
CPSC 502, Lecture 2 Slide 1

Introduction to

Artificial Intelligence (AI)

Computer Science cpsc502, Lecture 3

Sep, 15, 2011

CPSC 502, Lecture 2 2

Today Sept 15

• Finish Search

• Constraint Satisfaction Problems

• ….

• ….

Office Hours

• My office hours – Thurs 11-12

• Shafiq’s office hours

Clarification: state space graph vs search tree

3

k c

b z

h

a
kb kc

kbk kbz

d

kbkb kbkc

kbza kbzd

kch

kchz

kckb kckc

kck

k

State space
 graph.
(For most problems,

we are not explicitly

given the whole graph)

Search tree.
Nodes in this tree correspond to
paths in the state space graph

CPSC 502, Lecture 2

CPSC 502, Lecture 2 Slide 4

Cycle Checking

You can prune a path that ends in a node already on the path.

This pruning cannot remove an optimal solution.

• The time is linear in path length.

CPSC 502, Lecture 2 Slide 5

Repeated States / Multiple Paths
Failure to detect repeated states can turn a linear

problem into an exponential one!
E.g. state space with 2 actions from each state to next

• 2d possible paths through the state graph

=> exponentially larger search tree!

Pruning Cycles

CPSC 502, Lecture 2 Slide 6

Repeated States

CPSC 502, Lecture 2 Slide 7

R&Rsys we'll cover in this course

Environment

Problem

Query

Planning

Deterministic Stochastic

Constraint
Satisfaction Search

Arc
Consistency

Search

Search

Logics

STRIPS

Vars +
Constraints

Value Iteration

Var. Elimination
Belief Nets

Decision Nets

Markov Processes

Var. Elimination

Approx. Inference

Temporal. Inference

Static

Sequential

Representation

Reasoning

Technique

CPSC 502, Lecture 2 Slide 8

Standard Search vs. Specific R&R systems

Constraint Satisfaction (Problems):
• State (and start state)

• Successor function

• Goal test

• Solution

Planning :
• State

• Successor function

• Goal test

• Solution

Inference
• State

• Successor function

• Goal test

• Solution

CPSC 502, Lecture 2 9

Today Sept 15

• Finish Search

• Constraint Satisfaction Problems

• Variables/Features

• Constraints

• CSPs

• Generate-and-Test

• Search

• Consistency

• Arc Consistency

• ….

CPSC 502, Lecture 2 Slide 10

Variables/Features, domains and

Possible Worlds

• Possible world: a complete assignment of values to a

set of variables

• Variables can be of several main kinds:

• Boolean: |dom(V)| = 2

• Finite: the domain contains a finite number of values

• Infinite but Discrete: the domain is countably infinite

• Continuous: e.g., real numbers between 0 and 1

• Variables / features

• we denote variables using capital letters

• each variable V has a domain dom(V) of possible values

CPSC 502, Lecture 2 Slide 11

Possible Worlds

Mars Explorer Example

Weather

Temperature

LocX LocY

Product of cardinality

of each domain

 … always exponential in the

number of variables

CPSC 502, Lecture 2 Slide 12

Examples

• Crossword Puzzle:

• variables are words that have to

be filled in

• domains are valid English words

of required length

• possible worlds: all ways of

assigning words

• Number of English words?

• Number of words of length k ?

• So, how many possible worlds?

CPSC 502, Lecture 2 Slide 14

More examples
• n-Queens problem

• variable: location of a queen on a chess board

• there are n of them in total, hence the name

• domains: grid coordinates

• possible worlds: locations of all queens

CPSC 502, Lecture 2 Slide 15

More examples

• Scheduling Problem:

• variables are different tasks that need to be scheduled

(e.g., course in a university; job in a machine shop)

• domains are the different combinations of times and

locations for each task (e.g., time/room for course;

time/machine for job)

• possible worlds: time/location assignments for each

task

CPSC 502, Lecture 2 Slide 16

Scheduling possible world

M1

M3

M2

M4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

J1

J2

J3

• how many possible worlds?

CPSC 502, Lecture 2 Slide 17

More examples….

• Map Coloring Problem

• variable: regions on the map

• domains: possible colors

• possible worlds: color assignments for each

region

• how many possible worlds?

CPSC 502, Lecture 2 Slide 18

Constraints
Constraints are restrictions on the values that one or

more variables can take
• Unary constraint: restriction involving a single variable

• k-ary constraint: restriction involving the domains of k
different variables

• it turns out that k-ary constraints can always be represented as
binary constraints, so we'll mainly only talk about this case

• Constraints can be specified by
• giving a function that returns true when given values

for each variable which satisfy the constraint

• giving a list of valid domain values for each variable
participating in the constraint

CPSC 502, Lecture 2 Slide 19

Example: Map-Coloring

Variables WA, NT, Q, NSW, V, SA, T

Domains Di = {red,green,blue}

Constraints: adjacent regions must have different colors

e.g., WA ≠

or, (WA,NT) in {(red,green),(red,blue),(green,red),
(green,blue),(blue,red),(blue,green)}

CPSC 502, Lecture 2 Slide 20

Constraints (cont.)

• A possible world satisfies a set of constraints if

the set of variables involved in each constraint

take values that are consistent with that constraint

 • A,B,C domains [1 .. 10]

• A= 1 , B = 2, C = 10

• Constraint set1 {A = B, C>B}

• Constraint set2 {A ≠ B, C>B}

CPSC 502, Lecture 2 Slide 21

Examples

• Crossword Puzzle:

• variables are words that have to be filled in

• domains are valid English words

• constraints: words have the same

letters at points where they intersect

• Crossword 2:

• variables are cells (individual squares)

• domains are letters of the alphabet

• constraints: sequences of letters form

valid English words

CPSC 502, Lecture 2 Slide 23

More examples

• Scheduling Problem:
• variables are different tasks that need to be scheduled (e.g., course

in a university; job in a machine shop)

• domains are the different combinations of times and locations for
each task (e.g., time/room for course; time/machine for job)

• constraints:
 tasks can't be scheduled in the same location at the same time;

certain tasks can be scheduled only in certain locations;

some tasks must come earlier than others; etc.

• n-Queens problem

• variable: location of a queen on a chess board

• there are n of them in total, hence the name

• domains: grid coordinates

• constraints: no queen can attack another

CPSC 502, Lecture 2 Slide 24

Constraint Satisfaction Problems: definitions

Definition (Constraint Satisfaction Problem)

A constraint satisfaction problem consists of

• a set of variables

• a domain for each variable

• a set of constraints

Definition (model / solution)

A model of a CSP is an assignment of values to variables

that satisfies all of the constraints.

A possible world

CPSC 502, Lecture 2 Slide 25

Example: Map-Coloring

Variables WA, NT, Q, NSW, V, SA, T

Domains Di = {red,green,blue}

Constraints: adjacent regions must have different colors

e.g., WA ≠ NT, or

 (WA,NT) in {(red,green),(red,blue),(green,red),
(green,blue),(blue,red),(blue,green)}

CPSC 502, Lecture 2 Slide 26

Example: Map-Coloring

Models / Solutions are complete and consistent

assignments, e.g., WA = red, NT = green, Q = red,

NSW = green, V = red,SA = blue, T = green

CPSC 502, Lecture 2 Slide 27

Constraint Satisfaction Problem: Variants

We may want to solve the following problems using a CSP

A. determine whether or not a model exists

B. find a model

C. find all of the models

D. count the number of the models

E. find the best model given some model quality

• this is now an optimization problem

F. determine whether some properties of the variables hold

in all models

Constraint Satisfaction Problems: Game Plan

• Even the simplest problem of determining whether

or not a model exists in a general CSP with finite

domains is NP-hard

• There is no known algorithm with worst case polynomial

runtime

• We can't hope to find an algorithm that is efficient for all

CSPs

• However, we can try to:

• identify special cases for which algorithms are efficient

(polynomial)

• work on approximation algorithms that can find good

solutions quickly, even though they may offer no

theoretical guarantees

• find algorithms that are fast on typical cases

28

CPSC 502, Lecture 2 32

Today Sept 15

• Finish Search

• Constraint Satisfaction Problems

• Variables/Features

• Constraints

• CSPs

• Generate-and-Test

• Search

• Consistency

• Arc Consistency

• ….

CPSC 502, Lecture 2 Slide 33

Generate-and-Test Algorithm
• Algorithm:

• Generate possible worlds one at a time

• Test them to see if they violate any constraints

• This procedure is able to solve any CSP

• However, the running time is proportional to the number

of possible worlds

• always exponential in the number of variables

• far too long for many CSPs 

For a in domA

 For b in domB

 For c in domC

 if

 return

return

CPSC 502, Lecture 2 Slide 34

CSPs as search problems

• states: assignments of values to
a subset of the variables

• start state: the empty
assignment (no variables
assigned values)

• neighbours of a state: nodes in
which values are assigned to
one additional variable

• goal state: a state which
assigns a value to each
variable, and satisfies all of the
constraints

Note: the path to a goal node is not important

CPSC 502, Lecture 2 Slide 35

CSPs as Search Problems

What search strategy will work well for a CSP?

• If there are n variables every solution is at depth…….

• Is there a role for a heuristic function?

• the tree is always finite and has no cycles, so which one

is better BFS or IDS or DFS?

CPSC 502, Lecture 2 Slide 36

CSPs as search problems

Simplified notation

CPSC 502, Lecture 2 Slide 37

CSPs as Search Problems
How can we avoid exploring some sub-trees i.e.,

prune the DFS Search tree?

• once we consider a path whose end node violates one or

more constraints, we know that a solution cannot exist

below that point

• thus we should remove that path rather than continuing to

search

CPSC 502, Lecture 2 Slide 38

Solving CSPs by DFS: Example
Problem:

• Variables: A,B,C

• Domains: {1, 2, 3, 4}

• Constraints: A < B, B < C

CPSC 502, Lecture 2 Slide 39

Solving CSPs by DFS: Example Efficiency
Problem:

• Variables: A,B,C

• Domains: {1, 2, 3, 4}

• Constraints: A < B, B < C

Note: the algorithm's

efficiency depends on

the order in which

variables are expanded

A=1

A=2 A=3

A=4

C=1 C=2 C=3 C=4

C=1 C=2 C=3 C=4 C=1 C=2 C=3 C=4

C=1 C=2 C=3 C=4

Degree “Heuristics”

CPSC 502, Lecture 2 Slide 40

Standard Search vs. Specific R&R systems

Constraint Satisfaction (Problems):
• State: assignments of values to a subset of the variables

• Successor function: assign values to a “free” variable

• Goal test: set of constraints

• Solution: possible world that satisfies the constraints

• Heuristic function: none (all solutions at the same distance from start)
Planning :

• State

• Successor function

• Goal test

• Solution

• Heuristic function

Inference

• State

• Successor function

• Goal test

• Solution

• Heuristic function

CPSC 502, Lecture 2 Slide 41

Can we do better than Search?

Key ideas:

• prune the domains as much as possible before “searching”

for a solution.

Simple when using constraints involving single variables

(technically enforcing domain consistency)

• Example: DB = {1, 2, 3, 4} with constraint B ≠ 3.

CPSC 502, Lecture 2 Slide 42

How do we deal with constraints

involving multiple variables?

Definition (constraint network)

A constraint network is defined by a graph, with

• one node for every variable

• one node for every constraint

and undirected edges running between variable nodes and

constraint nodes whenever a given variable is involved in a

given constraint.

CPSC 502, Lecture 2 Slide 43

Example Constraint Network

Recall Example:

• Variables: A,B,C

• Domains: {1, 2, 3, 4}

• Constraints: A < B, B < C

CPSC 502, Lecture 2 Slide 44

Example: Constraint Network for Map-Coloring

Variables WA, NT, Q, NSW, V, SA, T

Domains Di = {red,green,blue}

Constraints: adjacent regions must have different colors

CPSC 502, Lecture 2 Slide 45

Arc Consistency

Definition (arc consistency)

An arc is arc consistent if for each value in there is

some value in such that is satisfied.

),(, YXrX x  Xdom

y)(Ydom),(yxr

 1,2 2,3

A B
A< B

 1,2,3 2,3
A B

A< B

CPSC 502, Lecture 2 Slide 46

How can we enforce Arc Consistency?

• If an arc is not arc consistent, all values in for which

there is no corresponding value in may be deleted from

to make the arc consistent.

• This removal can never rule out any models/solutions

x  Xdom

)(Ydom  Xdom

 2,3,4 1,2,3
X Y

X< Y

• A network is arc consistent if all its arcs are arc consistent.

),(, YXrX

),(, YXrX

CPSC 502, Lecture 2 Slide 47

Arc Consistency Algorithm: high level

strategy

• Consider the arcs in turn, making each arc
consistent.

• BUT, arcs may need to be revisited whenever….

• NOTE - Regardless of the order in which arcs are
considered, we will terminate with the same result

Which arcs need to be reconsidered?

48

every arc Z,c' where c’  c

involves Z and X: Z1 c1

Z2 c2

Z3 c3

Y c

T

H

E

S

E

X

A c4

• When we reduce the domain of a variable X to make

an arc X,c arc consistent, which arcs do we need to

reconsider?

• You do not need to reconsider other arcs

- If an arc X,c' was arc consistent before, it will still be arc

consistent

- Nothing changes for arcs of constraints not involving X
CPSC 502, Lecture 2

CPSC 502, Lecture 2 Slide 51

Arc Consistency Algorithm: Complexity

• Let’s determine Worst-case complexity of this
procedure (compare with DFS)
• let the max size of a variable domain be d

• let the number of variables be n

• The max number of binary constraints is…….

• How many times the same arc can be inserted in
the ToDoArc list?

• How many steps are involved in checking the
consistency of an arc?

CPSC 502, Lecture 2 Slide 52

Arc Consistency Algorithm: Interpreting

Outcomes

• Three possible outcomes (when all arcs are arc

consistent):

• One domain is empty 

• Each domain has a single value 

• Some domains have more than one value  may or

may not be a solution

• in this case, arc consistency isn't enough to solve the problem:

we need to perform search

CPSC 502, Lecture 2 Slide 53

Domain splitting (or case analysis)

• Arc consistency ends: Some domains have more

than one value  may or may not be a solution

A. Apply Depth-First Search with Pruning

B. Split the problem in a number of disjoint cases

• Set of all solution equals to….

CPSC 502, Lecture 2 Slide 54

But what is the advantage?

• Simplify the problem using arc consistency

• No unique solution i.e., for at least one var,

|dom(X)|>1

• Split X

• For all the splits

• Restart arc consistency on arcs <Z, r(Z,X)>

these are the ones that are possibly inconsistent

• Disadvantage : you need to keep all these

CSPs around (vs. lean states of DFS)

By reducing dom(X) we may be able to run AC again

Complete Process

CPSC 502, Lecture 2 Slide 55

Searching by domain splitting

• Disadvantage : you need to keep all these

CSPs around (vs. lean states of DFS)

CPSC 502, Lecture 2 Slide 56

Systematically solving CSPs: Summary

• Build Constraint Network

• Apply Arc Consistency

• One domain is empty 

• Each domain has a single value 

• Some domains have more than one value 

• Apply Depth-First Search with Pruning

• Split the problem in a number of disjoint cases

• Apply Arc Consistency to each case

CPSC 502, Lecture 2 Slide 57

Local Search motivation: Scale
• Many CSPs (scheduling, DNA computing, more

later) are simply too big for systematic approaches

• If you have 105 vars with dom(vari) = 104

• but if solutions are densely distributed…….

• Systematic Search • Constraint Network

CPSC 502, Lecture 2 Slide 58

Do exercises 4.A , 4.B available at
http://www.aispace.org/exercises.shtml

Please, look at solutions only after you have

tried hard to solve them!

• Join piazza (the class discussion forum)

Read Chp 4 of textbook (especially from 4.8

to end)

TODO for this Thue

http://www.aispace.org/exercises.shtml

Which arcs need to reconsidered?

59

every arc Z,c' where c’  c

involves Z and X: Z1 c1

Z2 c2

Z3 c3

Y c

T

H

E

S

E

X

A c4

• When we reduce the domain of a variable X to make

an arc X,c arc consistent, which arcs do we need to

reconsider?

• You do not need to reconsider other arcs

- If an arc X,c' was arc consistent before, it will still be arc

consistent

- Nothing changes for arcs of constraints not involving X CPSC 502, Lecture 2

Arc consistency algorithm (for binary

constraints)

60

 Procedure GAC(V,dom,C)

 Inputs

 V: a set of variables

 dom: a function such that dom(X) is the domain of variable X

 C: set of constraints to be satisfied

 Output

 arc-consistent domains for each variable

 Local

 DX is a set of values for each variable X

 TDA is a set of arcs

1: for each variable X do

2: DX ←dom(X)

3: TDA ←{〈X,c〉| c ∈ C and X ∈ scope(c)}

4: while (TDA  {})

5: select 〈X,c〉 ∈TDA

6: TDA ←TDA \ {〈X,c〉}

7: NDX ←{x| x ∈ DX and  y ∈ DY s.t. (x, y) satisfies c}

8: if (NDX  DX) then

9: TDA ←TDA ∪ { 〈Z,c'〉 | X ∈ scope(c'), c'  c, Z ∈ scope(c') \ {X} }

10: DX ←NDX

11: return {DX| X is a variable}

Scope of constraint c is

the set of variables

involved in that

constraint

NDX: values x for X for

which there a value for y

supporting x

X’s domain changed:

 arcs (Z,c’) for

variables Z sharing a

constraint c’ with X

could become

inconsistent

TDA:

ToDoArcs,

blue arcs

in AIspace

CPSC 502, Lecture 2

Clarification: state space graph vs search tree

61

k c

b z

h

a
kb kc

kbz

d

f
kbza kbzd

kch

k

State space
 graph.

If there are no cycles, the two look the same

Search tree.
Nodes in this tree correspond to
paths in the state space graph

kchf
y

4 5

6 7 8

CPSC 502, Lecture 2

Clarification: state space graph vs search tree

62

k c

b z

h

a
kb kc

kbz

d

f
kbza kbzd

kch

k

State space
 graph.

 Search tree.

kchf

4 5

6 7 8

62

What do I mean by the numbers in the search tree’s

nodes?

Node’s
name

Order in which a search algo.
(here: BFS) expands nodes

CPSC 502, Lecture 2

Clarification: state space graph vs search tree

63

k c

b z

h

a
kb kc

kbk kbz

d

f

kbkb kbkc

kbza kbzd

kch

kchf

kckb kckc

kck

k

State space
 graph.

 Search tree.
 (only first 3 levels, of BFS)

• If there are cycles, the two look very different

CPSC 502, Lecture 2

Clarification: state space graph vs search tree

64

k c

b z

h

a
kb kc

kbk kbz

d

f

kbkb kbkc

kbza kbzd

kch

kchf

kckb kckc

kck

k

State space
 graph.

 Search tree.
 (only first 3 levels, of BFS)

What do nodes in the search tree represent in the

state space?

states nodes paths edges

CPSC 502, Lecture 2

Clarification: state space graph vs search tree

65

k c

b z

h

a
kb kc

kbk kbz

d

f

kbkb kbkc

kbza kbzd

kch

kchf

kckb kckc

kck

k

State space
 graph.

 Search tree.
 (only first 3 levels, of BFS)

What do edges in the search tree represent in the

state space?

states nodes paths edges

CPSC 502, Lecture 2

Clarification: state space graph vs search tree

66

k c

b z

h

a
kb kc

kbk kbz

d

z

kbkb kbkc

kbza kbzd

kch

kchz

kckb kckc

kck

k

State space
 graph.

May contain cycles!

Search tree.
Nodes in this tree correspond to
paths in the state space graph

(if multiple start nodes: forest)

Cannot contain cycles!

CPSC 502, Lecture 2

Clarification: state space graph vs search tree

67

k c

b z

h

a
kb kc

kbk kbz

d

z

kbkb kbkc

kbza kbzd

kch

kchz

kckb kckc

kck

k

State space
 graph.

Why don’t we just eliminate cycles?
Sometimes (but not always) we want multiple solution paths

Search tree.
Nodes in this tree correspond to
paths in the state space graph

CPSC 502, Lecture 2

• Using depth-first methods, with the graph explicitly
stored, this can be done in constant time

- Only one path being explored at a time

• Other methods: cost is linear in path length

- (check each node in the path)

Cycle Checking: if we only want optimal solutions

• You can prune a node n that is on
the path from the start node to n.

• This pruning cannot remove an

optimal solution  cycle check

Slide 68 CPSC 502, Lecture 2

• With cycles, search tree can be exponential in the
state space

- E.g. state space with 2 actions from each state to next

- With d + 1 states, search tree has depth d

Size of search space vs search tree

A

B

C

D

A

B B

C C C C

• 2d possible paths through the search space

=> exponentially larger search tree!

Slide 69 CPSC 502, Lecture 2

• If we only want one path to the solution

• Can prune path to a node n that has already been
reached via a previous path

- Store S := {all nodes n that have been expanded}

- For newly expanded path p = (n1,…,nk,n)

- Check whether n  S

- Subsumes cycle check

• Can implement by storing the path to each expanded
node

Multiple Path Pruning

n

Slide 70 CPSC 502, Lecture 2

Multiple-Path Pruning & Optimal Solutions

• Problem: what if a subsequent path to n is shorter
than the first path to n, and we want an optimal
solution ?

• Can remove all paths from the frontier that use
the longer path. (these can’t be optimal)

2 2

1 1 1

Slide 71 CPSC 502, Lecture 2

Multiple-Path Pruning & Optimal Solutions

• Problem: what if a subsequent path to n is shorter
than the first path to n, and we want just the
optimal solution ?

• Can change the initial segment of the paths on
the frontier to use the shorter path

2 2

1 1 1

Slide 72 CPSC 502, Lecture 2

Multiple-Path Pruning & Optimal Solutions

• Problem: what if a subsequent path to n is shorter
than the first path to n, and we want just the
optimal solution ?

• Can prove that this can’t happen for an algorithm

2 2

1 1 1

Slide 73 CPSC 502, Lecture 2

• Which of the following algorithms always find the

shortest path to nodes on the frontier first?

None of the above

Least Cost Search First

Both of the above

A*

Slide 74 CPSC 502, Lecture 2

• Which of the following algorithms always find the

shortest path to nodes on the frontier first?

• Only Least Cost First Search (like Dijkstra’s algorithm)

• For A* this is only guaranteed for nodes on the optimal

solution path

• Example: A* expands the upper path first

Special conditions on the heuristic can recover the guarantee

of LCFS

h=10

h=0

h=1 2 2

1 1 1 20
goal state Start state

Slide 75 CPSC 502, Lecture 2

Summary: pruning

• Sometimes we don’t want pruning

• Actually want multiple solutions (including non-optimal

ones)

• Search tree can be exponentially larger than

search space

• So pruning is often important

• In DFS-type search algorithms

• We can do cheap cycle checks: O(1)

• BFS-type search algorithms are memory-heavy

already

76 CPSC 502, Lecture 2

