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An MDP Approach to Multi-Category
Patient Scheduling in a Diagnostic Facility
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Goal / Motivation

» To develop a mathematical model for multi-category
patient scheduling decisions in computed tomography
(CT),and to investigate associated trade-offs from
economic and operational perspectives.

» Contributions to Al, OR and radiology



Types of patients:

» Emergency Patients (EP)
Critical (CEP)
Non-critical (NCEP)

» Inpatients (IP)

» Outpatients
Scheduled OP
Add-on OP: Semi-urgent (OP)

» (Green =Types used in this model)



Proposed Solution

» Finite-horizon MDP
» Non-stationary arrival probabilities for IPs and EPs

» Performance objective: Max $
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MDP Representation (cont’)

» Transition Probabilities

Pu(s'|s. a) = paldcep) = pnldop) = paldip) = palducep ),



Example: action
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Arrival probability
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Fig. 1. Arrival probabilities for each patient-type during a work-day. EP includes both CEPs and NCEPs.



Arrival probability
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Fig. 1. Arrival probabilities for each patient-type during a work-day. EP includes both CEPs and NCEPs.



Performance Metrics (over 1 work-day)

» Expected net CT revenue
» Average waiting-time
» Average # patients not scanned by day’s end
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Maximize total expected revenue

» Optimal Policy
Solving this gives the policy for each state, n, in the day

e )

Vals) = max 3 r(s a) 4 > Pu(s'ls, a)Viaa(s) 5

\ s’ y

» Finite Horizon MDP é/—‘" [OM{ZO

V7 (s) = R(s)+7/maxZP(s|s a)xV 7™ (s')

4

The recursive equation (3) has value of current state Vn calculated b uture state Vn+l,
this contradicts with the equation given during class, whereVn+1| depends on Vn?

The one in class was Value Iteration (the n index was for the iteration) here we have a finite
horizon.We know the Vs at the end so we can compute all the Vs backward. n is an index for

the time slice



Evaluation: Comparison of MDP with
Heuristic Policies

» 100,000 independent day-long sample paths (one set for
each of the 32 scenarios)

Result Metric

X= CES OF, 1P, W CEP

» Percentage Gap in avg. net revenue =

avg net revenue (optimal policy) — avg net revenue(heuristic policy) 100
b

avg net revenue(optimal policy)



Heuristics

» FCFS: First come first serve
» R-1:One patient from randomly chosen type is scanned

» R-2: One patient randomly chosen from all waiting
patients (favors types with more people waiting)

» O-1:Priority
OP
NCEP
IP

» O-2: Priority:
OP
IP
NCEP
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Number of patients not scanned

Table 5
Number of patients not receiving scans by the end of the day under different policies,
averaged over all thirty two scenarios.

Different cases Average number not scanned

Optimal policy FCFS R-1

[ ops

Single-scanner 3.38 3.50 3.27

Two-scanner 0.72 0.63 0.52

IPs

Single-scanner 10.13 997 1057 985 12.01 11.14
Two-scanner 1.19 1.39 1.60 1.37 2.33 1.10
NCEPs

Single-scanner 1.94 1.99 1.62 1.99 1.71 2.58

Two-scanner 0.51 0.39 0.29 0.41 0.08 1.31




Waiting-time

Table 6
Average waiting-time in minutes of patients before service over all thirty two

scenarios.

Different cases Average waiting-time

Optimal policy FCFS R-1 R-2 0-1 0-2
OPs
Single-scanner 28 80 74 70 45 184
Two-scanner 3 B 3 - @
IPs
Single-scanner 76 112 95 107 60 245
Two-scanner = 3 3 3 5 3
NCEPs
Single-scanner 24 56 56 44 36 3

Two-scanner 12 9 8 10 3 20
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Student selected questions 2021



Students’ (selected) questions

» Assumptions

» - why only | or 2 scanners. how does result change for more machines?

v

- In reality, due to possible equipment failure or operator leave, the
situation of numbers of CT machine can vary. If we take this into
consideration, how will this effect the output optimal policy?

» - what if there are fewer or more than 20 timeslots!?

» - why only 4 types of patients? Too generic.

» - Is using a fixed time for all CT scans realistic? Is there a distribution that
could be used to represent this instead?

» - How did they determine that a four-month period is sufficient for deriving
the arrival probabilities of IPs and Eps!?



Students’ (selected) questions

v v v Vv

Models

why finite horizon MDP and not infinite horizon? in general how to choose
between the two types?

neural network (advantages of MDP with respect to NN?) - reinforcement
learning?

- dynamic programming (as it resembles jobs scheduling/load balancing
problem)

- Can the model take into account human suffering?
- Patient that starts as non critical but turns to be critical
- why did they not use value iteration here!

- What if instead of having 0 or | “additional patients waiting” for each
patient type and for each time slot, we have “additional patients waiting” as
a random variable that can be more than I? This more accurately reflects
reality.WWould this have made the methodology more complicated



Students’ (selected) questions

» METRICS / EXPERIMENTS / RESULTs...
IMPLEMENTATION - USE IN REAL LIFE

» evaluation metrics make sense? is the reward designed only to maximize
revenue! Probably optimizing for patient care!? Is it possible to measure
ethics in a model?

» - Will computation costs ever be an issue with an MDP solution?

- Is there evidence that such a theoretical analysis would work in practice?

v Vv

- Is this method used in practice nowadays!?



Students’ (selected) questions

» Others

» Since they already have the optimal policy, why do they develop other
decision rules?

» In section 4.1, there is a paired t-test together with standard significance
level.What do those terms mean? What can they tell us in this case?

» - paper is 10 years old.What is the state of the art for this problem?
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Question from students (2017)

» Would the model cause ethical problems in hospitals? Is revenue a good metric
of performance if we put life and death situations into consideration?

» Finite vs. infinite

Simplicity. Lots of uncertainty about what can happen overnight
Non stationary process — best action depends on time

» Use machine learning / reinforcement learning?

» Arrival Probabilities (seasonal trends? More than one patient of each type?)
» Only comparison with simple heuristics

» More scanners Why only | and 2 scanners!?

» Modeling more patient types (urgency) / different hospital..... can easily extend
the model

» Only data from one Hospital (general?)
» Uniform slot length (realistic?) Finer granularity of the time slots

» Modeling even more uncertainty “Accidents happen randomly without any
pattern.” “Scanner not working”

» What is a potential adjustment you can do to the MDP that will account for the
variability in time taken to perform a scan, or multiple scans for a particular type
of patient?



Benefits classifying more patient types? Could same solution be applied to
scheduling other functions of the hospital?

How would this model handle two CEPs that came in at the same time?
Randomly Push one to the next slot &

What happens if you add a sudden influx of patients? Example, due to a nearby
accident.Will it still perform better than the heuristics?

Transfer model to other facilities? Yes...
Discount factor |? Yes

This work failed to take into account human suffering, or the urgency of scans
for in and out patients. Could the reward function to tailored to include such
concepts or is it beyond the capabilities of the model?

This model is specific to the target hospital

Operational Cost of Implementing the policy (take into account): compute the
policy vs. apply the policy



Question Types from students

» Finite vs. infinite
Simplicity. Lots of uncertainty about what can happen overnight
Non stationary process — best action depends on time

» Arrival Probabilities

» More scanners

» Modeling more patient types (urgency) / different hospital..... can easily
extend the model, Only data from one Hospital (general?)

» Uniform slot length (realistic?)

» the probability distribution of the time for CT scans to be completed rather than to make
the assumption that they are all of fixed duration? Finer granularity of the time slots

» Operational Cost of Implementing the policy (take into account):compute the
policy vs. apply the policy

» Modeling even more uncertainty “Accidents happen randomly without any
pattern.” “Scanner not working”

» 2 patients at once (need to collect all the prob and consider those in the
transition prob)

» P-value
» Why noVI?
» Used in practice ?




Other models: Is it better to use continuous Markov Chain and queuing theory in
analyzing this scheduling problem?

How would this model handle two CEPs that came in at the same time? Randomly
Push one to the next slot ® —

How does approximate dynamic programming compare to value iteration?
(approximate method, can deal with bigger models but not optimal)

Transfer model to other facilities? Yes...

Discount factor 1? Yes

This work failed to take into account human suffering, or the urgency of of scans
for in and out patients. Could the reward function to tailored to include such
nebulous concepts or is it beyond the capabilities of the model?

This model is specific to the target hospital Z//

| think outperforming other MDP-based models can better illustrate the
effectiveness of this model's features, so are the choices of comparison methods
good in this paper?

First step showing that sound probabilistic models can be build and outperform heuristics
then you can do the above



