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Systematically solving CSPs: Summary

 Build Constraint Network

* Apply Arc Consistency
_*, 0One domain is empty > 2 ol
P *>Each domain has a single value — WWL“(% So

* Some domains have more than one value —» 7 (
\/V\aol oY W\ab]l/lo‘\" have o SolvFion ‘

= Apply Depth-First Search with Pruning

—>5plit the problem in a number of disjoint cases
G Apply Arc Consistency to each case
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Limitations of Systematic Approaches

Many CSPs (scheduling, DNA computing, more
later) are simply too big for systematic approaches

If you have 10° vars with dom(var,) = 104

+ Systematic Search * Constraint Network .
=" 1S jrorvoks <SR
= Z\ 0 % < ‘o c a
f@lzlog 10) |O + LO %|0
Emmc\r{(\/\\depﬁ‘ g2t O\Q;\:\é: /(?;li) sy # of-viod €
factor 8 COW\(J]ethu\ C‘B 1 N3, e 1
JAC d i =(10"-(10)=10

 but if solutions are densely distributed.......
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Today Sept 20

Stochastic Local Search (SLS)

* Local Search & Constrained Optimization
« SLS

* SLS variants

 Comparing SLS
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Local Search: General Method

Remember , for CSP a solution is a possible world
* Start from a possible world (not s poth)
* Generate some neighbors ( “similar” possible worlds)

* Move from the current node t ighbor) selected
according to a particular strategy me;%u bos o]
stavts
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Local Search: Selecting Neighbors

How do we determine the neighbors?
« Usually this is simple: some small incremental change to

the variable assignment

a) assignments that differ in one variable's value, by (for instance) a
—~ value difference of +1

b) assignments that differ in one variable's value , J,Z_
=7 C) assignments that differ in two variables' values, et¢/ . &X"‘éak
- s

* Example: A,B,C same domain {1,2,3 s

OF
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Selecting the best neighbor

jxample: A,B,C same domain {1,2,3}, (A=B, A>1, C*3)

A common component of the scoring function (heuristic) =>
select the neighbor that results in the ......

- the min conflicts heuristics
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Queens in Chess
Positions a queen can attack

|
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™~
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Example: n7-queens

Put 7 queens on an n x nboard with no two queens on
the same row, column, or diaggnal (i.e attacking each other)

,««’/_——/ _

Example: 4-Queens

F2wme: 4 queens in 4 columns (4* = 256 states)
Operators: move queen in column (‘to fwmk V\a'g)\" Ioor‘fx

Goal test: no attacks

.
—————

Evaluation: /.(n) = number of attacks

\/’L \/L\/5 v

%:>
W

§ol\)<}'l\0(/1
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?
n-queens Why* b

2\ exxP
) -
- roo2L
Why this problem? _—

"
Lots of research in the 90’ on local search for CSP

was generated by the observation that the run-
time of local search on n-queens problems is
independent of problem size!

Given random initial state, can solve n-queens in almost constant time for

arbitrary n with high probability (e.g., n = 10,000,000)
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Constrained Optimization Problems

So far we have assumed that we just want to find a
possible world that satisfies all the constraints.

But sometimes solutions may have different values /
costs

» We want to find the optimal solution that
- lmaximizes the valug or

* (minimizes the @
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Constrained Optimization Example

_>Example: A,B,C same domain {1,2,3} , (A=B, A>1, C+3)
°/_7Value = KC+A) so we want a solution that maximize that

The scorlng functlon we'd like to maximize might be: seleck g

= (C + A) -S #- of-confllctsé H"‘/.L)"Z Qf(u& -0 7[[\,,9 |

Hill Climbing means selecting the neighbor which best
Improves a (value-based) scoring function.

Greedy Descent means selecting the neighbor which
minimizes a (cost-based) scoring function. cosT 4 #sf-couhict s
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Hill Climbing

NOTE: Everything that will be said for Hill
Climbing is also true for Greedy Descent




Problems with Hill Climbing

Local Maxima.

Plateau - Shoulders

ob_icctivifunction

shoulder

global maximum

/

A

/7 local maximum

L

"flat" local maximum
(Plateau)

—- state space

cutrent ><_—_-£O) a,2,-- }

state



Corresponding problem for GreedyDescent

Local minimum example: 8-queens problem
va . . \/L‘r\ -~ Vp
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Even more Problems in higher dimensions

E.g., Ridges — sequence of local maxima not
directly connected to each other

From each local maximum you can only
go downhill

C O‘(\\ v OK
S )&u \/‘G)ﬂm \
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Today Sept 20

Stochastic Local Search (SLS)
* Local Search & Constrained Optimization

» SLS

 SLS variants
 Comparing SLS
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Stochastic Local Search

GOAL: We want our local search
* to be guided by the scoring function
* Not to get stuck in local maxima/minima, plateaus etc.

« SOLUTION: We can alternate
a) Hill-climbing steps
b) Random steps: move to a random neighbor.
C) Random restart: reassign random values to all

Va”ableﬁsb*“”‘ d) wmove To Wi whch

X < —> \wWiproves scgn‘ma/
OM/‘L\ 4—0%64’\‘@/\

_? bB Sele(:t NA réV‘O‘OV"‘,‘t
=> O guwmp To > candom
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Two extremes versions

Stochastic local search typically involves both kinds of

randomization, but for illustration let’s consider
woyr Ks hetfeny ml 2 wor Ks betfec 1u

A | hill climbing with B hill climbing with
random steps random restart
sco".‘v);-\o\/\ \}/

(D | o § /

N

AR |

= | - \’[N\ éT’éTeﬁ/POSS.l;\IOT‘\;})ﬁ ,

Two 1-dimensional search spaces; step right or left:
"\O‘& do nel Know how blouf_s\.:))fe wi l\ e so combine He two
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Random Steps (Walk)

Let’'s assume that neighbors are generated as

* assignments that differ in one variable's value

How many neighbors there are given n variables with

domains with d values? @ ( o _;J
One strategy to add randomness 10 the— 7 entiles

selection variable-value pair.
Sometimes choose the pair &

Va Vs V3V, V5 Ve Vzv?

g According to the scoring function A | 12 |@@) 14
% A random on g} i
E.G in 8-queen dmes 4 1o [
 How many neighbors? §. Z 3 17 -
° /_L.Qﬂ.\p.c.) s¢ one ot 71/1,@_ ciccled ;V:oi Coﬁgv&ﬁwl - W

2 chopse ‘fbl/ldowljon@ e 54 3 14 17

13(3)14

) 14 | [i2

15 (81 )14

16

W
140

W

14

16

16

18
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Random Steps (Walk): two-step

Another strategy: select a variable first, then a value:

* Sometimes select variable:
— 1. that participates in the largest number of conflicts. Vs
2. at random, any variable that participates in some conflict.
3. atrandom \/,, Wi Vs VgD =
* Sometimes choose value Vi Vo Vs VoL VGV Ve
~ a) That minimizes # of conflicts Z

b) at random<&™ M oAty 4 selects

SoN P U W N D

Aispace

2 a: Greedy Descent with \ W' M
Min-Conflict Heuristic CPSC 502, Lecture 4 A CondliT5 1 o4




Successful application of SLS

« Scheduling of Hubble Space Telescope:
reducing time to schedule _,W;eks_of

ob?egangn\&
fromi one week>to around @

\

of . &
oM
st Ul
o G
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(Stochastic) Local search advantage:

Online setting
When the problem can change (particularly
important in scheduling)

E.g., schedule for airline: thousands of flights and
thousands of personnel assignment

e Storm can render the schedule infeasible
Goal: Repair with minimum number of changes

This can be easily done with a local search starting
form the current schedule

Other techniques usually:
* require more time
* might find solution requiring many more changes



CSPs: Radio link frequency assignment

Assigning frequencies to a set of radio links defined
between pairs of sites in order to avoid interferences.

Constraints on frequency depend on position of the
links and on physical environment .

Source: INRIA

Sample Constraint network

CPS



Example: SLS for RNA secondary structure design

RNA strand made up of four bases: cytosine
(C), guanine (G), adenine (A), and uracil (U)

2D/3D structure RNA strand folds into
is important for its function RNA strand

Predicting structure for a GUCCCAUAGGAUGUCCCAUAGGA
strand is “easy”: O(n3)

But what if we want a strand that folds
into a certain structure?

* Local search over strands Hard
v' Search for one that folds

into the right structure Secondary structure

* Evaluation function for a strand Hairpin loop
v Run O(n3) prediction algorithm

v' Evaluate how different the result is
from our target structure

v Only defined implicitly, but can be
evaluated by running the prediction algorithm

Multibranched loop

Stacked pairs

Internal loop
External base

Best algorithm to date: Local search algorithm RNA-SSD developed at UBC
[Andronescu, Fejes, Hutter, Condon, and Hoos, Journal of Molecular Biology, 2004]
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SLS:Limitations

» Typically no guarantee they will find a solution
even if one exists

 Not able to show that no solution exists
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Today Sept 20

Stochastic Local Search (SLS)
* Local Search & Constrained Optimization
« SLS

» SLS variants
 Comparing SLS
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Tabu lists

 To avoid search to
* Immediately going back to previously visited candidate
* To prevent cycling

» Maintain a tabu list of the(k)ast nodes visited.
* Don't visit a poss. world that is already on the tabu list.

* Cost of this method depends on &
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Simulated Annealing

« Key idea: Change the degree of randomness....

* Annealing: a metallurgical process where metals
are hardened by being slowly cooled.

* Analogy: start with a high ~“temperature": a high
tendency to take random steps

* Over time, cool down: more likely to follow the scoring
function

 Temperature reduces over time, according to an
annealing schedule

CPSC 502, Lecture 4 Slide 29



Simulated Annealing: algorithm

Here's how it works (for maximizing): I

«(You are in node 1. Pick a variable at random and a
new value at random. You generate

* Ifitis an improvement i.e. hay >)/l[l4§ , adopt it.

* |f it isn't an improvement, adopt it probabilistically

—> Wﬁereme and a temperature
parameter, 7. \/) (v >< \,\@\3/ L W) - b@)QQ
* We move t@with probability hin)-hir 4

4

See wex T shide %ﬂ.

g
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* If it isn't an improvement, adopt it probabilistically
depending on the difference and a temperature
parameter, 7.

» we move to 1’ with probabilityr h(n?-h(n)]g/_f]
~TT/\Q \mg\aw‘r the \AAXW (s lorob -k'd- N);

o > ¢V em afteremce 2 Pro b
— The \M&L\ex‘ Hre o\/»«H-&t"ev\szQt .
Hre sy Wex 1s prajo [
For 3 g/x‘\/fu/_‘: = - 1.4
SR T
< /\ . - _}\/“"'/QJZ\/\/\
O . __3 —). -1 O
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Properties of simulated annealing search
A

One can prove: If 7 decreases slowly enough, then
simulated annealing search will find a global
optimum with probability approaching 1

Widely used in VLSI layout, airline scheduling, etc.
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Population Based SLS

Often we have more memory than the one required
for current node (+ best so far + tabu list)

Key ldea: maintain a population of & individuals

« At every stage, update your population.
 Whenever one individual is a solution, report it.

CPSC 502, Lecture 4 Slide 33



Population Based SLS: Beam Search
Non Stochastic

o Start with Aindividuals, and choose the A best out
of all of the neighbors.

» Useful information is passed-
J/ maxbxb.af;
L=

- ,50’3\5 o
b\\‘\ &V\g(g e
- a ve? Sy et

* Troublesome case: If one individual generates-several

good neighbors and the other k-1 all generate bad
successors.... the next gemenvziov will comprise

i lar tvdividuals 1
V4 ert1 S\ A
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Population Based SLS: Stochastic

Beam Search

 Non Stochastic Beam Search may suffer from
lack of diversity among the k individual (just a more
expensive hill climbing)

 Stochastic version alleviates this problem:

= Selects the Kk individuals at random

* But probability of selection proportional to their value
(according to scoring function)

@ ne. %la bors éVM, w\}

b Sco(‘:V\& Luuchon \> L\(WQ—\
Frobelb, \d‘v(oksc)ecd" MXO/\“\ = g
h(n,)

=
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Stochastic Beam Search: Advantages

* It maintains diversity in the population.

* Biological metaphor (asexual reproduction):

v'each individual generates “mutated” copies of itself (its
neighbors)

v'The scoring function value reflects the fitness of the
individual

v'the higher the fitness the more likely the individual will
survive (i.e., the neighbor will be in the next generation)
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Population Based SLS: Genetic Algorithms

« Start with Arandomly generated individuals
(population)

4

* An individual is represented as a string over a finite
alphabet (often a string of Os and 1s)

* A successor Is generated by combining two parent

individuals (loosely analogous to how DNA is spliced in
sexual reproduction)

« Evaluation/Scoring function (fitness function). Higher
values for better individuals.

* Produce the next generation of individuals by

selection, crossover, and mutation
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Genetic algorithms: Example &-gueer

—+ oJF gueen pas
PoSSlb’u’ éWacKlt«a/

R\?presentationvand fitness function

Va Vz el Mrer
3 3
+ + LV:_? 2%
A A 2
5 45
4 b
B 3
7 2
1 1 B 23— L
5 >ttscKs 4 3tacKs |
State: string overfinite alphabet >{ 24748552 '
>I 32702411

Fitness function: higher valu Y
H queew pavrs Wo ’ B
better states@cfc Ko Ebm (28 =)
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Genetic algorithms: Example

Selection: common strategy, probability of
being chosen for reproduction is directly
proportional to fithess score

—
,—9
>

—

24748552

32752411 |

32752411

22 (

24748552 ¢

24415124

‘@m

| 32752411

325432153

la|

Thitial Population

24415124 f

ik
Fith=ss Function

— 24/(24+23+20+11) = 31%
—23/(24+23+20+11) = 29% etc

AJPN

<l

Selection

Sawm ¢ S
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Genetic algorithms: Example

Reproduction: cross-over and mutation

= . L
32752411 || : 32748552 |H—= 3274¢[if2

4748552 | V| 24752411 H—{ 24752411

24748552

32752411

n:m

24415124 32?53;411 >_< 32752124 = 372F2124
32543213 24415@124{ 24415411 -~ 244154
la) (bl A=t I 1dl =]

Initial Population ~ Fitness Function  Selection Cross—Ovet Mutation
Aa AFAL by 8 0- A ]/

M




Genetic Algorithms: Conclusions

* Their performance is very sensitive to the choice
of state representation and fitness function

« Extremely slow (not surprising as they are
iInspired by evolution!)
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Stochastic Local Search (SLS)

* Local Search & Constrained Optimization
« SLS

* SLS variants

« Comparing SLS
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Comparing Stochastic Algorithms: Challenge

« Summary statistics, such as mean run time, median run
time, and mode run time don't tell the whole story

* What is the running time for the runs for which an algorithm never
finishes (infinite? stopping time?)

% of solved runs

100% .
57 o
= 2.5 7%
s h/é&
it T —

v

runtime / steps
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First attempt....

 How can you compare three algorithms when

A. one solves the problem 30% of the time very quickly but doesn't
halt for the other 70% of the cases

B. one solves 60% of the cases reasonably quickly but doesn't solve
the rest

C. one solves the problem in 100% of the cases, but slowly?

Jo_of solved runs

100% ! C) ‘ -

SR

Lk

'I;Oa/o

4]1%

.
N

A > Mean runtime / steps

of solved run%I
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Runtime Distributions are even more

informative

Plots runtime (or number of steps) and the proportion (or
number) of the runs that are solved within that runtime.

* |og scale on the x axis is commonly used

.I

0.9t
0.8
0.7k
0.6

0.5t
0.4t
0.3k

“”‘IID T I””1Iilflﬂ
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Runtime Distributions

%“,—'F\‘\IC Cramswzr\'\«*')
% of solved runs — Dmsahisge A oun

Gvg)

292, (B)
ov\,t{ @

*\ Two v Sa‘\’\'s‘l—-'ca\
(o a\/&s

t’L C L t;

time 1

¢ t — t3 ? A CPSC 502, Lecture 4 Slide 46



Stochastic Local Search

« Key Idea: combine greedily improving moves with
randomization

As well as improving steps we can allow a “small
probability” of: e.§.
, g
* Random steps: move to a random neighbor. 12

* Random restart: reassign random values to all ¢ <~
variables. 7

 Always keep best solution found so far

« Stop when
/~7Solution Is found (in vanilla CSP pw that satisfies all C)
* Run out of time (return best solution so far)
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CSPs summary

Find a single variable assignment that satisfies all of our
constraints (atemporal)

« Systematic Search approach
7+ Constraint network support 24>
ot exist)

v'inference e.g., Arc Consistency (can tell you if solution does n
v’ Decomposition (Toop, mm)

* Heuristic Search (degree, min-remaining)

« (Stochastic) Local Search (search space ..... ?)

A o Huge search spaces and highly connected constraint network
7bu@lﬁr0n§trensely distributed™,

* No guarantee to find a solution (if one exists). ; é“

* Unable to show that no solution exists
CPSC 502, Lecture 4




R&Rsys we'll cover in this course

Problem

" Constraint
Satisfaction

Environment |
Deterministic Stochastic
Arc |
Consistency | SLS
Vars +
Constraints Search

Static_

Query

Logics

_> P(gPO%\‘h ona)

— Fiest Ocdev
.

Search

Belief Nets<~

Var Ellmlnatlog

Approx. Inference N

Tempora Inference

Sequential

Planning

~

Repregenz‘az‘/on
Reasoning
| Technique

STRIPS

Schos

Search

Déc,‘/smn N'é% RiE S’f &

Var. Elimination

Markov Processes

S

Value lteration
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TODO for this Thur

Read Chp 8 of textbook (Planning with Certainty)

Do exercise 4.C
http://www.aispace.org/exercises.shtmi

Please, look at solutions only after you have
tried hard to solve them!
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http://www.aispace.org/exercises.shtml

Arc Consistency Algorithm: Complexity

* Let's determine Worst-case complexity of this
procedure (compare with DFS 4 )
* let the max size of a variable domain be d
* let the number of variables be n
* The max number of binary constraints is.. /. (Vz B/Z,

 How many times the same arc can be inserted in

the ToDoArc list? 5 z
O} o
 How many steps are involvedinC INg e7

consistency of an arc? 4+
oVERALL

£ 4 "'Xc\} 5\74—' ST “743 Cae/\ﬁ/@(rr\(
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Sampling a discrete probability

distribution |
6-%. S{W\. A\/\Mea\t\"\&. Se,leoif' l/\l Wlﬁ/\ Pmba\cl \\J\'«/l P
_ L
o) '3 1
lq‘—<-5 éfc@f’t V\‘

6.%./\3)@3\/\/\ esrch - Select™ K mdavidos(s. Probg\o{\\d’(?
~ ProFor{’;&OV\A\ To therr valme

SAME HERE W}*'ﬁ“‘ﬁéﬁ\'\ﬁ\i
V\/.L Sccowo
A3 22 A sawple
PUBENESSSE - S —
0 22 /L_c /3-
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What are we going to look at in Alspace

When selecting a variable first || Alspace terminology
followed by a value: < %eeps cestorhi,

(Randor/n samm 3‘7
* Sometimes select variable: Y“ﬁrfg

1. that participates in the Random walk 3k
largest number of conflicts. —

2. at random, any variable that Greedy Descent 1 o
participates in some conflict. —

3. atrandom Greedy Descent Min

* Sometimes choose value conflict E

a) That minimizes # of conflicts / Greedy Descent with
b) at random random walk%ib

Greedy Descent with
random restart
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