Introduction to

Artificial Intelligence (AI)

Computer Science cpsc502, Lecture 15

Nov, 1, 2011

Slide credit: C. Conati, S. Thrun, P. Norvig, Wikipedia

CPSC 502, Lecture 15

Supervised ML: Formal Specification

N features Mexamples $\frac{f(\bar{x}) \rightarrow \gamma}{1}$

Example Classification Data X_{1}

		2 1		<u> </u>	<u> </u>			
	Action	Author	Thread	Length	Where			
el	skips	known	new	long	home			
e2	reads	unknown	new	short	work			
e3	skips	unknown	old	long	work			
e4	skips	known	old	long	home			
e5	reads	known	new	short	home			
e6	skips	known	old	long	work			
f(Known, new, long, work)?								

CPSC 502, Lecture 15

Today Nov 1

- Supervised Machine Learning
 - Naïve Bayes —
 - Markov-Chains
 - Decision Trees Classification Y discrete
 - · Regression / continuous
 - Logistic Regression Y → Z ∈ [0, 1]
 - Key Concepts
 - Over-fitting
 - Evaluation

Example Classification Data

	Action	Author	Thread	Length	Where
el	skips	known	new	long	home
e2	reads	unknown	new	short	work
e3	skips	unknown	old	long	work
e4	skips	known	old	long	home
e5	reads	known	new	short	home
e6	skips	known	old	long	work

We want to classify new examples on property Action based

on the examples' *Author, Thread, Length*, and *Where.* CPSC 502, Lecture 15

Learning task

- Inductive inference
 - Given a set of examples of
 f(author,thread, length, where) = {reads,skips}
 - Find a function *h(author,thread, length, where)* that approximates *f*

DT as classifiers

To classify an example, filter in down the tree

- For each attribute of the example, follow the branch corresponding to that attribute's value.
- When a leaf is reached, the example is classified as the label for that leaf.

DT as classifiers

DT Applications

- DT are often the first method tried in many areas of industry and commerce, when task involves learning from a data set of examples
- Main reason: the output is easy to interpret by humans

Learning Decision Trees

Method for supervised classification (we will assume attributes with finite discrete values)

- Representation is a decision tree.
- Bias is towards simple decision trees.
- Search through the space of decision trees, from simple decision trees to more complex ones.

Example Decision Tree (2)

But this tree also classifies my examples correctly.

Searching for a Good Decision Tree

> The input is

- a target attribute for which we want to build a classifier,
- a set of examples
- a set of attributes.
- Stop if all examples have the same classification (good ending).
 - Plus some other stopping conditions for not so good endings
- Otherwise, choose an attribute to split on (greedy, or myopic step)
 - for each value of this attribute, build a sub-tree for those examples with this attribute value

Choosing a good split

Goal: try to minimize the depth of the tree

- Split on attributes that move as much as possible toward an exact classification of the examples
- Ideal split divides examples into sets, with the same classification
- Bad split leaves about the same proportion of examples in the different classes

Information Gain (1)
Entropy of
$$E=B(\frac{P}{n+P})$$

Entropy of $E_{k}=B(\frac{Pk}{nk+Pk})$
Prob. of ex. having value for A equal to $V_{k} = \frac{Pk+nk}{F}$
 $E = \bigcup_{k=1}^{p} E_{k}$
 $E = \bigcup_{k=1}^{p} E_{k}$

Information Gain (2):
Expected Reduction in Entropy

$$\begin{bmatrix} Entropy & of E = B(\frac{p}{p+n}) & \textcircled{o} \end{bmatrix}$$

$$\begin{bmatrix} Entropy & of E = B(\frac{p}{p+n}) & \textcircled{o} \end{bmatrix}$$

$$\begin{bmatrix} Entropy & of E = B(\frac{p}{p+n}) & \textcircled{o} \end{bmatrix}$$

$$\begin{bmatrix} Entropy & of E = B(\frac{p}{p+n}) & \textcircled{o} \end{bmatrix}$$

$$\begin{bmatrix} Entropy & of E = B(\frac{p}{p+n}) & \textcircled{o} \end{bmatrix}$$

$$\begin{bmatrix} Entropy & of E = B(\frac{p}{p+n}) & \textcircled{o} \end{bmatrix}$$

$$\begin{bmatrix} Entropy & of E = B(\frac{p}{p+n}) & \textcircled{o} \end{bmatrix}$$

$$\begin{bmatrix} Entropy & of E = B(\frac{p}{p+n}) & \textcircled{o} \end{bmatrix}$$

$$\begin{bmatrix} Entropy & of E = B(\frac{p}{p+n}) & \textcircled{o} \end{bmatrix}$$

$$\begin{bmatrix} Entropy & of E = B(\frac{p}{p+n}) & \textcircled{o} \end{bmatrix}$$

$$\begin{bmatrix} Entropy & of E = B(\frac{p}{p+n}) & \textcircled{o} \end{bmatrix}$$

$$\begin{bmatrix} Entropy & of E = B(\frac{p}{p+n}) & \textcircled{o} \end{bmatrix}$$

$$\begin{bmatrix} Entropy & of E = B(\frac{p}{p+n}) & \textcircled{o} \end{bmatrix}$$

Chose the attribute with the highest Gain

Example: possible splits

For the initial training set B(4/6) = 0.92 bit

Example: possible splits

For the initial training set I(4/6, 2/6) = 0.92 bit

Drawback of Information Gain

Tends to favor attributes with many different values

- Can fit the data better than spitting on attributes with fewer values
- Imagine extreme case of using "*message idnumber*" in the newsgroup reading example
 - Every example may have a different value on this attribute
 - Splitting on it would give highest information gain, even if it is unlikely that this attribute is relevant for the user's reading decision

Alternative measures (e.g. gain ratio)

Expressiveness of Decision Trees

They can represent any discrete function, an consequently any Boolean function

How many ? X_1 X_n $f(x_1...x_n)$ n boolean vors 2^h configurations \mathbf{V}

٩

Handling Overfitting

This occurs with noise and correlations in the available examples that are not reflected in the data as a whole.

> One technique to handle overfitting: *decision tree pruning*

- Statistical techniques to evaluate when the gain on the attribute selected by the splitting technique is *large enough* to be relevant
- Generic techniques to test ML algorithms

How to Learn

Cross-Validation

- Partition the training set into k sets
- Run the algorithm k times, each time (fold) using one of the k sets as the test test, and the rest as training set
- Report algorithm performance as the average performance (e.g. accuracy) over the k different folds

Useful to select different candidate algorithms/models

- E.g. a DT built using information gain vs. some other measure for splitting
- Once the algorithm/model type is selected via crossvalidation, return the model trained on all available data

Other Issues in DT Learning

- > Attributes with continuous and integer values (e.g. *Cost* in \$)
 - Important because many real world applications deal with continuous values
 - Methods for finding the *split point* that gives the highest information gain (e.g. Cost > 50\$)
 - Still the most expensive part of using DT in real-world applications
- Continue-valued output attribute (e.g. predicted cost in \$):
 Regression Tree
 Solitting movieton before close if ving all examples
 - Splitting may stop before classifying all examples
 - Leaves with unclassified examples use a linear function of a subset of the attributes to classify them via linear regression
 - Tricky part: decide when to stop splitting and start linear regression

TODO for this Thurs

- Read 7.5, 7.6 and 11.1, 11.2
- Assignment 3-Part1 due