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Today Sept 22

- Finish Stochastic Local Search (SLS)

* Planning
e STRIPS

* Heuristics
 STRIPS -> CSP

CPSC 502, Lecture 5



Population Based SLS

Often we have more memory than the one required
for current node (+ best so far + tabu list)

Key ldea: maintain a population of & individuals

« At every stage, update your population.
 Whenever one individual is a solution, report it.
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Population Based SLS: Beam Search
Non Stochastic

o Start with Aindividuals, and choose the A best out
of all of the neighbors.

» Useful information is pz
/] hea
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* Troublesome case: If one individual generates several
good neighbors and the other k-1 all generate bad
successors.... the net gemenzhion will comprise

\/6“1 S lar Twdividualg /I\
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Population Based SLS: Stochastic

Beam Search
» Non Stochastic Beam Search may suffer from

lack of diversity among the k individual (just a more
expensive hill climbing)

 Stochastic version alleviates this problem:
* Selects the k individuals at random

e But probability of selection proportional to their value
(according to scoring function)
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Stochastic Beam Search: Advantages

* It maintains diversity in the population.

* Biological metaphor (asexual reproduction):

v'each individual generates “mutated” copies of itself (its
neighbors)

v'The scoring function value reflects the fitness of the
individual

v'the higher the fitness the more likely the individual will
survive (i.e., the neighbor will be in the next generation)
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Population Based SLS: Genetic Algorithms

« Start with Arandomly generated individuals
(population)

4

* An individual is represented as a string over a finite
alphabet (often a string of Os and 1s)

* A successor Is generated by combining two parent

individuals (loosely analogous to how DNA is spliced in
sexual reproduction)

« Evaluation/Scoring function (fitness function). Higher
values for better individuals.

* Produce the next generation of individuals by

selection, crossover, and mutation
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Genetic algorithms: Example &-gueer
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Genetic algorithms: Example

Selection: common strategy, probability of
being chosen for reproduction is directly
proportional to fithess score
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Genetic algorithms: Example

Reproduction: cross-over and mutation
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Genetic Algorithms: Conclusions

* Their performance is very sensitive to the choice
of state representation and fitness function

« Extremely slow (not surprising as they are
iInspired by evolution!)

« But relatively simple example of biologically
iInspired Al approaches
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Today Sept 22

- Finish Stochastic Local Search (SLS)

* Planning
* STRIPS - Forward Planning

* Heuristics
 STRIPS -> CSP

CPSC 502, Lecture 5
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R&Rsys we'll cover in this course
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Standard Search vs. Specific R&R systems

Constraint Satisfaction (Problems):
e State: assignments of values to a subset of the variables
* Successor function: assign values to a “free” variable
* Goal test: set of constraints
* Solution: possible world that satisfies the constraints
* Heuristic function: none (all solutions at the same distance from start)

Planning :
* State
* Successor function
* Goal test
e Solution

* Heuristic function

Inference

State

Successor function
Goal test

Solution CPSC 502, Lecture 5 Slide 14
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Planning as Search: State and Goal

How to select and organize a sequence of actions to
achieve a given goal...

State: Agent is in a possible world (full aSS|gnments
to a set of variables/features)

A R C dommw<+vML/jLz‘éé<TF) J

(+ '

Goal: Agent wants to be in a possible world were
some variables are given specific values
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Planning as Search: Successor function

and Solution
Actions : take the agent from one state to another
ol
gi”@{ A=~ ~ A=+
2 =F —) | B=F
A C=F cC =T
7\

Solution: sequence of actions that when performed
will take the agent from the current state to a goal

state A=T

Goo x|
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Delivery Robot Example (textbook)

Consider a delivery robot named Rob, who must navigate
the following environment, can deliver coffee and mail
to Sam

Mail
Room

For another example see Practice Exercise 8.C:
“Commuting to UBC”
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Delivery Robot Example: States

The state is defined by the following variables/features:

RLoc - Rob's location
« domain: coffee shop (€S), Sam's office (0ff), mail room (/m1r),

or laboratory (/ab) Quc=T" RHc=F

RHC - Rob has coffee True/False. -, rhc rhc
SWC - Sam wants coffee T,/ [~

MW - Mail is waiting N /=

RHM - Rob has mail T/

I A A

Example state: 565, VL‘C, Swe, w I rbwm}
Number of states: , 4
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Delivery Robot Example:
Actions

The robot’s actions are: Roon Lab
Move - Rob's move action
« move clockwise (/mc ), move anti-clockwise (mac)

perereRre i)
PUC - Rob picks up coffee oS

 must belat the coffee shop e
DelC - Rob delivers coffee

- must bd at the officd, and rhust have coffed
PUM - Rob picks up mail

- must belin the mail room/ and(mail must be waitin
DellM - Rob delivers mail

 must be at the office and have mail
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STanford Research Institute Problem
Solver (STRIPS) action representation

The key to sophisticated planning is modeling actions

In STRIPS, an action has two parts:
1. Preconditions: a set of assignments to features that must be

satisfied in order for the action to be legal
2. Effects: a set of assignments to features that are caused by

the action
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STRIPS actions: ExampleS

STRIPS representation of the action pick up coffee, PUC

. precondition@and'LRHC =E]

. effects[fﬁ-/() =T]

STRIPS representation of the actior deliver coffee, De/C :
* preconditions Loc =@# and RHC=1 " ( sw<=T>
 effects RHC =[— and SWC =F

Note in this domain Sam doesn't have to want coffee for
Rob to deliver it; one way or another, Sam doesn't want
coffee after delivery.
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STRIPS actions: MC and MAC

STRIPS representation of the action
MoveClockwise ?

Crec loc= S

S
B - \EH— ,oc,:Q{J"ZC

M xc - CS
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STRIPS Actions (cont’)

The STRIPS assumption:

all features/variables not explicitly changed by an
action stay unchanged

« So if the feature V has value v, in state S, , after
action a has been performed,

* what can we conclude about a and/or the
state of the world S, ,, immediately preceding the
execution of a?

Si-1




Forward Planning

To find a plan, a solution: search in the state-
space graph.
* The states are the possible worlds

* The arcs correspond to the actions: The arcs
from a state srepresent all of the actions that are
legal in state s. (What actions are legal?)

WL\M{ W@V\Jtzs o) ke 804’144&4

* A planis a path from the state representing the
initial state to a state that satisfies the goal.
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e

Example state-space graph: &esl: sSwe
first level

Start §tate

Actions
me.: move clockwise

mac: move anticlockwise
T
puc: pick up coffee

de: deliver coffee
pum: pick up imﬁf (CS’“"" ¢, mw,rhm) ‘,SWC,HIW,W) ' t E;%ﬁ,mc,mw,m) '

dm: deliver mail m
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Example state- <ol 2=
space graph g

Start s g -
= ©

Actions

mc: move clockyise

mac: move anticloc z (cs,r c,swc,nnv,%} nm
nm: no move puc e
puc: pick up coffee / me
dc: deliver coffee ([ -
pum: pick up mail (es,r K‘m’c’m rhm) | |{off,hc,swe,mw,rhm) (mr,rhe,swe,mw,rhim)
dm: deliver mail m 2%
mac
(:@hc,wc,m}v,m) mac |{lab,rhic,swe,mw,rhim)  vhe
{cs,rhc,swe,mw,rhm) »\ | ¥he
Swc , mw
rh c,wc,m,ﬁ} Locations- \"\,{ »

cs: coffee sShop  Fearure values

off: office rhe: robot has coffee
lab: laboratory

swe: Sam wants coffee

mr:mailroom 00 waiting

m
rhm: robot has mail
Gnr,rhc,mc,nnv,%}' e 27




Standard Search vs. Specific R&R systems

« Constraint Satisfaction (Problems):

e State: assignments of values to a subset of the variables

* Successor function: assign values to a “free” variable

* Goal test: set of constraints

e Solution: possible world that satisfies the constraints

* Heuristic function: none (all solutions at the same distance from start)
« Planning :

e State: full assignment of values to features

* Successor function: states reachable by applying valid actions

* Goal test: partial assignment of values to features

* Solution: a sequence of actions

* Heuristic function: ? ?

* Inference
* State
* Successor function
* (Goal test
* Solution
Slide®9 Heuristic function



Heuristics for Forward Planning

Heuristic function: estimate of the distance form a
state to the goal

In planning this is the. F5. 24 o s

Two simplifications in the representation:
* All features are binary: T/ F
* Goals and preconditions can only be assignmentsto T

And a Def. a subgoal is a particular assignment in the
goal e.g., if the goal is <A=T, B=T, C=T> then....

\ — ‘b\

\'5@ c =T

J
>

2 —\ o°
AN >0 3 =T
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Heuristics for Forward Planning:
Any ideas?
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Heur|§t|cs for Forward Plag |ng (cont’)

;\’/\ a6
Sl f
B = \_‘\>C_
C - hC
\58

What kind of simplifications of the actions wvould
L "
justify our proposal for h* ;(oo § I srrane

N ARDMISS) ALE
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Heuristics for Forward Planning:

. empty-delete-list
So
* We only relax the problem according to (. .b....)

l.e., we remove all the effects that make a variable F

Action a effects (B=F, C=7)

 But then how do we compute the heuristic?

This is often fast enough to be worthwhile

-(empjy—delete-list rmwith forward planning
is currently considered a very successful strategy
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Empty-delete in practice

Py St stae ( B § Ld’ Sone
/L\ N . W e e US/M& @é
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Today Sept 22

- Finish Stochastic Local Search (SLS)

* Planning
* STRIPS - Forward Planning
* Heuristics

* STRIPS -> CSP

CPSC 502, Lecture 5
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R&Rsys we'll cover in this course

S

Environment |
Deterministic Stochastic
Problem Arc |
 Constraint Consistency | SLS
onstraint ||/grs +
' ' . .| Search
St Satisfaction Constraints
I '
_ B P@mw Belief Nets¢—
Q Log/'cs —7\+~.rs Ocdey ar. Elimina |o%
uery D- .« -~ || Approx. Inference
Search
Tempora Inference
- cons TAAEE TS o
Sequential _STRIPS ° o s DéC/S/on Nels 5’f
Var. Elimination
Planning 844“’0‘;; o
: Search | 4% arkov Processes
Rep regenz‘az‘/on A - ("\DVM J/ Value lteration

Reasoning
| Technique
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Planning as a CSP

« An alternative approach to planning is to set up a
planning problem as a CSP!

 We simply reformulate a STRIPS model as a set
of variables and constraints

* Once this is done we can even express
additional aspects of our problem (as additional
constraints)

e.g., see Practice Exercise UBC commuting

“careAboutEnvironment constraint
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Planning as a CSP: Variables

 We need to “unroll the plan” for a fixed number of
steps: this is called the horizon

« To do this with a horizon of k: AB C
* construct a CSP variable for ea@
variable at each time step from 0 to
* construct a boolean CSP variable for each
oY @Il@at each time step from O to k - 1.

>V
AQ ,a A-’l (5 A/L
10 ’}
R, &4_ }11 %Z 171
N 2] PR
20
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CSP Planning: Robot Example

( <N o

— ne: ol D:Ii: -

SWC,) - SWC, : @

e =lg g ben g

MW, < MW, B
. N\ Delh

\\ ”:”ﬂ* /\ I /I\ [

Sta{teﬂ Atflileﬂ St:-lttﬁ Action Stateq

VVariables for actions .... o Wm"L‘

action (non) occurring at that step
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CSP Planning: Initial and Goal Constraints

D)
n
o
V\
“I

,)\

¢
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* |nitial state constraints constrain the state
variables at time 0

* goal constraints constrain the state variables at

time k

Move

PUC

E :Rﬁﬂﬂég :;;

DelCy

PUM

.

Delhd, \

N

RHM,)
Stateg
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Action, State, O nl |



CSP Planning: Prec. Constraints

As usual, we have to express the preconditions and effects of

actions:
* precondition constraints

* hold between state variables at time fand action

variables at time £

* specify when actions may be taken Z -

CPSC 502, Lecture 5
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» effect constraints

CSP Planning: Effect Constraints

* pbetween state variables at time £ action variables at

time t and state variables at time 7+ 1

* explain how a state variable at time f+ 1 is affected by
the action(s) taken at time fand by its own value at

\

time ¢

s D

ol —{(Reic, X

@D

E-

W

=

>~

/

E+A

RHC, |DelC, |[PUC, |RHC.,,
T T T (D
T T F F
T F

T)| T
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CSP Planning: Constraints Contd.

Other constraints we may want are action

constraints:

* specify which actions cannot occur simultaneously

* these are sometimes called mutual exclusion

(mutex) constraints

E.g., in the Robot domain

nan occur in any

sequence (or simultaneously)
But we could change that...

Meove 0

DelM, | DelC,
T | =
'F- ~ ¥ DelM,) \
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CSP Planning: Constraints Contd.

Other constraints we may want are state constraints
* hold between variables at the same time step

 they can capture physical constraints of the system
(robot cannot hold coffee and mail)

\ » they can encode maintenance goals
NJ

RHC.
—

F_
Sr}
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CSP Planning: Solving the problem

Map STRIPS Representation for horizon: O | 2. ... -
Run arc consistency, search, stochastic local search!

Plan: all actions with assignment T

In order to find a plan, we expand our constraint

network one layer at the time, unti tion is
— —

found | = 1
/& e ANERRGH Sorf.
0 d ) -
vﬁ ——ﬂ@ \ PLUTM, - \ PUM
2 [P o o :
— ] ]
| 7 =
| Stateg '“:/"}1"0 State, \ AG/‘:\O"1
. —
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CSP Planning: Solving the problem

Map STRIPS Representation for horizon 1, 2, 3, ..., until
solution found

Run arc consistency, search, stochastic local search!

<> K=0

N Is State, a goal?
If yes, DONE!

If no,

Stateﬂ,

47



CSP Planning: Solving the problem

Map STRIPS Representation for horizon k =1
Run arc consistency, search, stochastic local search!

— o K=1
e Is State,; a goal
) — If yes, DONE!

g)‘t oz } If no,
MW Chaw 3
StEIEG

Acliono Stﬂt&-l L s sy
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CSP Planning: Solving the problem

Map STRIPS Representation for horizon k = 2
Run arc consistency, search, stochastic local search!

Move, (Bove;
RLoc,, RLoc, (RLoc,
0 2

PUCG PUCI

£ ;Gif)%
3 s
f
5

Acliono State1 A[:tion1 Stateg

K =2:Is State, a goal
If yes, DONE!
If no....continue

49



Solve plannlng as CSP: pseudo code

soved = 7%5@
I/)ofti-om = 0

WL\\'le wot solved
>{V\Aé‘o S\J‘Q\\Og tTo CSP w )/‘Ohj

TSOlvc Cﬂ> solu ﬁOV\
( k{f solo Fion dovud  thew

SolVCA = YyTAae

else
— ‘/\Oﬂ‘?:OV\ = l/\OthOV‘ + 1

e

cetven  solvion
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State of the art planner

A similar process is implemented (more efficiently)
in the@raphp@planner

* In general, Planning graphs are an efficient way to
create a representation of a planning problem that
can be used to

 Achieve better heuristic estimates
* Directly construct plans
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TODO for next Tue

Read Chp 5 of textbook (Logics) up to 5.3.3
included

Do exercise 8.A, B, C
http://www.aispace.org/exercises.shtml

Please, look at solutions only after you have
tried hard to solve them!

Start working on assignment-1 !
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http://www.aispace.org/exercises.shtml

Expressiveness of the language

Imit{ ACy., SFO) A& AHC,, JFK) A AHP,. SFO} A At(#P. JFK)
M Cargo{C ) A Cargo(C'z) A Plane{Py) » Plane(Ps)
N Avrport(JFR) A Airport{SFO))
Goal( AHC . JFKY & AHC,, SFOY)
Action| Load{e, p, a),
PRECOND: At{e, w) A Ab(p, a) A Camgole) A Plane(p) ~ Awrport(a)
EFFECT: = At{e, a) A Inlec, p))
Action( Unlaad (e, p, a).
PrECOND: In(e, p) A Af(p, a) ~ Cargole} A Plane(p) ~ Airport(a)
EFFECT: Atie, a) A = Ine, p))
Action( Fly(p, from, to),
PRECOND: At{p. from) ~ Plane{p) A Awrport(from) n Airpori{io)
EFFECT: = At{p, from) A At{p, to))

Figure 10.1 A PDDL description of an air cargo transportation planning problem,




@space  gRiPs 10 CSP applet

Allows you:
» to specify a planning problem in STRIPS &
* to map it into a CSP for a given horizon &

» the CSP translation is automatically loaded
into the CSP applet where it can be solved

Practice exercise using STRIPS fo CSP will be
posted next week (maybe a couple ©)
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Sampling a discrete probability

distribution |
6-%. S{W\. A\/\Mea\t\"\&. Se,leoif' l/\l Wlﬁ/\ Pmba\cl \\J\'«/l P
_ L
o) '3 1
lq‘—<-5 éfc@f’t V\‘

6.%./\3)@3\/\/\ esrch - Select™ K mdavidos(s. Probg\o{\\d’(?
~ ProFor{’;&OV\A\ To therr valme

SAME HERE W}*'ﬁ“‘ﬁéﬁ\'\ﬁ\i
V\/.L Sccowo
A3 22 A sawple
PUBENESSSE - S —
0 22 /L_c /3-
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