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Today Oct 4

Finish R&R systems in deterministic environments
* Logics

* Reasoning with individuals and relations

* Full Propositional Logics and First-Order Logics

« Start R&R systems in Stochastic environments
* Bayesian Networks Representation
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\ Logics: Big Picture
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Representation and Reasoning in

Complex domains
e |tis often natural to

* |n complex domains
consider individuals and

expressing knowledge

with propositions can be their properties

quite limiting
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What do we gain....

By breaking propositions into relations applied to
individuals”?

« Express knowledge that holds for set of individuals
(by introducing variables )

live(W) <- connected _to(W,W17) N live(W7) A
wire(W) N wire(W1).

» We can ask generic queries (i.e., containing variables)

? connected _to(W, w,)
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Datalog: a relational rule language
It expands the syntax of PDCL....

A variable is a symbol starting with an upper case letter
X Y

A constant is a symbol starting with lower-case letter or a
sequence of digits.

alan w1 S
A term is either a variable or a constant.

A predicate symbol is a symbol starting with lower-case letter.
In part-of live
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Datalog Syntax (co Frogos ot

An atom is a symbol of the forn@r oL .. ) where pis a
predicate symbol and £ are terms

sunny in(alan, X)

A definite clause is either an atom (a fact) or of the form:
h <« b,A..ND,
where h and the b, are atoms (Read thisas "/ if b.")

v (X, ) = Iu (x/,?:}/\ pﬂq‘_qécz/\f>

A knowledge base is a set of definite clauses
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Datalog: Top Down Proof

Extension of TD for PDCL.
How do you deal with variables?

Example: in(alan, Q@K

\$L% part_of(r1 23,cs_building)/
N(X,Y) <- part_of(Z,Y) &)in(X,Z).

Query: in(alari, cs_building). W%P‘“T‘“HZFSWW\
\ﬂ \1Y a\zr\/\/ Z>

yes <- in(alan, cs_building).,
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Datalog: queries with variables

h(9|9n r4’)’2\ —
g SIS \
part_of(r123,cs_building).

X Y <-in(X,2). & part_of(Z,Y)
N

one U3

jeﬁ (Y%Z%B

Query in(a|an, X1f ('I@S(X1>?[M\(S\\SMIZB&PBFC-oKil%g)

Yes(X1) <- in{alan

L{@((_g_hn\dw\@
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\ Logics: Big Picture
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Today Oct 4

Finish R&R systems in deterministic environments
* Logics

* Reasoning with individuals and relations

* Full Propositional Logics and First-Order Logics

« Start R&R systems in Stochastic environments
* Bayesian Networks Representation

1
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Full Propositional Logics
DEFs.

Literal: an atom or a negation ofanatom © 9
Clause: is a disjunction of literals PV Iie VA
Conjunctive Normal Form (CNF): a conjunction of clauses

INFERENCE: |3 ol Fm® (Phatavimn (g i)

. Convert all formulas in KB and” &~  in CNF

« Apply Resolution Procedure (at each step combine two
clauses containing complementary literals into a new
one) Pv9 1’\/"‘7 - PV

« Termination

* No new clause can be added KB% A

- Two clause resolve into an empty clause KB X
CPSC 502, Lecture 7 13



Propositional Logics: Satisfiability (sAT problem)

Does a set of formulas have a model? Is there an
interpretation in which all the formulas are true?

(Stochastic) Local Search Algorithms can be used for
this task!

Evaluation Function: number of unsatisfied clauses

WalkSat: One of the simplest and most effective algorithms:

Start from a randomly generated interpretation

* Pick an unsatisfied clause

* Pick a proposition to flip (randomly 1 or 2)
1. To minimize # of unsatisfied clauses

2. Randomly _
CPSC 502, Lecture 7 14




Full First-Order Logics (FOLS)

We have constant symbols, predicate symbols and function
symbols

So interpretations are much more complex (but the same
basic idea — one possible configuration of the world)

constant symbols => individuals, entities
predicate symbols => relations
function symbols => functions

INFERENCE:

- Semidecidable: algorithms exists that says yes for
every entailed formulas, but no algorithm exists that
also says no for every non-entailed sentence

- Resolution Procedure can be generalized to FOL
CPSC 502, Lecture 7 15



Today Oct 4

Finish R&R systems in deterministic environments
* Logics

* Reasoning with individuals and relations

* Full Propositional Logics and First-Order Logics

« Start R&R systems in Stochastic environments
* Bayesian Networks Representation
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R&Rsys we'll cover in this course

Environment |
Deterministic Stochastic

PrOblem Arc
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onstrain Vars +
' ' ., | Search
S Satisfaction Constraints
atic :
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Q Logics /3{,,5 Ocdev Var. Ellmlnatlo%
uery D Approx. Inference
Search
Tempora Inference
"“—L onS .
Pr as Var. Elimination
Planning edteots
— Search Markov Processes
Repregenz‘az‘/on Value Iteration
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Intro to Probability (Motivation)
« Will it rain in 10 daysp Was it raining 98 da ys
ago?

* Right now, how many people are in this building
(DMP)? At UBC? ....Yeslerday?

« Al agents (and humans ®) are not

M 2T \proramT
* And the problem is not only predicting the

future or “remembering” the past
>lso covremt <xfe

CPSC 502, Lecture 7 Slide 18




Intro to Probability (Key points)

Are agents all ignorant/uncertain to the same

? HO \
degree&.\6 sobgecdne
\ —— I

Should an agent act only when it is certain
about relevant knowledge?

(not acting usually has implications)=

S0 agents need to represent and reason
about their ignorance/ uncertainty
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Probability as a formal measure of
uncertainty/ignorance

» Belief in a proposition 7 (e.g., /t /s snowing outside,
there are 321 people in this bldg) can be measured
in terms of a number between 0 and 1 - this is the

probability of 7

* The probability fis O means that 7is believed to be
definitely false

* The probability fis 1 means that fis believed to be
definitely true

* Using 0 and 1 is purely a convention.
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Random Variables

« A random variable is a variable like the ones we

have seen in CSP and Planning, but the agent can
be uncertain about its value.

 As usual

* The domain of a random variable X, written dom(X), is
the set of values X'can take

* values are mutually exclusive and exhaustive

Examples (Boolean and discrete)

ovtside Qm‘wng
T ¥
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Random Variables (cont’)

* A tuple of random variables <X,,...., X>Iis a
complex random variable with domain..

Joun(Ka) X -+ - x domn (K1)
* Assignment X=x means X has value x
outside Qz%‘/\f"\(s =T

* A proposition is a Boolean formula made from
assignments of values to variables

Examples v o

H= €0 lQA‘VV\:Z-‘-:;L
N PP

AN

ontsde R zs\‘m\—g =
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Probability Distributions
* A probability distribution P on a random variable X is
a function dom(X) - > [0,1] such that x -> P(X=x)

Aowa (C 3\/&%"\} = [T/ T;]
—> - 2 ?CCB\/N’V( =T>

> . & P(cz\/ké'?zFB

#—of—peop/e-/h:D/I//P? — X
QP -
" Y 255 s3v2

cavity?

W
| - A o — =— peoplC
< 60 T, ~
O 35 Z\,:l- S50 *o\_Pegv\e e

SiaR %3’
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Joint Probability Distributions P(<x,,....., X>)
* Probability distribution over the variable Cartesian
product of multiple random variables

* Think of a joint distribution over n variables as an n-
dimensional table

* Each entry, indexed by X; _X,...., X,= X, corresponds
to P(X; =Xy A oo AXL=X)

* The sum of entries across the whole table is 1

roothache 1 toorhache cavity | toothache | catch L(w)

catch | - carch| carch | — carch \L T T T 108
caviry | 108 | .012 072 | .008 012
.072

= caviry | 016 | .064 44 | 576

.008
Lor

.016
.064
144
576

A Bogeza &5

\/ CPSC 502, LgctureH
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Joint Prob. Distribution (JPD): Example2

3 binary random variables: P(H,S,F)

/_/rﬁiiey H:Jﬁ\sc
* H dom(H)={h, —h} has heart disease, does not have...

* S dom(S)={s, =s} smokes, does not smoke
* F dom(F)={f, —=f} high fat diet, low fat diet

(/ f —f )

S — S S — S
= R .015 |.007 .005 |.003 2 l
= —h 21 o1 .07 .18 —
27 ) 2 K|
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Marginalization

1 ~f e(n o)
S — S S_ - S
h {(015) |[007] | [7005) |[003
_hl21 |51 07 .18

P(H,S)= > P(H,S,F=x)

xedom(F)

> h @D 07

"'1"\ 28 .69 'Z\j)_
Y .+

P(H)
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Conditional Probability

PHS) s s PH pg )= PEH)
h| 02 | .01 | 03 P(H)

hlLC®| 69 |[97]
p(s) .30 .70 fCs ';\“5=@
. PN:\T/\\\;\A\ PG l’\>

S — S
h .666 333 /é\ @
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Recap Conditional Probability (cont.)

| )

(s )= e xwh;“,Y

/( P(H) ,
/\ /
WSMF> S
e Itis not a probabillity distributions but..
set™ o
FTO’O~ 6«3&‘0\0. \
* One for each configuration of the conditioning var(s)
eoniane cot oK prob.Bashnbrdions y
10 K lormary V5
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Chain Rule
P(H,8,F)= P(H) & P(s| ey % (7| 4)5)

&WS e PR o B(F 9

U

P D ¥
Bayes Theo(eér?/ %
s ¢
P(S,H)
P(S)
rewcte

P(S|H)=

P(H |S)P(S)

P(H) cpsc

T P(H[S)=
S;\ v
P(H|S)

502, Lecture 7

F(s) = A(s, )—\>
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Do you always need to revise your beliefs?

NO when your knowledge of Y's value doesn't affect
your belief in the value of X

DEF. Random variable X is marginal independent of
random variable Y Iif, for all x, e dom(X), y, € dom(Y),

P(X=X;| Y=Yy,) = P(X=X)
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Marginal Independence: Example

Xand Yare independent iff: AP(X>: ?(K \YB - Pﬁi)_
. PO
P(X/Y) =P(X) orP(Y/X)=P(Y) orP(X,Y)=P(X)P(Y)

That is new evidence Y(or X) does not affect current belief in
X (OI’ Y) 4 Poss‘blc $umv\\1

0 Cloa J«—{
Ex: P(7oothache, Catch, Cavity, Weather) elocs Caray
= P( 7Toothache, Calich, Cav/z‘y% lP(we&/l«e/rB )
7N

SV\OW
1
™

JPD requirin)g 32 entries is reduced to two smaller ones (8
and 4

Torat pfa‘:). d«SJ’T\.V'\d'"o"‘
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Conditional Independence

With marg. Independence, for nindependent
random vars, O(2") » (/.

Clx<a -« - \KMS:?(KQK'— ~\3(P(»<b\>

Absolute independence is powerful but when you
model a particular domain, it is rare

Dentistry is a large field with hundreds of variables,
few of which are independent (e.qg.,Cavily, Heart-
disease).

What to do?
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Look for weaker form of independence

12 "
P( 7oothache, Cavily, Catch)
CCatdn D

Are Toothache and Ce/n‘ch marginally independent ?
POV | 4 D = Plitacke ) 1

BUT If | have a cavity, does the probability that the probe
catches depend on whether | have a toothache?

(1)P(catch | toothache, cavity) = P(cstcy | <> vﬂ—vb

What if | haven't got a cavity?
(2) P(catch | toothache,—cavity) = P etk \ L C“‘m}“}\

STop HNERE o«/is)

« Each is directly caused by the cavity, but neither
has a direct effect on the other
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Conditional independence

In general, Catchis conditionally independent of 7oothache given

Cavity. >

@ P(Catch | Toothache, Cavity) = P(Catch | Cavity) <

Equivalent statements:
@ P(7oothache | Catch, Cavily) = P(Toothache [ Cavity)

@ P( Toothache, Catch | Cavity) =
P(7oothache | Cavily) P(Catch | Cavity)

?(x, \/@Z P(xgz FCY/>Z
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Proof of equivalent statements

a P(x,2) - PCZ) —

\N\A -
(3 Plxv 1 2)= Tl 2 0y 2) P 2 )
A S
P () P (&) e

) e _(P(y([=) - PEe))
P2 PG
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Conditional Independence: Formal Detf.

Sometimes, two variables might not be marginally
Independent. However, they become independent
after we observe some third variable

DEF. Random variable X is conditionally independent of
random variable Y given random variable Z if, for all
X; € dom(X), y, € dom(Y), z., € dom(Z)
P(X=x [ Y=y, Z2=2,)=P(X=x|Z=2z,)
That is, knowledge of Y's value doesn’t affect your
belief in the value of X, given a value of Z
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Conditional independence: Use

Write out full joint distribution using chain rule:

( P(Cavn‘\y_C"az‘,ch ZQQL‘ZZ&C[?@
= P(7oothache [ Catch, Cavily) P(Catch | Cavity) P(Cavily)

=

= P(Toothache | Cen b )\Fl’—f,fi\\l‘Ch | Cavity), P(Cavity)

2 '3 2. 1.
how many probabilities? 2°-1-= v
2 +2+4 =5

The use of conditional independence often reduces the size of the
representation of the joint distribution from exponential in n7to
linear in n. nis the number of vars

Conditional independence is our most basic and robust form of
knowledge about uncertain egyirgnments. Slide 38



Key points Recap

« \We model the environment as a set of random vars

Xp - Xy 3D PO - X))
* Why the joint is not an adequate representation ?

“Representation, reasoning and learning” are
“‘exponential” in the number of variables

Solution: Exploit marginal&conditional independence

PN =F0) Plely 2)=P(x| 2)

But how does independence allow us to simplify the
joint? 1 air RULE |

ow
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Today Oct 4

Finish R&R systems in deterministic environments
* Logics

* Reasoning with individuals and relations

* Full Propositional Logics and First-Order Logics

« Start R&R systems in Stochastic environments
* Bayesian Networks Representation
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40



Belief Nets: Burglary Example

There might be a burglar in my house
B

The anti-burglar alarm in my house may go off

A

| have an agreement with two of my neighbors, John and
Mary, that they call me if they hear the alarm go off when |
am at work -

F J

Minor earthquakes may occur and sometimes the set off the
alarm. L

Variables: G A4 MJ & w= 5

5 "
Jointhas £ — 1 entries/probs 2 -4



Belief Nets: Simplify the joint

* Typically order vars to reflect causal knowledge

(i.e., causes before effects) 3 =
* Aburglar (B) can set the alarm (A) off N
* An earthquake (E) can set the alarm (A) off A
* The alarm can cause Mary to call (M) / \
* The alarm can cause John to call (J) M R
F(B E A M U‘\ e
A2\ ol élé/\ adef

« Apply Chain Rule %

() P(g/a)f?(ﬂf)ﬁ@?@)/xf/_@PéYWAE@

« Simplify according to marginal&conditional
independence




Belief Nets: Structure + Probs
S P(B) +P(E) » PLAIR,E) « P(M | A)+ P |A)

* EXxpress remaining dependencies as a network

* Each varis a node

* For each var, the conditioning vars are its parents

* Associate to each node corresponding conditional
probabilities o@ﬁ,)

£®
g’
IS Ao

 Directed Acyclic Graph (DAG) Slide 43




% <
7(B8)~ Burglary: complete BN (=)
P(B=T) | P(B=F) f P(E=T) | P(E=F)
001 999 BU}B\GWI 002 998

PCA [,

P(A=T | B,E) | P(A=F | B,E)

= 95 05
= 94 .06
> 29 71

— 001 999

Johu Call s
©{) (j]/\)

P(h A)

A PU=T|A) | PQ=F|A)
T 90 10
F (.05) 95
SN——"
N

cy b\ «\'Or o

P(M=T | A) | P(M=F | A)
70 30
(.o1) 99
N
¢

o‘\’\’\ e YersownsS
CPSC502, Lecture 7
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Burglary Example: Bnets inference

Our BN can answer any probabilistic query that can
be answered by processing the joint!

(Ex1) I'm at work,
= neighbor John calls to say my alarm is ringing,

oy neighbor Mary doesn't call. /(@
_—* No news of any earthquakes. m
* |s there a burglar?
(Ex2) I'm at work, - @ @
* Receive message that neighbor John called ,
* News of minor earthquakes. /(9

* |s there a burglar?
AJ)space @’m@
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Bayesian Networks — Inference Types

Diagnostic Predictive Intercausal Mixed

|Burg|ary| |Burg|ary| PE)=1.0 |Earthquake|
B) = 0.001 =1.0 | Earthquake |
( )= P(—E) = 1.0
0.016 - '
Alarm Alarm l Burglary l
P(B) = 0.00 P(A) = 0.003
0.003 0.033
Alarm JohnCalls
JohnCaIIsl |JohnCaIIs | =10 | |
P(J) = 0.011 P(M)=1.0
PJ)=1.0 (J)
0.66
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P(B=T) | P(B=F)
001 999
o

BNnets: Compactness

P(A=T | B,E)

.95

A PU=T|A) | PA=F|A)
T .90 10
F .05 .95

\:g’ﬁ’fﬁ*‘:‘iﬁfs'- \

CPSC 502, Lecture 7

A

BNet—

P(E=T) | P(E=F)
.002 .998
g%
P(A=F | B,E)
.05 <
.06 y Zt_
71 -
.999 =z

P(M=T|A) | PM=F]|A)
.70 .30
.01 .99

2 lrG+1ed=]O
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s BNets: Compactness

\( .
[’O\n \0\\\)\"’(
\o2 QD OO0 O D
C° 4
In General: 4"

A@ for boolean X, with & boolean parents has 2%  rows for
the combinations of parent values

Each row requires one number p; for X = frue
(the number for X;= falseis just 7-p;)

If each on the /7 variable has no more than A parents, the
complete network requires  O(n1 2 %) numbers

For k<< n, this is a substantial improvement,

* the numbers required grow linearly with 72, vs. O(2 ") for

the full joint distribution
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Realistic BNet: Liver Diagnosis §©P
éo nodes Source: Onisko et al v A Q/b ZCO :(Z 0 \b
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Realistic BNet: Liver Diagnosis

Source: Onisko et al., 1999

Jusea '

Fat intolerance

Anorexia

Diarrhoea

Pain in the BUO

History of
hospitalization
History of viral

hepatitis

resence of
antibodies

=hce to HBcAgin
natitis blood

i
I?oedn Total bilirubin

Presence of
antibodies to
HDY in blood

Hyperlipidemia
Triglycerides

Upper
abdominal

pain
History of
Total surgery
cholesterol

{ Gallstones )

Choledochaolithotomy

Pressure in
the RUQ

10

Liver disorder

Serum an
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TODO for this Thur

Read Chp 6 of textbook up to Rejection
Sampling included

Also Do exercises 6.A and 6.B
http.//www.aispace.org/exercises.shtml
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BNets: Construction General Semantics

The full joint distribution can be defined as the product of
conditional distributions:

PX,..,X)=1II_, P(X:/X, ..,X.,) (chain rule)
7 / 7

[

Simplify according to marginal&conditional independence

* EXxpress remaining dependencies as a network
* Each varis a node
* For each var, the conditioning vars are its parents

* Associate to each node corresponding conditional &
probabilities
v

" v
PX,..,X)=1Il_,P(X Parents(X;))
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BNets: Construction General Semantics
(cont’)

PX,..,X)=1II_,P(X:/Parents(X))

* Every node is independent from its non-descendants
given it /a.Fth‘S/Q_\

N

SN
(f AN

CPSC 502, Lecture 7 Slide 53
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Lecture Overview

* Belief Networks

* Build sample BN
* Intro Inference, Compactness, Semantics
* More Examples
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Other Examples: Fire Diagnosis
(textbook Ex. 6.10)

Suppose you want to diagnose
whether there is a fire in a ‘P@’\ WF}

building
* YOU receive a noisy report
about whether everyone is
leaving the building. Pt
 if everyone is leaving, this may |
have been caused by a fire | P(q,a)

alarm.
* if there is a fire alarm, it may @

have been caused by a fire or
by tampering \‘/ PR | L)

« if there is a fire, there may be @
smoke raising from the bldg.

cture 7 Slide 55




Other Examples (cont’)

Make sure you explore and understand the p@@@
Fire Diagnosis example (we’ll expand on it to
study Decision Networks)

Electrical Circuit example (textbook ex 6.11) p@@@

/

(&
Patient’s wheezing and coughing example
(ex. 6.14)

p@@@

Several other examples on
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