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Today Nov 8 

• Brief Intro to Reinforcement Learning (RL) 

• Q-learning 

 

 

• Unsupervised Machine Learning 

• K-means 

• Intro to EM 

 

 



Gaussian Distribution 

• Models a large number of phenomena encountered in 

practice 

• Under mild conditions the sum of a large number of 

random variables is distributed approximately normally 
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Gaussian Learning: Parameters 

• n data points 
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Expectation Maximization for Clustering: Idea 
• Lets assume: that our Data were generated from several 

Gaussians (a mixture, technically) 

• For simplicity – one dimensional data – only two Gaussians 

(with same variance, but possibly different    ………..) 

• Generation Process 

• Gaussian/Cluster is selected 

• Data point is sampled from that cluster 
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But this is what we start from 

• “Identify the two Gaussians that best explain the data” 

• Since we assume they have the same variance, we “just” 

need to find their priors and their means 

 

 

 

 

 

 

 

 

 

 

 

 

• In K-means we assume we know the center of the clusters 
and iterate….. 

 

 

 

• n data points without labels! And we have to cluster them 

into two (soft) clusters. 
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Here we assume that we know 

• Prior for clusters and the two means  

 

 

 

 

 

 

 

• We can compute the probability that data point xi corresponds 

to the cluster Nj 
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We can now recompute 

• Prior for clusters 

 

 

 

 

 

 

 

• The means 
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Expectation Maximization 

Converges!  

Proof [Neal/Hinton, McLachlan/Krishnan]: 

• E/M step does not decrease data likelihood 

But does not assure optimal solution  
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Practical EM 

Number of Clusters unknown 

Algorithm: 

• Guess initial # of clusters 

• Run EM 

Kill cluster center that doesn’t contribute (two 

clusters with the same data) 

Start new cluster center if many points “unexplained” 

(uniform cluster distribution for lots of data points) 
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EM is a very general method! 

• Baum-Welch Algorithm (also known as forward-
backward): Learn HMMs from unlabeled data 

 

• Inside-Outside Algorithm: unsupervised induction 

of probabilistic context-free grammars. 

 

• More generally, learn parameters for hidden 

variables in any Bnets (see textbook example 11.1.3 to 

learn parameters of Naïve-Bayes classifier) 
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Today Nov 8 

• Brief Intro to Reinforcement Learning (RL) 

• Q-learning 

 

 

• Unsupervised Machine Learning 

• K-means 

• Intro to EM 

 

 



MDP and RL 

Markov decision process 

• Set of states S, set of actions A 

• Transition probabilities to next states P(s’| s, a′) 

• Reward functions R(s, s’, a) 

RL is based on MDPs, but 

• Transition model is not known 

• Reward model is not known 

While for MDPs we can compute an optimal policy 

RL learns an optimal policy 
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Search-Based Approaches to RL 

 Policy Search (evolutionary algorithm) 

a) Start with an arbitrary policy 

b) Try it out in the world (evaluate it) 

c) Improve it (stochastic local search) 

d) Repeat from (b) until happy 

 Problems with evolutionary algorithms 

• Policy space can be huge: with n states and m actions there 
are mn policies 

• Policies are evaluated as a whole: cannot directly take into 
account locally good/bad behaviors 
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Q-learning  
 Contrary to search-based approaches, Q-learning learns after 

every action 

 Learns components  of a policy, rather than the policy itself 

 Q(a,s) = expected value of doing action a in state s and then 

following the optimal policy  
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expected value 
of following 
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л in s’ 
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getting to s’ from 
s via a 

Discounted reward we 
have seen in MDPs 
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Q values  
 

 

 Q(s,a) are known as Q-values, and  are related to the utility of 

state s as follows 

 

 From (1) and (2) we obtain a constraint between the Q value in 

state s and the Q value of the states reachable from a  
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Q values 

 Once the agent has a complete Q-function, it knows how to act 

in every state 

 By learning what to do in each state, rather then the complete 

policy as in search based methods,  learning becomes linear 

rather than exponential in the number of states 

 But how to learn the Q-values? 

 

s0 s1 … sk 

a0 Q[s0,a0] Q[s1,a0] …. Q[sk,a0] 

a1 Q[s0,a1] Q[s1,a1] … Q[sk,a1] 

… … … …. … 

an Q[s0,an] Q[s1,an] …. Q[sk,an] 
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Learning the Q values 

 Can we exploit the relation between Q values in “adjacent” states? 

 

 

 No, because we don’t know the transition probabilities P(s’|s,a) 

 

 We’ll use a different approach, that relies on the notion on 

Temporal Difference (TD) 
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Average Through Time  

 Suppose we have a sequence of values (your sample data): 

                                   v1,  v2, .., vk 

 And want a running approximation of their expected value 

• e.g., given sequence of grades, estimate expected value of next grade 

 A reasonable estimate is the average of  the first k values: 
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Average Through Time  
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Estimate by Temporal Differences  

 (vk - Ak-1) is called a temporal difference error or TD-error 

• it specifies how different the new value vk is from the 
prediction given by the previous  running average Ak-1 

 The new estimate (average) is obtained by updating the previous  
average by αk times the TD error 
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Q-learning: General Idea  

]','[max)'(      where)'(),(
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 Learn from the history of interaction with the environment, i.e., 

a sequence of state-action-rewards 

<s0,  a0, r1, s1,  a1, r2, s2,  a2, r3,.....> 

 History is seen as sequence of experiences, i.e., tuples 

     <s, a, r, s’> 

• agent doing action a in state s,  

• receiving reward r and ending up in s’ 

 These experiences are used to estimate the value of  Q (s,a) 

expressed as 
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Q-learning: General Idea  

But remember 

 

 

Is an approximation. The real link  between Q(s,a) and Q(s’,a’) is 
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Q-learning: Main steps 

Store Q[S, A], for every state S and action A in the world 

 Start with arbitrary estimates in Q (0)[S, A],  

 Update them by using experiences 

• Each  experience <s, a, r, s’>  provides one new data point 
on the actual value of  Q[s, a] 

 

current estimated value of 
Q[s’,a’], where s’ is the 

state the agent arrives  to 
in the current experience 

New value of 
Q[s,a],  
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Q-learning: Update step 

 TD formula applied to Q[s,a] 
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Q-learning: algorithm  
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Example 

 Reward Model:  

• -1 for doing UpCareful 

• Negative reward when hitting  a wall, as marked on the picture 

 Six possible states <s0,..,s5> 

 4 actions:  

• UpCareful: moves one tile up unless there is wall, in 
which case stays in same tile. Always generates a 
penalty of -1 

• Left: moves one tile left  unless there is wall, in 
which case  

stays in same tile if  in s0 or s2 

 Is sent to s0 if in s4  

• Right: moves one tile right  unless there is wall, in 
which case stays in same tile 

• Up: 0.8 goes up unless there is a wall, 0.1 like Left, 
0.1 like Right 

+ 10 

-100 

-1 

-1 

-1 -1 

-1 -1 
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Example 

 The agent knows about the 6 states and 4 

actions 

 Can perform an action, fully observe its state 

and the reward it gets 

 Does not know how the states are configured, 

nor what the actions do  

• no transition model, nor reward model 

+ 10 

-100 

-1 -1 

-1 

-1 

-1 -1 
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Example (variable αk) 

 Suppose that in the simple world described earlier, the agent has 

the following sequence of experiences 

          <s0, right, 0, s1, upCareful, -1, s3,  upCareful, -1, s5, left, 0, s4, left, 10, s0> 

 And repeats it k times (not a good behavior for a Q-learning agent, 

but good for didactic purposes) 

 Table shows the first 3 iterations of Q-learning when 

• Q[s,a] is initialized to 0 for every a and s 

• αk= 1/k, γ= 0.9 

 

 

 

• For full demo, see http://www.cs.ubc.ca/~poole/demos/rl/tGame.html 
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Q[s,a] s0 s1 s2 s3 s4 s5 

upCareful 0 0 0 0 0 0 

Left 0 0 0 0 0 0 

Right 0 0 0 0 0 0 

Up 0 0 0 0 0 0 

k=1 k=1 

Only immediate rewards  
are included in the update 

in this first pass  
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upCareful 0 -1 0 -1 0 0 

Left 0 0 0 0 10 0 

Right 0 0 0 0 0 0 

Up 0 0 0 0 0 0 

k=1 k=2 

1 step backup from 
previous positive 
reward in s4 
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k=1 k=3 

The effect of 
the positive 
reward in s4 is 
felt two steps 
earlier at the 
3rd iteration 
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Example (variable αk) 

 As the number of iteration increases, the effect of the positive reward 

achieved by moving left in s4 trickles further back in the sequence of steps 

 Q[s4,left] starts changing only after the effect of the reward has reached s0 

(i.e. after iteration 10 in the table) 

 
Why 10 and not 6? 34 
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Q[s,a] s0 s1 s2 s3 s4 s5 

upCareful 0 -1 0 -1 0 0 

Left 0 0 0 0 10 0 

Right 0 0 0 0 0 0 

Up 0 0 0 0 0 0 

k=2 

New evidence is given 
much more weight 
than original estimate 

Example (Fixed α=1) 
 First iteration same as before, let’s look at the second 
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Up 0 0 0 0 0 0 

k=1 k=3 

Same here 

No change from previous 
iteration, as all the reward 
from the step ahead was 
included  there 
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Comparing fixed α (top) and variable α (bottom) 

Fixed α generates faster update:  
 
all states see some effect of the  
positive reward from <s4, left> by  
the 5th iteration 
 
Each update is much larger 
 
Gets very close to final numbers by  
iteration 40, while with variable α 
still  not there by iteration 107 

 

However, remember: 
 
Q-learning with fixed α is not 

guaranteed to converge 
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Why approximations work…  

 Way to get around the missing  transition model and reward 

model 

 Aren’t we in danger of using data coming from unlikely transition 

to make incorrect adjustments? 

 No, as long as Q-learning tries each action an unbounded number 

of times 

 Frequency of updates reflects transition model, P(s’|a,s) 
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experience <s, a, s’> 
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Course summary  
R&R        +               ML 

Query 

Planning 

Stochastic 

Environment 

 

Value Iteration 

Var. Elimination 
Belief Nets 

Decision Nets 

Markov Decision Processes 
Var. Elimination 

Markov Chains and HMMs 
Approx. Inference 

Temporal. Inference 

POMDPs 

Approx. Inference 

Deterministic 

Environment 

(not in this picture) 
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502: what is next 

 

• Midterm exam @5:30-7pm  this room 

DMP 201 

 

•Readings / Your Presentations will start 

Nov 17 

 

•We will have a make-up class later 
 


