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Lecture Overview
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• Summary

• Belief State

• Belief State Update

• Policies and Optimal Policy
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Markov Models 

Markov Chains

Hidden Markov 
Model

Markov Decision 
Processes (MDPs)
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Partially Observable 
Markov Decision 

Processes (POMDPs)



Observation Model

➢ As in HMM, the agent can learn something about its actual 

state by sensing the environment:

• Sensor Model P(e|s): probability of observing the evidence e in 
state s

➢ A POMDP is fully specified by

• Reward function: R(s) (we’ll forget about a and s’ for simplicity)

• Transition Model: P(s’ |a,s)

• Observation model: P(e|s)

➢ Agent’s belief state is updated by computing   the 

conditional probability distribution over all the states given 

the sequence of observations and actions so far
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State Belief Update

➢ State belief update is similar but includes actions

• If the agent has current belief state b(s), performs action a and 
then perceives  evidence e, the new belief state b’(s’) is

➢ We just saw filtering for HMM?

• Compute conditional probability distribution over states at time t 
given all observations so far 

P(Xt | e0:t) = α P(et | Xt) ∑xt-1
P(Xt | xt-1 ) P( xt-1 | e0:t-1 ) Filtering at time t-1

Inclusion of new evidence (sensor model) Propagation to time t

   )(),|'()'|()'(' =
s

sbsasPsePsb 

Inclusion of new evidence:

Probability of perceiving e in s’

Propagation at time t: Probability of transition to s’ given s and  a

Filtering at time t-1: 

State belief based on all observations and 

actions up to t-1
Sum over all the states that can take to s’ after 

performing a
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Grid World Actions Reminder

Agent moves in the above grid via actions Up, Down, Left, Right

Each action has:

• 0.8 probability to reach its intended  effect

• 0.1 probability to move at right angles of the intended 

direction

• If the agents bumps into a wall, it says there
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Belief Update

𝑏′(𝑠′) = 𝛼𝑃(𝑒|𝑠′)

𝑠

𝑃(𝑠′|𝑠, 𝑎)𝑏(𝑠)

➢ When  the agent performs action a in belief state b, and 

then receives observation e, it can compute the new belief 

state b’
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𝑏(𝑠) 𝑏′(𝑠′)
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E = # of walls  {1w, 2w}

A = {Up, Down, Left, Right}



Example (no observation)

 ....)1,2()),1,2(|)1,1(()1,1()),1,1(|)1,1(()1,1(' ++= bleftPbleftPb 

➢ What is the belief state after agent performs action left in the 

initial situation?

➢ The agent has no information about its position

• Only one fictitious observation: no observation

• P(no observation | s) = 1  for every s

Let’s  instantiate

➢ For state (1,1)  (action a = left)

   )(),|'()'|()'(' =
s

sbsasPsePsb 
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B. A. C. 

What is missing to get the correct answer?

)2,1()),2,1(|)1,1(( bleftP)2,1()),2,1(|)1,1(( bdownP )3,1()),3,1(|)1,1(( bleftP



Example (no observation)

 ....)1,2()),1,2(|)1,1(()1,1()),1,1(|)1,1(()1,1(' ++= bleftPbleftPb 

➢ Back to the grid world, what is the belief state after agent 

performs action left in the initial situation?

➢ The agent has no information about its position

• Only one fictitious observation: no observation

• P(no observation | s) = 1  for every s

➢ Let’s  instantiate

➢ For state (1,1)  (action a = left)

   )(),|'()'|()'(' =
s

sbsasPsePsb 
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B. A. C. 

What is missing to get the correct answer?

)2,1()),2,1(|)1,1(( bleftP)2,1()),2,1(|)1,1(( bdownP )3,1()),3,1(|)1,1(( bleftP



Example

 )1,2()),1,2(|)1,1(()2,1()),2,1(|)1,1(()1,1()),1,1(|)1,1(()1,1(' bleftPbleftPbleftPb ++=

➢ Back to the grid world, what is the belief state after agent 

performs action left in the initial situation?

➢ The agent has no information about its position

• Only one fictitious observation: no observation

• P(no observation | s) = 1  for every s

➢ Let’s  instantiate

 )3,1()),3,1(|)2,1(()2,1()),2,1(|)2,1(()1,1()),1,1(|)2,1(()2,1(' bleftPbleftPbleftPb ++=

➢ Do the above for every state to get the new belief state

   )(),|'()'|()'(' =
s

sbsasPsePsb 
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After five Left actions
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Belief State and its Update
𝑏′(𝑠′) = 𝛼𝑃(𝑒|𝑠′)

𝑠

𝑃(𝑠′|𝑠, 𝑎)𝑏(𝑠)
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𝑏(𝑠)

𝑏′(1,1) = 𝛼𝑃(2𝑤| 1,1 )

𝑃((1,1)|(1,1), 𝑙𝑒𝑓𝑡)𝑏(1,1) +
𝑃((1,1)|(1,2), 𝑙𝑒𝑓𝑡)𝑏(1,2) +
𝑃((1,1)|(2,1), 𝑙𝑒𝑓𝑡)𝑏(2,1)

𝑏′(1,2) = 𝛼𝑃(2𝑤| 1,2 )

𝑃((1,2)|(1,1), 𝑙𝑒𝑓𝑡)𝑏(1,1) +
𝑃((1,2)|(1,2), 𝑙𝑒𝑓𝑡)𝑏(1,2) +
𝑃((1,2)|(1,3), 𝑙𝑒𝑓𝑡)𝑏(1,3)

𝑏′(𝑠′)

𝑏′(2,1) = 𝛼𝑃(2𝑤| 2,1 ) … . .

𝑏′(4,3) = 𝛼𝑃(2𝑤| 4,3 ) … . .



Belief Update: Example1
➢ The sensor that perceives the number of adjacent walls in a 

location has a 0.1 probability of error

• P(2w|s) = 0.9 ;  P(1w|s) = 0.1 if s is non-terminal and not in third column

• P(1w|s) = 0.9 ; P(2w|s) = 0.1 if s is non-terminal and in third column

➢ Try to compute the new belief state if agent moves left and then perceives 1 

adjacent wall

   )(),|'()'|()'(' =
s

sbsasPsePsb 
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 )1,2()),1,2(|)1,1(()2,1()),2,1(|)1,1(()1,1()),1,1(|)1,1(()1,1(' bleftPbleftPbleftPXb ++=

B. 0.2A. 0.1 C. 0.9

X should be equal to ?



Belief Update: Example 2
➢ Let’s introduce a sensor that perceives the number of adjacent 

walls in a location with a 0.1 probability of error

• P(2w|s) = 0.9 ;  P(1w|s) = 0.1 if s is non-terminal and not in third column

• P(1w|s) = 0.9 ; P(2w|s) = 0.1 if s is non-terminal and in third column

➢ Try to compute the new belief state if agent moves right and then perceives 2 

adjacent wall

   )(),|'()'|()'(' =
s

sbsasPsePsb 
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)3,1()),3,1(|)2,1((

)2,1()),2,1(|)2,1((

)1,1()),1,1(|)2,1((

))2,1(|2()2,1('

brightP

brightP

brightP

wPb 



Belief State and Belief Update: Summary

𝑏′(𝑠′) = 𝛼𝑃(𝑒|𝑠′)

𝑠

𝑃(𝑠′|𝑠, 𝑎)𝑏(𝑠)

➢ When  the agent performs action a in belief state b, and 

then receives observation e, it can compute the new belief 

state b’

15
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𝑏(𝑠) 𝑏′(𝑠′)

• deterministic transition from one belief state to another



Optimal Policies in POMDs ?
➢ Theorem (Astrom, 1965): 

• The optimal policy in a POMDP is a function π*(b) where b is the 
belief state (probability distribution over states)

➢ That is, π*(b) is a function from belief states (probability 

distributions) to actions

• It does not depend on the actual state the agent is in

• Good, because the agent does not know that, all it knows are its 
beliefs!

➢ Decision Cycle for a POMDP agent

• Given current belief state b, execute a = π*(b)

• Receive observation e

•

• Repeat

   )(),|'()'|()'('   :compute =
s

sbassPsePsb 
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How to Find an Optimal Policy?

➢Turn a POMDP into a corresponding MDP and 

then solve that MDP

➢Generalize VI to work on POMDPs

➢Develop Approx. Methods  

➢Point-Based VI

➢Look Ahead

17CPSC422, Lecture 6
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Finding the Optimal Policy: State of the Art

➢ Turn a POMDP into a corresponding MDP and then apply 

VI: only small models

➢ Generalize VI to work on POMDPs

• 10 states in1998 

• 200,000 states in 2008-09 (now: always behind approx. methods)

➢ Develop Approx. Methods  2009 - now

➢ Point-Based VI and Look Ahead

➢ Even 50,000,000 states 
http://www.cs.uwaterloo.ca/~ppoupart/software.html
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Recent Method: Point-

based Value Iteration

(not required)
• Find a solution for a sub-set of all states

• Not all states are necessarily reachable

• Generalize the solution to all states

• Methods include: PERSEUS, PBVI, and 

HSVI and other similar approaches (FSVI, 

PEGASUS)
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Dynamic Decision Networks (DDN)

➢ Comprehensive approach to agent design in partially 
observable, stochastic environments

➢ Basic elements of the approach

• Transition and observation models are represented via a Dynamic 
Bayesian Network (DBN). 

• The network is extended with decision and utility nodes, as done in 
decision networks
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Et-1 Et

Rt-1
Rt



Dynamic Decision Networks (DDN)

• The  Belief Update algorithm is used to incorporate each 
new percept and the action to update the belief state Xt

• Decisions are made by projecting forward possible action 
sequences and choosing the best one: look ahead 
search
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Et-1 Et
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Dynamic Decision Networks (DDN)

Filtering / 
Belief Update

Projection (3-step look-ahead here)

➢ Nodes in yellow are known (evidence collected, decisions made, local rewards)

➢ Agent needs to make a decision at time t (At node)

➢ Network unrolled into the future for 3 steps

➢ Node Ut+3 represents the utility (or expected optimal reward V*) in state Xt+3

• i.e., the reward in that state and all subsequent rewards

• Available only in approximate form (from another approx. method)

At-2 At-1
At At+1

At+2At+1
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Look Ahead Search for Optimal Policy
General Idea:

➢ Expand the decision process for n steps into the future, that is

• “Try” all actions at every decision point

• Assume receiving all possible observations at observation points

➢ Result: tree of depth 2n+1 where 

• every branch represents one of the possible sequences of n actions and n 
observations available to the agent, and the corresponding belief states

• The leaf at the end of each branch corresponds to the belief state reachable 
via that sequence of actions and observations – use filtering/belief-update to 
compute it

➢ “Back Up” the utility values of the leaf nodes along their 
corresponding branches, combining it with the rewards along that 
path

➢ Pick the branch with the highest expected value
23CPSC422, Lecture 6



Look Ahead Search for Optimal Policy
General Idea:

➢ Expand the decision process for n steps into the future, that is

• “Try” all actions at every decision point

• Assume receiving all possible observations at observation points
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Look Ahead Search for Optimal Policy
➢ Result: tree of depth 2n+1 where 

• every branch represents one of the possible sequences of n actions and n 
observations available to the agent, and the corresponding belief states

• The leaf at the end of each branch corresponds to the belief state reachable 
via that sequence of actions and observations – use belief-update to 
compute it
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Look Ahead Search for Optimal Policy
➢ “Back Up” the utility values of the leaf nodes along their 

corresponding branches, combining it with the rewards along that path

➢ Pick the branch with the highest expected value
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Look Ahead Search for Optimal Policy

Decision At in P(Xt|E1:tA1:t-1 )

Observation Et+1

At+1 in P(Xt+1|E1:t+1 A1:t)

|Et+2

At+2 in P(Xt+1|E1:t+2A1:t+1)

|Et+3

P(Xt+3|E1:t+3 A1:t+2)

|U(Xt+3)

Belief states are 
computed via any 
filtering algorithm, 

given the sequence of 
actions and 

observations up to 
that point

To back up the utilities
• take average at chance points
•Take max at decision points

These are chance nodes, 
describing the 

probability of each 
observation 

a1t
a2t

akt

e1t+1
e2t+1 ekt+k

27
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A. a1

➢ Best action at time t?

B. a2 C. indifferent
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Look Ahead Search for Optimal Policy

➢ What is the time complexity for exhaustive search at depth 

d, with |A| available actions and |E| possible observations?
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B. O(|A|d * |E|d)A. O(d *|A| * |E|) C. O(|A|d * |E|)

A. Close to 1 B. Not too close to 1

• Would Look ahead work better when the discount 

factor is?



Some Applications of POMDPs……
➢ Jesse Hoey, Tobias Schröder, Areej Alhothali (2015), Affect control 

processes: Intelligent affective interaction using a POMDP, AI Journal

➢ S Young, M Gasic, B Thomson, J Williams (2013) POMDP-based 

Statistical Spoken Dialogue Systems: a Review, Proc IEEE, 

➢ J. D. Williams and S. Young. Partially observable Markov decision 

processes for spoken dialog systems. Computer Speech & Language, 

21(2):393–422, 2007.

➢ S. Thrun, et al. Probabilistic algorithms and the interactive museum 

tour-guide robot Minerva. International Journal of Robotic Research, 

19(11):972–999, 2000.

➢ A. N.Rafferty,E. Brunskill,Ts L. Griffiths, and Patrick Shafto. Faster 

teaching by POMDP planning. In Proc. of Ai in Education, pages 280–

287, 2011

➢ P. Dai, Mausam, and D. S.Weld. Artificial intelligence for artificial 

artificial intelligence. In Proc. of the 25th AAAI Conference on AI , 

2011. [intelligent control of workflows]
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➢ Nan Ye, Adhiraj Somani, David Hsu and Wee Sun Lee (2017) "DESPOT: Online 

POMDP Planning with Regularization", Volume 58, pages 231-

266PDF | PostScript | doi:10.1613/jair.5328

Appendix - Errata

➢ The partially observable Markov decision process (POMDP) provides a principled 

general framework for planning under uncertainty, but solving POMDPs optimally is 

computationally intractable, due to the "curse of dimensionality" and the "curse of 

history". To overcome these challenges, we introduce the Determinized Sparse 

Partially Observable Tree (DESPOT), a sparse approximation of the standard belief 

tree, for online planning under uncertainty. A DESPOT focuses online planning on a 

set of randomly sampled scenarios and compactly captures the "execution" of all 

policies under these scenarios. We show that the best policy obtained from a DESPOT 

is near-optimal, with a regret bound that depends on the representation size of the 

optimal policy. Leveraging this result, we give an anytime online planning algorithm, 

which searches a DESPOT for a policy that optimizes a regularized objective 

function. Regularization balances the estimated value of a policy under the sampled 

scenarios and the policy size, thus avoiding overfitting. The algorithm demonstrates 

strong experimental results, compared with some of the best online POMDP 

algorithms available. It has also been incorporated into an autonomous driving system 

for real-time vehicle control. The source code for the algorithm is available online
CPSC422, Lecture 6 33
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http://dx.doi.org/10.1613/jair.5328
http://jair.org/media/5328/live-5328-9827-jair.pdf
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Another “famous” Application

Source:  Jesse Hoey

UofT 2007

Learning and Using POMDP

models of Patient-Caregiver 

Interactions During Activities 

of Daily Living 

Goal: Help Older adults living with 

cognitive disabilities (such as 

Alzheimer's) when they: 

• forget the proper sequence of tasks that need 

to be completed

• they lose track of the steps that they have 

already completed. 



422 big picture

Query

Planning

Deterministic Stochastic

• Value Iteration

• Approx. Inference

• Full Resolution

• SAT

Logics

Belief Nets

Markov Decision Processes  
and  

Partially Observable MDP

Markov Chains and HMMsFirst Order Logics

Ontologies

Applications of AI

Approx. : Gibbs

Undirected Graphical Models
Markov Networks

Conditional Random Fields

Reinforcement Learning Representation

Reasoning

Technique

Prob CFG
Prob Relational Models
Markov Logics

StarAI (statistical relational AI)

Hybrid: Det +Sto

Forward, Viterbi….

Approx. : Particle Filtering

Parsing

CPSC 422, Lecture 35 Slide 35



CPSC 322, Lecture 36 Slide 36

Learning Goals for today’s class

You can:

• Define a Policy for a POMDP

• Define and trace Belief Update

• Define and trace Look Ahead Search for finding an 
(approximate) Optimal Policy 

• Compute Complexity of Look Ahead Search 



CPSC422, Lecture 6 Slide 37

TODO for Mon

• Read textbook chpt 12 
•12.1 Reinforcement Learning 

•12.3 Temporal Differences

•12.4 Q-learning

• Assignment 1 has been posted on 

Canvas today (due Wed Feb 3 3:30PM)

• VInfo and VControl

• MDPs (Value Iteration)

• POMDPs (Belief Update)


