Introduction to

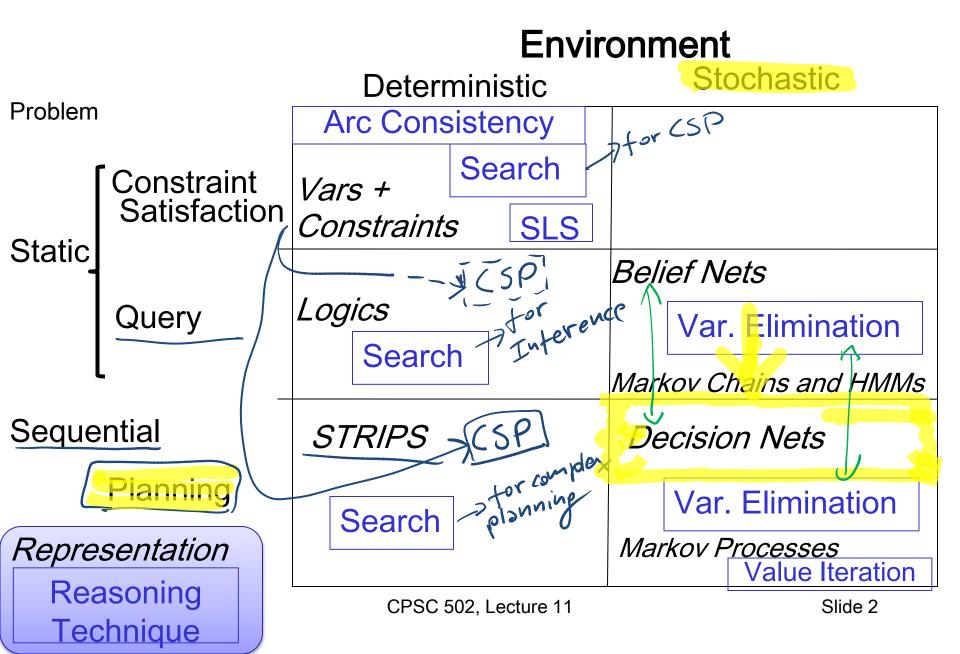
Artificial Intelligence (AI)

Computer Science cpsc502, Lecture 11

Oct, 18, 2011

CPSC 502, Lecture 11

Planning in Stochastic Environments



Planning Under Uncertainty: Intro

- **Planning** how to select and organize a sequence of actions/decisions to achieve a given goal.
- Deterministic Goal: A possible world in which some propositions are assigned to T/F

- Planning under Uncertainty: how to select and organize a sequence of actions/decisions to "maximize the probability" of "achieving a given goal"
 - Goal under Uncertainty: we'll move from all-ornothing goals to a richer notion: rating how *happy* the agent is in different possible worlds.

"Single" Action vs. Sequence of Actions

Set of primitive decisions that can be treated as a single macro decision to be made before acting one-off

- Agents makes observations
- Decides on an action
- Carries out the action

Sequential Decisions

Today Oct 18

One-Off Decisions

- Utilities / Preferences and optimal Decision
- Single stage Decision Networks

Sequential Decisions

- Representation
- Policies
- Finding Optimal Policies

One-off decision (textbook example)

Delivery Robot Example

Robot needs to reach a certain room

F :: 1+ A=t

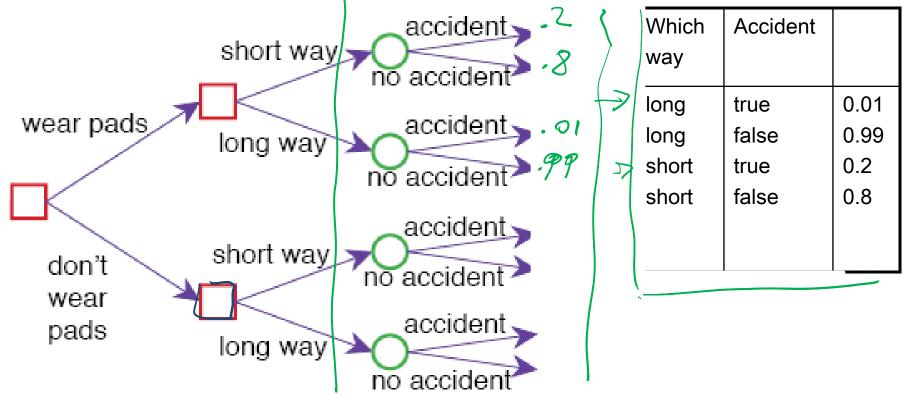
- Going through stairs may cause an accident.
- It can go the short way through long stairs, or the long way through <u>short stairs</u> (that reduces the chance of an accident but takes more time)
- Which long i P(A=t | WW=long) < P(A=t | WW=show short i P(A=t | WW=show

• The Robot can choose to wear pads to protect itself or not (to protect itself in case of an accident) but pads slow it down

• If there is an accident the Robot does not get to the room CPSC 502, Lecture 11 Slide 6

Decision Tree for Delivery Robot

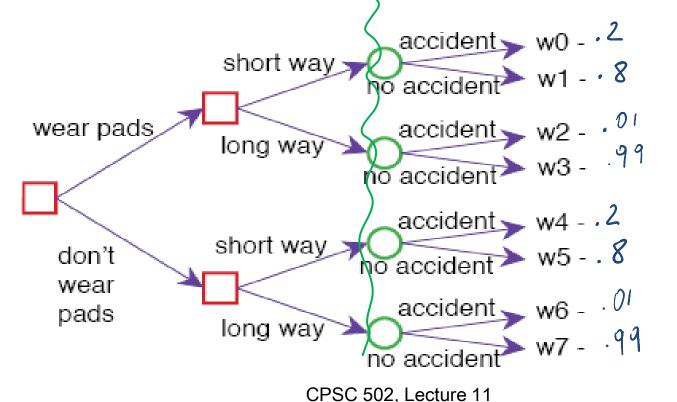
This scenario can be represented as the following decision tree



- The agent has a set of decisions to make (a macro-action it can perform)
- Decisions can influence random variables
- Decisions have probability distributions over outcomes

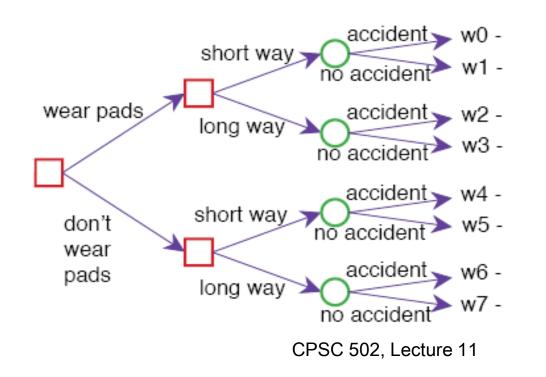
Decision Variables: Some general Considerations

- A possible world specifies a value for each random variable and each decision variable.
- For each assignment of values to all decision variables, the probabilities of the worlds satisfying that assignment sum to 1.



What are the optimal decisions for our Robot?

- It all depends on how happy the agent is in different situations.
- For sure getting to the room is better than not getting there..... but we need to consider other factors..



Utility / Preferences

Utility: a measure of desirability of possible worlds to an agent

 Let U be a real-valued function such that U(w) represents an agent's degree of preference for world w. [0, 100]

Would this be a reasonable utility function for our Robot?

Which way	Accident	Wear Pads	Utility	World
short	true	true	35	w0, moderate damage
short	false	true	95	w1, reaches room, quick, extra weight
long	true	true	30	w2, moderate damage, low energy
long	false	true	75	w3, reaches room, slow, extra weight
short	true	false	3	w4, severe damage
short	false	false	100	w5, reaches room, quick
long	true	false	0	w6, severe damage, low energy
long	false	false	80	w7, reaches room, slow

Utility: Simple Goals

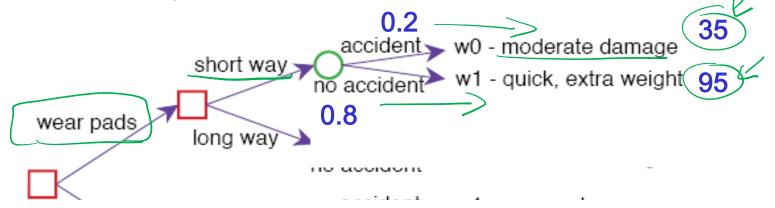
• Can simple (boolean) goals still be specified? goal: ^hreaching the room^h Accident invst be

V	Which way	Accident	Wear Pads	Utility
	long	true	true	0
	long	true	false	0
	long	false	true	100
\succ	long	false	false	100
	short	true	true	0
	short	true	false	\bigcirc
~	short	false	true	102
	short	false	false	100

must be talse

Optimal decisions: How to combine Utility with Probability

What is the utility of achieving a certain probability distribution over possible worlds?



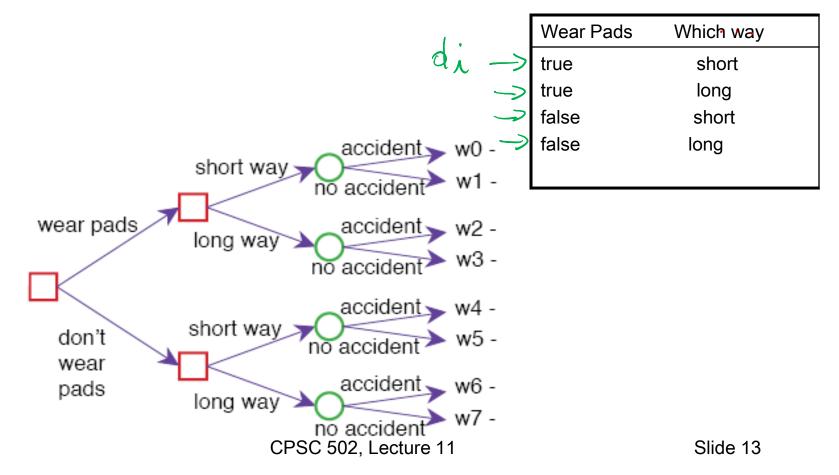
 It is its <u>expected utility/value i.e.</u>, its average utility, weighting possible worlds by their probability.

$$EU(wP=t, WW = short) =$$

.2 * 35 + . 8 * 75

Optimal decision in one-off decisions

- Given a set of *n* decision variables *var_i*(e.g., Wear Pads, Which Way), the agent can choose:
 - $D = d_i$; d_i in dom $(var_1) \times ... \times dom(var_n)$.

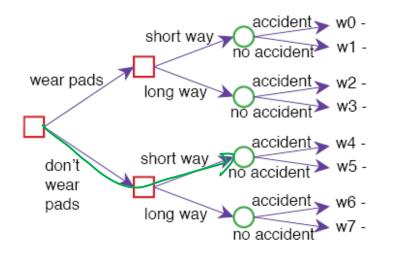


Optimal decision: Maximize Expected Utility

• The expected utility of decision $D = d_i$ is

$$\mathbb{E}(U \mid D = d_i) = \sum_{w \models D = d_i} P(w \mid D = d_i) U(w)$$

e.g.,
$$\mathbb{E}(U \mid D = \{WP = \text{slow}, WW = \text{show} \} =$$



 $P(w_4) * U(w_4) +$ $P(\omega_5) * U(\omega_c)$

msx

 An optimal decision is the decision D = d_{max} whose expected utility is maximal:
 Wear Pads Which way EU

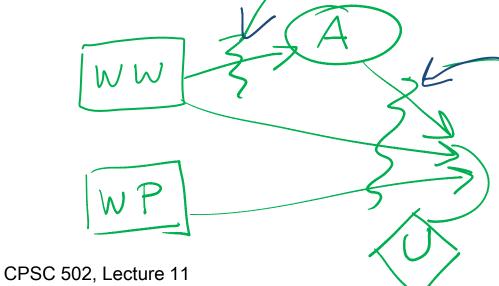
$$d_{\max} = \underset{d_i \in dom(D)}{\operatorname{arg\,max}} \mathbb{E}(U \mid D = d_i) \xrightarrow{}_{i \in dom(D)} \underset{false}{\underset{false}{\overset{hrue}{\longrightarrow}}} \operatorname{short}_{false} \underset{false}{\underset{false}{\overset{hrue}{\longrightarrow}}} \operatorname{long}_{false}$$

Slide 14

Single-stage decision networks

Extend belief networks with:

- **Decision nodes**, that the agent chooses the value for. Drawn as rectangle.
- Utility node, the parents are the variables on which the utility depends. Drawn as a diamond.
- Shows explicitly which decision nodes
 affect random variables

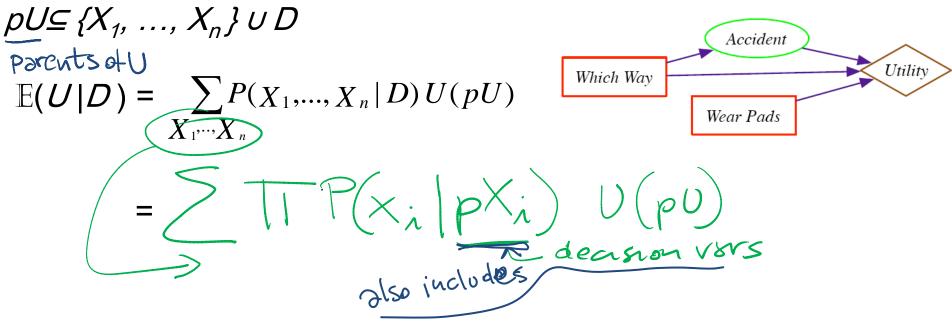


	Which	Accident	
	way		
_	long	true	0.01
	long	false	0.99
	short	true	0.2
	short	false	0.8

Which way	Accident	Wear Pads	Utility
long	true	true	30
long	true	false	0
long	false	true	75
long	false	false	80
short	true	true	35
short	true	false	3
short	false	true	95
short	false	false	100

Finding the optimal decision: We can use VE

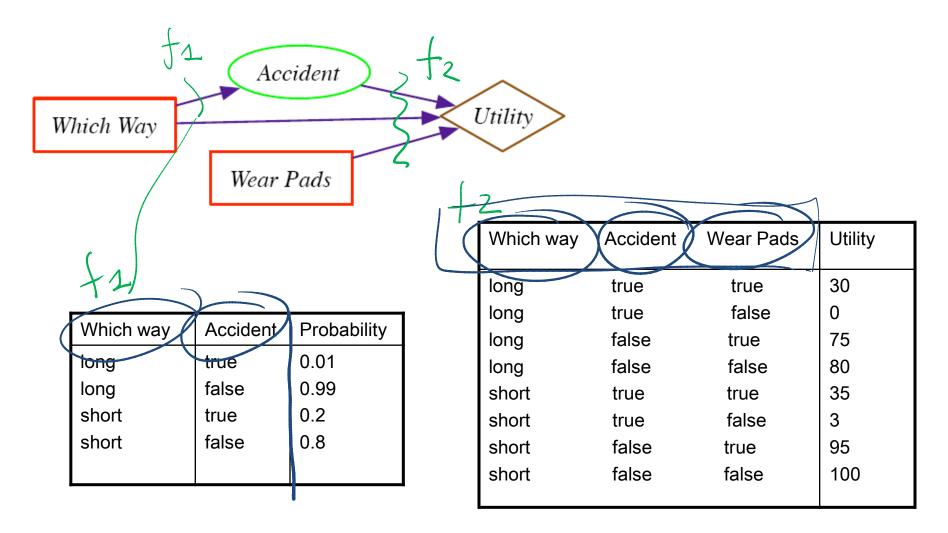
Suppose the random variables are $X_1, ..., X_n$, the decision variables are the set *D*, and utility depends on



To find the optimal decision we can use VE:

- 1. Create a factor for each conditional probability and for the utility
- 2. Multiply factors and sum out all of the random variables (This creates a factor on D that gives the expected utility for each d_i)
- 3. Choose the 3_{i} with the maximum value in the factor. CPSC 502, Lecture 11

Example Initial Factors (Step1)



Example: Multiply Factors (Step 2a)

	Acc	ident			-		
Which Way	Wear H	Pads	Utility	$\sum_{A} f_1(W$	$W,A) \times$	$f_2(A, V)$	WW,WP)
Which way	Accident	Probability	1 1		+3		
long	true false	0.01 0.99		Which way	Accident	Wear Pads	Utility
short short	true false	0.2 0.8	$f_2 =$	long	true	true	30 *01
Which way	Accident	Wear Pads	Utility	long	true	false	0 * .01
long	true	true	30		false	true	75 × • 9 9 80
long long	true false	false true	0 75	long short	false true	false true	35
long	false	false	80	short	true	false	3
short short	true true	true false	35 3	short	false	true	95
short	false	true	95	short	false	false	100
short	false	false	100		WW	WP	
			CPSC	502, Lecture 11	t	t	Slide 18

Example: Sum out vars and choose max (Steps 2b-3)

Accident Which Way Wear Pads						<i>Lity</i> $\sum_{A} f'(A, WW, WP)$ Sum out accident:			
	Which way	Accident	Wear Pads	Utility]	U			
ζ	long	true	true	0.01*30	1	Which way	Wear Pads	Expected Utility	
	long	true	false	0.01*0		long	true	0.01*30+0.99*75=74.55	
Į	long	false	true	0.99*75		long	false	0.01*0+0.99*80=79.2	
	long	false	false	0.99*80	C	short	true	0.2*35+0.8*95=83 🧲	
	short	true	true	0.2*35		short	false	0.2*3+0.8*100=80.6	
	short	true	false	0.2*3					
	short	false	true	0.8*95					
	short	false	false	0.8*100				Alspace	

Thus the optimal policy is to take the short way and wear pads, with an expected utility of 83.

CPSC 502, Lecture 11

Today Oct 18

One-Off Decision

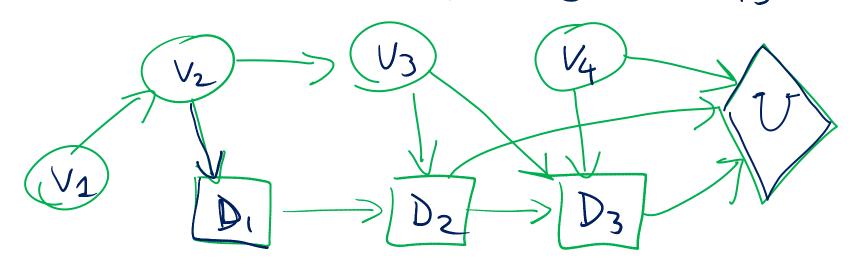
- Utilities / Preferences and optimal Decision
- Single stage Decision Networks

Sequential Decisions

- Representation
- Policies
- Finding Optimal Policies

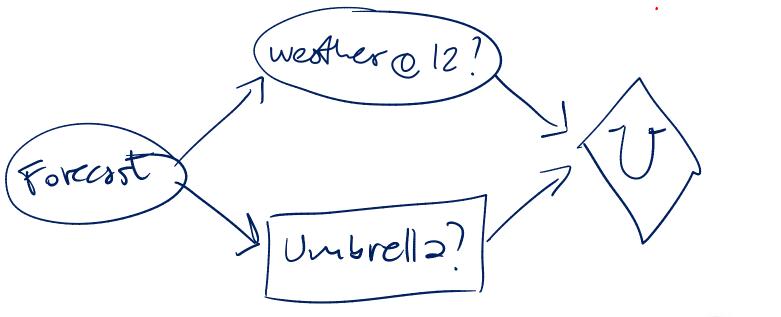
Sequential decision problems

- A sequential decision problem consists of a sequence of decision variables D_1, \ldots, D_n .
- Each D_i has an information set of variables pD_i , whose value will be known at the time decision D_i is made. $PD_3 = \int D_2 V_3 V_4$



Sequential decisions : Simplest possible

- Only one decision! (but different from one-off decisions)
- Early in the morning. Shall I take my umbrella today? (I'll have to go for a long walk at noon)
- Relevant Random Variables?

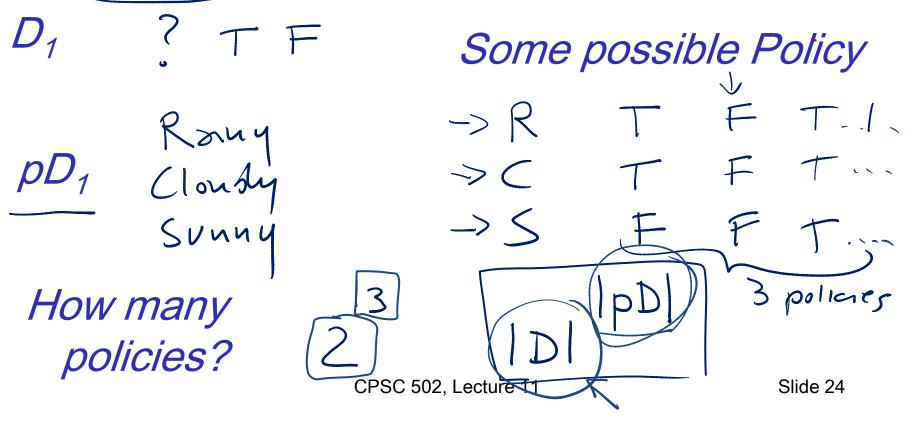


CPSC 502, Lecture 11

Policies for Sequential Decision Problem: Intro

 A policy specifies what an agent should do under each circumstance (for each decision, consider the parents of the decision node)

In the Umbrella "degenerate" case:



Sequential decision problems: "complete" Example

Utility

 $PC = \{R\}$ $PC = \{R, CS, SS\}$

 $\leq p \zeta$

CPSC 502, Lecture 11

Slide 25

- A sequential decision problem consists of a sequence of decision variables D₁,....,D_n.
- Each D_i has an information set of variables pD_i, whose value will be known at the time decision D_i is made.

SeeSmoke

Fire

Smoke

Check

decisions are totally ordered

Alarm

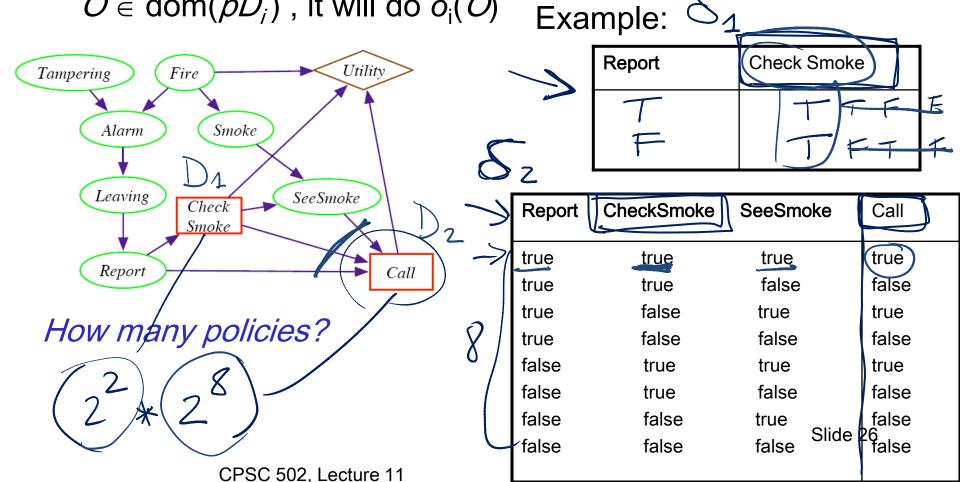
Leaving

Tampering

- if a decision D_b comes before D_a , then
 - D_b is a parent of D_a
 - any parent of D_b is a parent of D_a

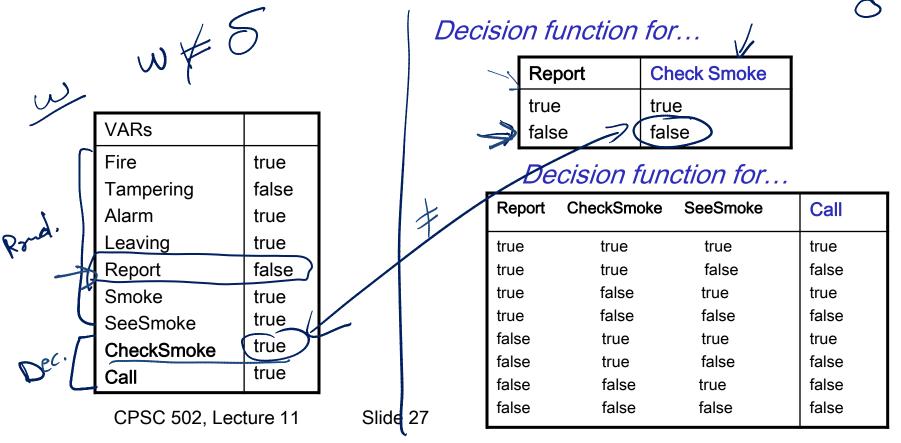
Policies for Sequential Decision Problems

- A policy is a sequence of $\delta_1, \dots, \delta_n$ decision functions $\delta_i : \operatorname{dom}(pD_i) \to \operatorname{dom}(D_i)$
- This policy means that when the agent has observed $O \in \text{dom}(pD_i)$, it will do $\delta_i(O)$ Example:



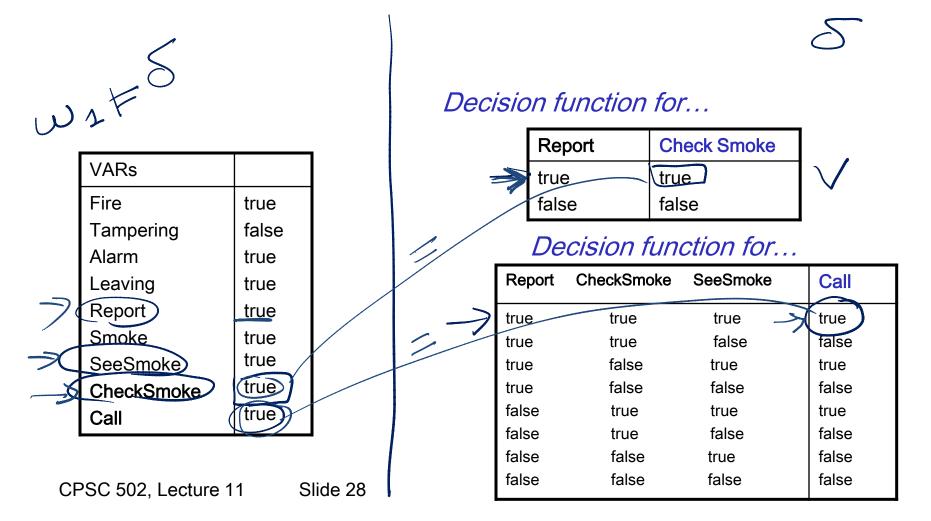
When does a possible world satisfy a policy?

- A possible world specifies a value for each random variable and each decision variable.
- **Possible world** *w* **satisfies policy** δ , written $w \models \delta$ if the value of each decision variable is the value selected by its decision function in the policy (when applied in *w*).



When does a possible world satisfy a policy?

• Possible world *w* satisfies policy δ , written $w \models \delta$ if the value of each decision variable is the value selected by its decision function in the policy (when applied in *w*).



Expected Value of a Policy

- Each possible world w has a probability P(w) and a utility U(w)
- The expected utility of policy δ is

• The optimal policy is one with the $M \ge \times$ expected utility.

Complexity of finding the optimal policy: how many policies? Tampering Fire Utility - How many assignments to parents? $\leq 5 \ 2 \ \leq 2^3$

How many decision functions? (binary decisions)
 2³

• How many policies? product 3

• If a decision *D* has *k* binary parents, how many assignments of values to the parents are there? χ

If there are *b* possible actions (possible values for D), how many different decision functions are there?

Smoke

Check Smoke SeeSmoke

Call

Alarm

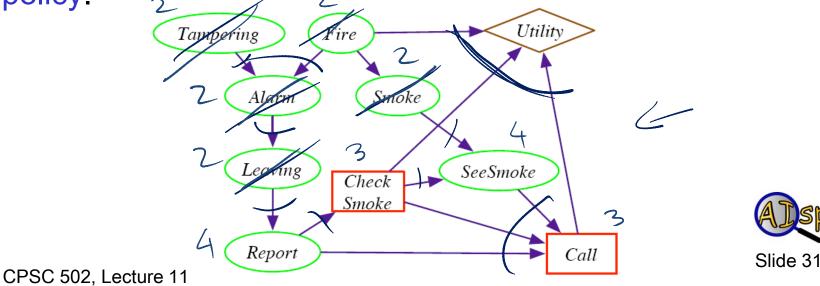
Leaving

Report

• If there are *d* decisions, each with *k* binary parents and *b* possible actions, how many policies are there? (2×10^{10})

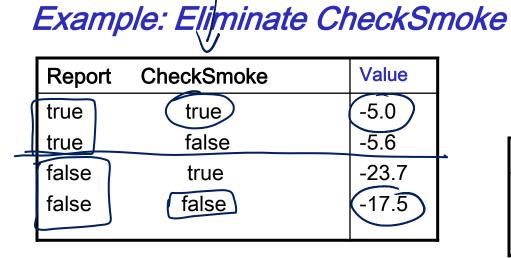
Finding the optimal policy more efficiently: VE

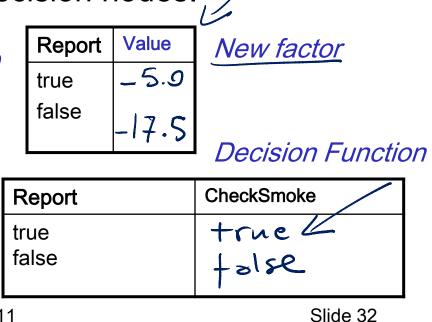
- 1. Create a factor for each conditional probability table and a factor for the utility.
- 2. Sum out random variables that are not parents of a decision node.
- 3. Eliminate (aka sum out) the decision variables
- 4. Sum out the remaining random variables.
- 5. Multiply the factors: this is the expected utility of the optimal policy.



Eliminate the decision Variables: step3 details

- Select a variable *D* that corresponds to the latest decision to be made
 - this variable will appear in only one factor with (some of) its parents
- Eliminate *D* by maximizing. This returns:
 - The optimal decision function for D, arg max_D f
 - A new factor to use in VE, $\max_{D} f$
- Repeat till there are no more decision nodes.





VE elimination reduces complexity of finding the optimal policy

- We have seen that, if a decision D has k binary parents, there are *b* possible actions, If there are d decisions,
- Then there are: $(b^{2^k})^d$ policies
- Doing variable elimination lets us find the optimal policy after considering only $d \cdot b^{2^k}$ policies (we eliminate one decision at a time)
 - VE is much more efficient than searching through policy space.
 - However, this complexity is **still doubly-exponential** we'll only + give up nonforgetting damp + opprox. departements be able to handle relatively small problems.

CPSC 502, Lecture 11

Return Assignment-1

Tot. Count 14 – max 94%; min 43%; avg 72% 6 below 70% 3 below 50%

TODO for this Thurs

- Finish Assignment2 (last question)
- Also Do exercises 9.A and 9.B
 http://www.aispace.org/exercises.shtml

These two exercises are going to help you a lot with the assignment question ;-)