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Supervised ML: Formal Specification
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Regression: Example
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Regression

= Only very simple examples
* Linear regression

* Linear model
"y=mx+Db
" h,(x) =y = Wy X + W,

* Find best values for parameters /
* “maximize goodness of fit” &

* “maximize probability” or{iminimize loss” )
D \ = €
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Regression: Minimizing Loss

= Assume true function f is given by
y=f(X) =mx+ b+ noise

where noise is normally distributed

found byiminimizing squared-error loss;:

= Then most probable values of parameteﬂ

Loss(h,, ) = % @— h(X))?
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Regression: Minimizing Loss
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Regression: Minimizing Loss
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Algebra gives
// an exact solution to

the minimization

Dl oss(w) _ a0 XopWe) = problem
LS - ZJ;(% () X ) <7 )
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Don't Always Trust Linear Models
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Multivariate Regression

-h(x)%x—wa—wa :

* The most probable set of weights, w*
(mlnlmlzmg squared error):

Derivative of the

: - T Q/ x (/ >< \;quared error
(X X)Xy
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Overfitting

= To avoid overfitting, don’t jJust minimize loss
= Also minimize complexity of the model
= Can be stated as minimization: 7 e
= (Cost(h) :!EmpiricaILoss(hJ +[7L¢Complexit3i(r@
= For linear models, consider/
Complexity(h,,) = L,(w) =2 | w; |2

= |, regularization minimizes sum of abs. values
= |, regularization minimizes sum of squares
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Regularization and Sparsity
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Regression by(/GFdient Descent|

= No closed-form solution for complex loss functions

Loss

wo

W, . -~ L,J.,‘
(W= any point
loop until convergence do:
for each w; in w do:
w"h=wml —a_ 0  Loss(w,™?)
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Logistic Regression =
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 Learning: iterative optimization (gradient)
» Used in one of the NLP papers we will read
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* |Intro to EM (very general technique!)

CPSC 502, Lecture 15 17



The unsupervised learning problem
X'Z_

\

Many data points, no labels
18



K-Means

Choose a fixed number of Algorithm L o SYLC/r S
clusters . _
* Fix cluster centers;

|deally... e Allocate points to
Choose cluster centers and ﬁ closest cluster
point-cluster allocations to With fixed allocation:

minimize error

| compute best cluster

can’ t do this by exhaustive centers

search, because there are e Until nothing changes
too many possible
2}

allocations. w l}
z{ > f-u

ieclusters | jeelementsof1 th cluster

——————y
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* From Marc Pollefeys COMP 256 2003



K-Means




Problems with K-means
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* K-means

* |ntro to EM (very general technique!)
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Gaussian Distribution
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* Models a large number of phenomena encountered in
practice

« Under mild conditions the sum of a large number of
random variables is distributed approximately normally



Gaussian Learning: Parameters

e N data points W

X\



Expectation Maximzation for Clustering: Idea
« Lets assume: that our Data were generated from several
Gaussians (a mixture, technically)

* For simplicity — one dimensional data — only two Gaussians
(with same variance, but possibly different ........... )

 Generation Process

* Gaussian/Cluster is selected
* Data point is sampled from that cluster




But this is what we start from

* n data points without labels! And we have to cluster them
into two (soft) clusters.

« “ldentify the two Gaussians that best explain the data”

* Since we assume they have the same variance, we “just”
need to find their priors and their means

* In K-means we assume we know the center of the clusters
and iterate..... |



Here we assume that we know

* Prior for clusters and the two means
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* We can compute the probability that data point x; corresponds
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We can now recompute

* Prior for clusters
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Intuition for EM in two dim.
(as a generalization of k-means)




Expectation Maximization

Converges! ©

Proof [Neal/Hinton, McLachlan/Krishnan].
* E/M step does not decrease data likelihood

But does not assure optimal solution ®



Practical EM

Number of Clusters unknown
Algorithm:

* Guess initial # of clusters
* Run EM

v Kill cluster center that doesn’t contribute (two clusters with the
same data)

v' Start new cluster center if many points “unexplained” (uniform
cluster distribution for lots of data points)
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EM is a very general method!

« Baum-Welch algorithm (also known as forward-
backward). Learn HMMs from unlabeled data

* Inside-Outside algorithm: unsupervised induction
of probabilistic context-free grammars.

* More generally, learn parameters for hidde
variables in any Bnets (see textbook example(11.1.3to

learn parameters of NB classifier)
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Machine Learning: Where are we"?
Supervised Learning
* Examples of correct answers are given

* Discrete answers: Classification
* Continuous answers: Regression

Unsupervised Learning
* No feedback from teacher; detect patterns

Next Week: Reinforcement Learning

* Feedback consists of rewards/punishment (Robotics,
Interactive Systems)
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TODO for next Tue

- Read 11.3: Reinforcement Learning

- Assignment, 3-Part2 out soon |
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