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Supervised ML: Formal Specification 
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Today Nov 3 

• Supervised Machine Learning 

• Naïve Bayes 

• Markov-Chains 

• Decision Trees 

• Regression 

• Logistic Regression 

 

 

• Unsupervised Machine Learning 

• K-means 

• Intro to EM 

 

 



Regression: Example 
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Regression 
 Only very simple examples 

 Linear regression 

 Linear model 

 y = m x + b 

 hw(x) = y = w1 x + w0 

 Find best values for parameters 

 “maximize goodness of fit” 

 “maximize probability” or “minimize loss”  
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Regression: Minimizing Loss 

 Assume true function f is given by 

         y = f (x) = m x + b + noise 

where noise is normally distributed 

 Then most probable values of parameters 

found by minimizing squared-error loss: 

 

  Loss(hw ) = Σj  (yj – hw(xj))
2 
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Regression: Minimizing Loss 

Choose weights to minimize 

sum of squared errors 
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Regression: Minimizing Loss 

y = w1 x + w0 

Algebra gives 

an exact solution to 

the minimization 

problem 
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Loss(hw ) = Σj  (yj – hw(xj))
2 
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Don’t Always Trust Linear Models 

 Anscombe's quartet 
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Four datasets with “identical”  

statistical properties 



Multivariate Regression 

 x = 

 hw(x) = w ∙ x =  w xT  = Σi  wi xi 

 

 

 The most probable set of weights, w* 
(minimizing squared error): 

 (y – Xw) T (y – Xw)  

 

 w* = (XT X)-1 XT y 
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Derivative of the 

Squared error 



Overfitting 

 To avoid overfitting, don’t just minimize loss 

 Also minimize complexity of the model 

 Can be stated as minimization: 

 Cost(h) = EmpiricalLoss(h) + λ Complexity(h) 

 For linear models, consider 

Complexity(hw) = Lq(w) = ∑i | wi |
q 

 

 L1 regularization minimizes sum of abs. values 

 L2 regularization minimizes sum of squares 
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Regularization and Sparsity 

L1 regularization L2 regularization 

Cost(h) = EmpiricalLoss(h) + λ Complexity(h) 
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Regression by Gradient Descent 

w = any point  

loop until convergence do: 

    for each wi in w do: 

        wi
m= wi

m-1 – α    ∂    Loss(wi
m-1) 

∂ wi 

 No closed-form solution for complex loss functions 
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Logistic Regression  

CPSC 502, Lecture 15 Slide 16 

• Learning: iterative optimization (gradient) 

• Used in one of the NLP papers we will read 

 

• Predicts prob. of y given z 

  

• Fitting data to a logistic 

function  
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Today Nov 3 

• Supervised Machine Learning 

• Naïve Bayes 

• Markov-Chains 

• Decision Trees 

• Regression 

• Logistic Regression 

 

 

• Unsupervised Machine Learning 

• K-means 

• Intro to EM (very general technique!) 

 

 



The unsupervised learning problem 

18 

Many data points, no labels 



K-Means 

Choose a fixed number of 
clusters 

 

Ideally… 

Choose cluster centers and 
point-cluster allocations to 
minimize error  

 

can’t do this by exhaustive 
search, because there are 
too many possible 
allocations. 

Algorithm 

• Fix cluster centers;  

• Allocate points to 

closest cluster 

• With fixed allocation; 

compute best cluster 

centers 

• Until nothing changes 



x j   i
2

jelements o f i' th cluster








iclusters



* From Marc Pollefeys COMP 256 2003 



K-Means 



Problems with K-means 

• Need to know k 

• Local minima 

• High dimensionality 

• Lack of mathematical basis 
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Today Nov 3 

• Supervised Machine Learning 

• Naïve Bayes 

• Markov-Chains 

• Decision Trees 

• Regression 

• Logistic Regression 

 

 

• Unsupervised Machine Learning 

• K-means 

• Intro to EM (very general technique!) 

 

 



Gaussian Distribution 

• Models a large number of phenomena encountered in 

practice 

• Under mild conditions the sum of a large number of 

random variables is distributed approximately normally 



Gaussian Learning: Parameters 

• n data points 



Expectation Maximzation for Clustering: Idea 
• Lets assume: that our Data were generated from several 

Gaussians (a mixture, technically) 

• For simplicity – one dimensional data – only two Gaussians 

(with same variance, but possibly different    ………..) 

• Generation Process 

• Gaussian/Cluster is selected 

• Data point is sampled from that cluster 

 

 

 

 

 

 



But this is what we start from 

• “Identify the two Gaussians that best explain the data” 

• Since we assume they have the same variance, we “just” 

need to find their priors and their means 

 

 

 

 

 

 

 

 

 

 

 

 

• In K-means we assume we know the center of the clusters 
and iterate….. 

 

 

 

• n data points without labels! And we have to cluster them 

into two (soft) clusters. 

 

 

 

 

 

 



Here we assume that we know 

• Prior for clusters and the two means  

 

 

 

 

 

 

 

• We can compute the probability that data point xi corresponds 

to the cluster Nj 
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We can now recompute 

• Prior for clusters 

 

 

 

 

 

 

 

• The means 
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Intuition for EM in two dim.  
(as a generalization of k-means) 



Expectation Maximization 

Converges!  

Proof [Neal/Hinton, McLachlan/Krishnan]: 

• E/M step does not decrease data likelihood 

But does not assure optimal solution  



Practical EM 

Number of Clusters unknown 

Algorithm: 

• Guess initial # of clusters 

• Run EM 

Kill cluster center that doesn’t contribute (two clusters with the 

same data) 

Start new cluster center if many points “unexplained” (uniform 

cluster distribution for lots of data points) 
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EM is a very general method! 

• Baum-Welch algorithm (also known as forward-
backward): Learn HMMs from unlabeled data 

 

• Inside-Outside algorithm: unsupervised induction 

of probabilistic context-free grammars. 

 

• More generally, learn parameters for hidden 

variables in any Bnets (see textbook example 11.1.3 to 

learn parameters of NB classifier) 
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Machine Learning: Where are we? 
Supervised Learning  

• Examples of correct answers are given 

• Discrete answers: Classification 

• Continuous answers: Regression 

Unsupervised Learning 

• No feedback from teacher; detect patterns 

Next Week: Reinforcement Learning 

• Feedback consists of rewards/punishment (Robotics, 

Interactive Systems)  
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TODO for next Tue 

 

• Read 11.3: Reinforcement Learning 

 

• Assignment 3-Part2 out soon 
 


