,C) A f0(A) f1(B,A)  

 Eliminate A: 

 P(G,H=h1) = f9(G) F D f5(F, D) B f10(B) I f8(I,G) E f6(G,F,E) C f2(C) f3(D,B,C) f4(E,C)  

• f9(G) 
 

• f10(B) 
 

 

 

 

 

 

 

 

 

 

• f0(A) 
 

• f1(B,A) 
 

• f2(C) 
 

• f3(D,B,C) 
 

• f4(E,C) 
 

• f5(F, D) 
 

• f6(G,F,E) 
 

• f7(H,G) 
 

• f8(I,G) 
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Variable elimination example(steps 3-4) 
Compute P(G | H=h1 ). Elimination ordering A, C, E, I, B, D, F. 

Previous state:  

 P(G,H=h1) = f9(G) F D f5(F, D) B f10(B) I f8(I,G) E f6(G,F,E) C f2(C) f3(D,B,C) f4(E,C) 

 Eliminate C: 

 P(G,H=h1) = f9(G) F D f5(F, D) B f10(B) I f8(I,G) E f6(G,F,E) f12(B,D,E) 

 

• f9(G) 

 

• f10(B) 

 

•f12(B,D,E) 
 
 

 

 

 

 

 

 

 

 

 

• f0(A) 
 

• f1(B,A) 
 

• f2(C) 
 

• f3(D,B,C) 
 

• f4(E,C) 
 

• f5(F, D) 
 

• f6(G,F,E) 
 

• f7(H,G) 
 

• f8(I,G) 
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Variable elimination example(steps 3-4) 
Compute P(G | H=h1 ). Elimination ordering A, C, E, I, B, D, F. 

Previous state:  

 P(G,H=h1) = f9(G) F D f5(F, D) B f10(B) I f8(I,G) E f6(G,F,E) f12(B,D,E) 

 Eliminate E: 

 P(G,H=h1) =f9(G) F D f5(F, D) B f10(B) f13(B,D,F,G) I f8(I,G) 

• f9(G) 

 

• f10(B) 

 

•f12(B,D,E) 

 

•f13(B,D,F,G) 
 
 

 

 

 

 

 

 

 

 

 

• f0(A) 
 

• f1(B,A) 
 

• f2(C) 
 

• f3(D,B,C) 
 

• f4(E,C) 
 

• f5(F, D) 
 

• f6(G,F,E) 
 

• f7(H,G) 
 

• f8(I,G) 
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Variable elimination example(steps 3-4) 
Compute P(G | H=h1 ). Elimination ordering A, C, E, I, B, D, F. 

Previous state:  P(G,H=h1) = f9(G) F D f5(F, D) B f10(B) f13(B,D,F,G) I f8(I,G) 

 

 Eliminate I: 

 P(G,H=h1) =f9(G) f14(G) F D f5(F, D) B f10(B) f13(B,D,F,G) 

• f9(G) 

 

• f10(B) 

 
•f12(B,D,E) 

 

•f13(B,D,F,G) 

 

•f14(G) 
 

 

 

 

 

 

• f0(A) 
 

• f1(B,A) 
 

• f2(C) 
 

• f3(D,B,C) 
 

• f4(E,C) 
 

• f5(F, D) 
 

• f6(G,F,E) 
 

• f7(H,G) 
 

• f8(I,G) 
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Variable elimination example(steps 3-4) 
Compute P(G | H=h1 ). Elimination ordering A, C, E, I, B, D, F. 

 

Previous state:  P(G,H=h1) = f9(G) f14(G) F D f5(F, D) B f10(B) f13(B,D,F,G) 

 Eliminate B: 

 P(G,H=h1) = f9(G) f14(G) F D f5(F, D) f15(D,F,G) 

• f9(G) 

 

• f10(B) 

 

•f12(B,D,E) 

 

•f13(B,D,F,G) 

 
•f14(G) 
 

• f15(D,F,G) 
 
 

 

 

 

 

 

• f0(A) 
 

• f1(B,A) 
 

• f2(C) 
 

• f3(D,B,C) 
 

• f4(E,C) 
 

• f5(F, D) 
 

• f6(G,F,E) 
 

• f7(H,G) 
 

• f8(I,G) 
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Variable elimination example(steps 3-4) 
Compute P(G | H=h1 ). Elimination ordering A, C, E, I, B, D, F. 

 

Previous state:  P(G,H=h1) = f9(G) f14(G) F D f5(F, D) f15(D,F,G) 

 Eliminate D: 

 P(G,H=h1) =f9(G) f14(G) F f16(F, G) 

• f9(G) 

 

• f10(B) 

 

•f12(B,D,E) 

 

•f13(B,D,F,G) 

 
•f14(G) 
 

• f15(D,F,G) 
 

• f16(F, G) 
 
 

 

 

 

• f0(A) 
 

• f1(B,A) 
 

• f2(C) 
 

• f3(D,B,C) 
 

• f4(E,C) 
 

• f5(F, D) 
 

• f6(G,F,E) 
 

• f7(H,G) 
 

• f8(I,G) 
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Variable elimination example(steps 3-4) 
Compute P(G | H=h1 ). Elimination ordering A, C, E, I, B, D, F. 

 

Previous state: P(G,H=h1) = f9(G) f14(G) F f16(F, G) 

 Eliminate F: 

 P(G,H=h1) = f9(G) f14(G)  f17(G) • f9(G) 

 

• f10(B) 

 

•f12(B,D,E) 

 

•f13(B,D,F,G) 

 
•f14(G) 
 

• f15(D,F,G) 
 

• f16(F, G) 
 

• f17(G) 
 

• f0(A) 
 

• f1(B,A) 
 

• f2(C) 
 

• f3(D,B,C) 
 

• f4(E,C) 
 

• f5(F, D) 
 

• f6(G,F,E) 
 

• f7(H,G) 
 

• f8(I,G) 
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Variable elimination example (step 5) 
Compute P(G | H=h1 ). Elimination ordering A, C, E, I, B, D, F. 

 

Previous state: P(G,H=h1) = f9(G) f14(G)  f17(G) 

 Multiply remaining factors: 

 P(G,H=h1) = f18(G) 
• f9(G) 

 

• f10(B) 

 
•f12(B,D,E) 

 

•f13(B,D,F,G) 

 

•f14(G) 
 

• f15(D,F,G) 

 
• f16(F, G) 
 

• f17(G) 
 

• f18(G) 
 
 
 

 

• f0(A) 
 

• f1(B,A) 
 

• f2(C) 
 

• f3(D,B,C) 
 

• f4(E,C) 
 

• f5(F, D) 
 

• f6(G,F,E) 
 

• f7(H,G) 
 

• f8(I,G) 
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Variable elimination example (step 6) 

Compute P(G | H=h1 ). Elimination ordering A, C, E, I, B, D, F. 

Previous state:  

 P(G,H=h1) = f18(G) 

Normalize: 

 P(G | H=h1) = f18(G) / g ∈ dom(G) f18(G)  
• f9(G) 

 

• f10(B) 

 
•f12(B,D,E) 

 

•f13(B,D,F,G) 

 

•f14(G) 
 

• f15(D,F,G) 

 
• f16(F, G) 
 

• f17(G) 
 

• f18(G) 
 
 
 

 

• f0(A) 
 

• f1(B,A) 
 

• f2(C) 
 

• f3(D,B,C) 
 

• f4(E,C) 
 

• f5(F, D) 
 

• f6(G,F,E) 
 

• f7(H,G) 
 

• f8(I,G) 
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Today Oct 6 

 

• R&R systems in Stochastic environments 

• Bayesian Networks Representation 

• Bayesian Networks Exact Inference 

• Bayesian Networks Approx. Inference 

 

 

 

 

 

 



Approximate Inference 

 

 Basic idea: 

 Draw N samples from a sampling distribution S 

 Compute an approximate posterior probability 

 Show this converges to the true probability P 
 

 Why sample? 

 Inference: getting a sample is faster than computing 
the right answer (e.g. with variable elimination) 
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Prior Sampling 

 

Cloudy 

Sprinkler Rain 

WetGrass 

Cloudy 

Sprinkler Rain 

WetGrass 
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+c 0.5 

-c 0.5 

+c 
 

+s 0.1 

-s 0.9 

-c 
 

+s 0.5 
-s 0.5 

+c 
 

+r 0.8 

-r 0.2 

-c 
 

+r 0.2 
-r 0.8 

+s 
 
 
 

+r 
 

+w 0.99 
-w 0.01 

-r 
 

+w 0.90 

-w 0.10 

-s 
 
 
 

+r 
 

+w 0.90 

-w 0.10 

-r 
 

+w 0.01 
-w 0.99 

Samples: 

+c, -s, +r, +w 

-c, +s, -r, +w 

… 
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Example 

 We’ll get a bunch of samples from the BN: 

 +c, -s, +r, +w 

 +c, +s, +r, +w 

 -c, +s, +r,  -w 

 +c, -s, +r, +w 

 -c,  -s,  -r, +w 

 If we want to know P(W) 

 We have counts <+w:4, -w:1> 

 Normalize to get P(W) = <+w:0.8, -w:0.2> 

 This will get closer to the true distribution with more samples 

 Can estimate anything else, too 

 What about P(C| +w)?   P(C| +r, +w)?  P(C| -r, -w)? 

what’s the drawback?  Can use fewer samples ? 

Cloudy 

Sprinkler Rain 

WetGrass 

C 

S R 

W 
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Rejection Sampling 

 Let’s say we want P(C) 

 No point keeping all samples around 

 Just tally counts of C as we go 

 

 Let’s say we want P(C| +s) 

 Same thing: tally C outcomes, but 

ignore (reject) samples which don’t 

have S=+s 

 This is called rejection sampling 

 It is also consistent for conditional 

probabilities (i.e., correct in the limit) 

 +c, -s, +r, +w 

 +c, +s, +r, +w 

 -c, +s, +r,  -w 

 +c, -s, +r, +w 

 -c,  -s,  -r, +w 

Cloudy 

Sprinkler Rain 

WetGrass 

C 

S R 

W 
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Likelihood Weighting 

 Problem with rejection sampling: 
 If evidence is unlikely, you reject a lot of samples 

 You don’t exploit your evidence as you sample 

 Consider P(B|+a) 

 

 

 

 Idea: fix evidence variables and sample the rest 

 

 

 

 Problem: sample distribution not consistent! 

 Solution: weight by probability of evidence given parents 

Burglary Alarm 

Burglary Alarm 

55 

 -b,  -a 

 -b,  -a 

 -b,  -a 

 -b,  -a 

+b, +a 

 -b  +a 

 -b, +a 

 -b, +a 

 -b, +a 

+b, +a 
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Likelihood Weighting 

 

56 

+c 0.5 

-c 0.5 

+c 
 

+s 0.1 

-s 0.9 

-c 
 

+s 0.5 
-s 0.5 

+c 
 

+r 0.8 

-r 0.2 

-c 
 

+r 0.2 
-r 0.8 

+s 
 
 
 

+r 
 

+w 0.99 
-w 0.01 

-r 
 

+w 0.90 

-w 0.10 

-s 
 
 
 

+r 
 

+w 0.90 

-w 0.10 

-r 
 

+w 0.01 
-w 0.99 

Samples: 

+c, +s, +r, +w 

… 

Cloudy 

Sprinkler Rain 

WetGrass 

Cloudy 

Sprinkler Rain 

WetGrass 
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Likelihood Weighting 

 Likelihood weighting is good 

 We have taken evidence into account as 

we generate the sample 

 E.g. here, W’s value will get picked 

based on the evidence values of S, R 

 More of our samples will reflect the state 

of the world suggested by the evidence 

  Likelihood weighting doesn’t solve 

all our problems 

 Evidence influences the choice of 

downstream variables, but not upstream 

ones (C isn’t more likely to get a value 

matching the evidence) 

 We would like to consider evidence 

when we sample every variable 58 

Cloudy 

Rain 

C 

S R 

W 
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Markov Chain Monte Carlo 

 Idea: instead of sampling from scratch, create samples 

that are each like the last one. 
 

 Procedure: resample one variable at a time, conditioned 

on all the rest, but keep evidence fixed.  E.g., for P(b|+c): 

 

 

 Properties: Now samples are not independent (in fact 

they’re nearly identical), but sample averages are still 

consistent estimators! And can be computed efficiently 
 

 What’s the point: both upstream and downstream 

variables condition on evidence. 
59 

+a +c +b +a +c -b -a +c -b 
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Also Do exercises 6.E 
http://www.aispace.org/exercises.shtml 

 

 

 

TODO for this Tue 

Finish Reading  Chp 6 of textbook  
(Skip 6.4.2.5 Importance Sampling 6.4.2.6 Particle Filtering, 

we have covered instead likelihood weighting and MCMC 

methods) 

  

http://www.aispace.org/exercises.shtml
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Or ….Conditional Dependencies 

Z 

Z 

Z 

X Y 

E 

1 

2 

3 
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In/Dependencies  in a Bnet : Example 1 

Is A conditionally 

independent of I given F? 

Z 

Z 

Z 

X Y E 
1 

2 

3 
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In/Dependencies  in a Bnet : Example 2  

Is H conditionally 

independent of E 

given I? 

Z 

Z 

Z 

X Y E 
1 

2 

3 
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Sampling a discrete probability 

distribution 
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Problem and Solution Plan 

• We model the environment as a set of random vars 
 

• Why the joint is not an adequate representation ?  
 
“Representation, reasoning and learning” are 

“exponential” in the number of variables 
 

Solution: Exploit marginal&conditional independence  

 
 
 
But how does independence allow us to simplify the 

joint? 
 



Look for weaker form of independence 

P(Toothache, Cavity, Catch) 

 

Are Toothache and Catch marginally independent? 

 

 

BUT If I have a cavity, does the probability that the probe 
catches depend on whether I have a toothache? 

(1)P(catch | toothache, cavity) = 
 

What if I haven't got a cavity? 

(2) P(catch | toothache,cavity) = 

 

• Each is directly caused by the cavity, but neither 

has a direct effect on the other 
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Conditional independence 

In general, Catch is conditionally independent of Toothache given 
Cavity: 

P(Catch | Toothache,Cavity) = P(Catch | Cavity) 

 

Equivalent statements: 

P(Toothache | Catch, Cavity) = P(Toothache | Cavity) 

 

P(Toothache, Catch | Cavity) =  

    P(Toothache | Cavity) P(Catch | Cavity) 
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Proof of equivalent statements 
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Conditional Independence: Formal Def. 

DEF. Random variable X is conditionally independent of 

random variable Y given random variable Z if, for all 

xi  dom(X), yk  dom(Y), zm  dom(Z) 

   P( X= xi | Y= yk , Z= zm ) = P(X= xi | Z= zm ) 

That is, knowledge of Y’s value doesn’t affect your 

belief in the value of X, given a value of Z 

Sometimes, two variables might not be marginally 
independent. However, they become independent 
after we observe some third variable 
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Conditional independence: Use 

Write out full joint distribution using chain rule: 

 P(Cavity, Catch, Toothache) 

 = P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity) 

 = P(Toothache |      ) P(Catch | Cavity) P(Cavity) 

 

 

 how many probabilities? 

 

The use of conditional independence often reduces the size of the 
representation of the joint distribution from exponential in n to 
linear in n.  n is the number of vars 

 

Conditional independence is our most basic and robust form of 
knowledge about uncertain environments. 
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Approximate Inference 

Sampling / Simulating / Observing 
 

Sampling is a hot topic in machine learning, 
and it’s really simple 

 

Basic idea: 
• Draw N samples from a sampling distribution S 

• Compute an approximate posterior probability 

• Show this converges to the true probability P 

 

Why sample? 
• Learning: get samples from a distribution you don’t know 

• Inference: getting a sample is faster than computing the right 
answer (e.g. with variable elimination) 
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