## Introduction to

# **Artificial Intelligence (AI)**

#### Computer Science cpsc502, Lecture 16

#### Nov, 3, 2011

Slide credit: C. Conati, S. Thrun, P. Norvig, Wikipedia Peter Mark Pollefeys, Dan Klein, Chris Manning

CPSC 502, Lecture 15





## Today Nov 3

- Supervised Machine Learning
  - Naïve Bayes —
  - Markov-Chains
  - · Decision Trees Classification Y discrete
  - · Regression / continuous
  - Logistic Regression Y → ≥ ∈ [0, 1]
- Unsupervised Machine Learning
  - K-means
  - Intro to EM

## **Regression: Example**



# Regression

- Only very simple examples
  - Linear regression
- Linear model

• 
$$y = m x + b$$

• 
$$h_{\mathbf{w}}(x) = y = w_1 x + w_0$$

- Find best values for parameters
  - "maximize goodness of fit"
- "maximize probability" or "minimize loss" error orgunorp(D/w.

# **Regression: Minimizing Loss**

Assume true function f is given by

y = f(x) = m x + b + noise

where noise is normally distributed

Then most probable values of parameters found by minimizing squared-error loss:

$$Loss(h_{\mathbf{w}}) = \sum_{j} (y_{j} - h_{\mathbf{w}}(x_{j}))^{2}$$

$$t raining data$$

CPSC 502, Lecture 15

# **Regression: Minimizing Loss**



## **Regression: Minimizing Loss**

 $y = w_1 x + w_0$ 1000 900 Ø O House price in \$1000  $\odot$ 800 700 Loss 600 500  $w_0$ 400 X1 300  $w_1$ 1500 2000 2500 3000 3500 500 1000 House size in square feet Algebra gives  $Loss(h_{\mathbf{w}}) = \Sigma_i (y_i - h_{\mathbf{w}}(x_i))^2$ an exact solution to the minimization problem CPSC 502, Lecture 15

Compute wo and wi in closed form

 $\frac{\partial}{\partial w_{0}} \sum_{i}^{n} \left( \gamma_{i} - w_{1} \chi_{i} - W_{0} \right)^{2} = 0$  $\sum_{i} -2\left(\gamma_{i} - w_{1} \times \cdots \times w_{n}\right) = 0$  $-\sum_{i}^{r_{1}}\gamma_{i}^{i}+\sum_{i}^{r}w_{1}\chi_{i}^{i}+\sum_{i}^{r}w_{0}=0$  $-\sum y_{n} + w_{1} \sum X_{n} + NW = 0$  $\omega_0 = \frac{\sum y_i}{h} - \omega_1 \frac{\sum x_i}{h}$ 

 $\frac{\partial}{\partial w_1} \sum \left( \frac{1}{\lambda_1} - \frac{1}{\omega_2} \frac{1}{\lambda_1} - \frac{1}{\omega_0} \right)^2 = 0$ oxpressed as of wh -plug in Wo from previous derivation  $\chi \sum -\chi_{\lambda} \left( \chi_{\lambda} - w_{2} \times \frac{1}{\lambda} - w_{0} \right) = 0$  $\sum -X_{n}Y_{n} + w_{1}X_{n}^{2} + X_{n}^{2}w_{0}\mu^{2}$ COMPUTE THIS FROM DATA  $\omega_{1} = \frac{\sum x_{\lambda} y_{\lambda} - \frac{1}{n} \sum x_{\lambda} \sum y_{\lambda}}{\sum x_{\lambda}^{2} - \frac{1}{n} (\sum x_{\lambda})^{2}}$ THEN USE THE VALUE TO COMPUTE CPSC 502, Lecture 15 10

## Don't Always Trust Linear Models



## **Multivariate Regression**

• 
$$\mathbf{X} = \{x_1, x_2, \dots, x_n\}$$
  
•  $h_{\mathbf{w}}(\mathbf{X}) = \mathbf{W} \cdot \mathbf{X} = \mathbf{W} \mathbf{X}^{\mathsf{T}} = \sum_{i} w_i x_i$   
 $\int_{\mathcal{W}_{1}} \int_{\mathcal{W}_{1}} \int_{\mathcal{W}$ 

• The most probable set of weights, w\* (minimizing squared error): •  $(y - Xw)^T (y - Xw)$ •  $(y - Xw)^T (y - Xw)^T (y$ 

# Overfitting

- To avoid overfitting, don't just minimize loss
- Also minimize complexity of the model
- Can be stated as minimization: <sup>squared</sup> cm<sup>r</sup>
  - $Cost(h) = EmpiricalLoss(h) + \lambda Complexity(h)$
- For linear models, consider Complexity( $h_{\mathbf{w}}$ ) =  $L_q(\mathbf{w}) = \sum_i / w_i / q_i$ 
  - $L_1$  regularization minimizes sum of abs. values
  - L<sub>2</sub> regularization minimizes sum of squares CPSC 502, Lecture 15

## **Regularization and Sparsity**



# **Regression by Gradient Descent**

No closed-form solution for complex loss functions





win why  $\mathbf{w}$  = any point loop until convergence do: for each  $w_i$  in w do:  $\underbrace{w_i^{m}}_{i} = \underbrace{w_i^{m-1}}_{\partial w_i} - \alpha \underbrace{\partial}_{\partial w_i} \underbrace{Loss(w_i^{m-1})}_{\wedge}$ is it convex 7 complex for Li Lz. + unction

CPSC 502, Lecture 15



- Learning: iterative optimization (gradient)
- Used in one of the NLP papers we will read

## Today Nov 3

- Supervised Machine Learning
  - Naïve Bayes —
  - Markov-Chains
  - · Decision Trees Classification Y discrete
  - · Regression / continuous
  - Logistic Regression Y → ≥ ∈ [0, 1]
- Unsupervised Machine Learning
  - K-means
  - Intro to EM (very general technique!)

## The unsupervised learning problem



Many data points, no labels



#### Choose a fixed number of clusters

#### Ideally...

Choose cluster centers and point-cluster allocations to minimize error

can't do this by exhaustive search, because there are too many possible allocations.



Algorithm



• Fix cluster centers;



- Allocate points to closest cluster
- With fixed allocation; compute best cluster
   centers
- Until nothing changes







### **Problems with K-means**



Lack of mathematical basis

## Today Nov 3

- Supervised Machine Learning
  - Naïve Bayes —
  - Markov-Chains
  - Decision Trees Classification Y discrete
  - · Regression / continuous
  - Logistic Regression Y → ≥ ∈ [•, ·]
- Unsupervised Machine Learning
  - K-means
  - Intro to EM (very general technique!)

### **Gaussian Distribution**



- Models a large number of phenomena encountered in practice
- Under mild conditions the sum of a large number of random variables is distributed approximately normally

### **Gaussian Learning: Parameters**



### **Expectation Maximzation for Clustering: Idea**

- Lets assume: that our Data were generated from several Gaussians (a mixture, technically)
- For simplicity one dimensional data only two Gaussians (with same variance, but possibly different ......)
- Generation Process
  - Gaussian/Cluster is selected
  - Data point is sampled from that cluster



### But this is what we start from

 n data points without labels! And we have to cluster them into two (soft) clusters.



- "Identify the two Gaussians that best explain the data"
- Since we assume they have the same variance, we "just" need to find their priors and their means

• In K-means we assume we know the center of the clusters and iterate.....

### Here we assume that we know

• Prior for clusters and the two means

$$\theta_1 \quad \theta_2 \qquad M_1 \quad M_2$$

• We can compute the probability that data point  $x_i$  corresponds to the cluster  $N_j \quad \mathcal{P}(N_J | X_A) = \mathcal{P}(N_J | X_A)$ 

$$z_{ij} = \frac{\theta_j * N(x_i \mid \mu_j, \sigma)}{\sum_{m=1}^2 \theta_m * N(x_i \mid \mu_m, \sigma)}$$

$$N(x_i \mid \mu_j, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x_i - \mu_j)^2}$$

$$\frac{P(\times \lambda)}{P(\times \lambda)}$$

$$\frac{P(\times \lambda)}{N_{1} N_{2}}$$

$$\frac{N_{1} N_{2}}{(\sqrt{9} \cdot 1)}$$

$$\frac{X_{2}}{(\sqrt{9} \cdot 1)}$$

$$\frac{N_{2}}{(\sqrt{9} \cdot 1)}$$

$$\frac{N_{2}}{(\sqrt{9} \cdot 1)}$$

$$\frac{N_{2}}{(\sqrt{9} \cdot 1)}$$

$$\frac{N_{3}}{(\sqrt{9} \cdot 1)}$$

$$\frac{N_{4}}{(\sqrt{9} \cdot 1)}$$

### We can now recompute Nz • Prior for clusters $\theta_1 = \frac{\sum_{i=1}^n z_{i1}}{n}$ $\theta_j = \frac{\sum_{i=1}^n z_{ij}}{n}$ The means Hard cluster $\mu_1 = \frac{\sum_{i=1}^n z_{i1} x_i}{\sum_{i=1}^n z_{i1}}$ $\mu_j = \frac{\sum_{i=1}^n z_{ij} x_i}{\sum_{i=1}^n z_{ij}}$ M1= Values of M1= Points 14 N1 # points

### Intuition for EM in two dim. (as a generalization of k-means)



### **Expectation Maximization**

Converges! ©

**Proof** [Neal/Hinton, McLachlan/Krishnan]:

• E/M step does not decrease data likelihood

But does not assure optimal solution 🛞

### **Practical EM**

Number of Clusters unknown

### Algorithm:

- Guess initial # of clusters
- Run EM
  - ✓ Kill cluster center that doesn't contribute (two clusters with the same data)
  - ✓ Start new cluster center if many points "unexplained" (uniform cluster distribution for lots of data points)

### EM is a very general method!

- Baum-Welch algorithm (also known as *forward-backward*): Learn HMMs from unlabeled data
- Inside-Outside algorithm: unsupervised induction of probabilistic context-free grammars.
- More generally, learn parameters for hidden variables in any Bnets (see textbook example 11.1.3 to learn parameters of NB classifier)

# Machine Learning: Where are we?

Supervised Learning

- Examples of correct answers are given
  - Discrete answers: Classification
  - Continuous answers: **Regression**
- **Unsupervised Learning** 
  - No feedback from teacher; detect patterns
- Next Week: Reinforcement Learning
  - Feedback consists of rewards/punishment (Robotics, Interactive Systems)

### **TODO for next Tue**

- Read 11.3: Reinforcement Learning
- Assignment 3-Part2 out soon