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L ecture Overview

Probabilistic Graphical models

 Recap Markov Networks

* Inference in Markov Networks (Exact and Approx.)
 Conditional Random Fields
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Parameterization of Markov Networks
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Factors define the local interactions (like CPTs in Bnets)
What about the global model? What do you do with Bnets?
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How do we combine local models?
As in BNets by multiplying them!

P(A,B,C,D) =
P(A,B,C,D)
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Step Back.... From structure to

factors/potentials
In a Bnet the joint is factorized....

In a Markov Network you have one factor for each
maximal clique




General definitions

Two nodes Iin a Markov network are independent
If and only if every path between them is cut off
by evidence 2 C

eg forAC
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So the markov blanket of a node is...?
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L ecture Overview

Probabilistic Graphical models

* Inference in Markov Networks (Exact and Approx.)
 Conditional Random Fields
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Variable elimination algorithm for Bnets
Given a network for P(Z, Yy,... ,Y; Zy,... ,.Z), :

To compute P(Z| Y =vy ,... ,Y;=V;) !
1. Construct a factor for each conditional probability.
2. Setthe observed variables to their observed values.

3. Given an elimination ordering, simplify/decompose sum of
products

4. Perform products and sum out Z,
5. Multiply the remaining factors Z
6. Normalize: divide the resulting factor f(Z) by 2, f(2) .

Variable elimination algorithm for Markov
Networks.....



Variable Elimination on MN: Example
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Gibbs sampling for Markov

Networks

Example: P(D | C=0)
Resample non-evidence variables

In a pre-defined order or a
random order

Suppose we begin with A

What do we need to sample?

a. P(A | B=0) b. P(A | B=0, C=0)

Note: never change evidence!

c. P(B=0, C=0| A)

A|B
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D
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F
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Gibbs sampling MN: what to sample
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For Markov Networks just the product of the factors iInvolving X
(normalized)

Resample probability =
distribution of P(A|BC) |—— ;
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Example: Gibbs sampling

Resample probability
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L ecture Overview

Probabilistic Graphical models

« Conditional Random Fields
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We want to model P(Y,| X;.. X)

... Wwhere all the X, are always observed

MN

Which model is simpler, MN or BN?

BN

oag

oag

Naturally aggregates the

iInfluence of different parents ¥
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Conditional Random Fields (CRFs)

* Model P(Y; .. Y, | X;.. X))

« Special case of Markov Networks where all the X,
are always observed

* Simple case P(Y,| X;...X,)

AUl Vars dre L\mgr

Y {O;

Yo X = o l .
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Some notation: exp and indicator function
exp and indicator function exp <2>
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What are the Parameters?
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Let’s derive the probabilities we need

<D,
\\

To compute

P(Y, | X....X) = P(Y, , X...X) I P(X;... X))

We compute

P(Y,=1]| X,;..X) =P (Y,=1, X,;...X) I P(X;...X})

AN
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Let’s derive the probabilities we need
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Let’s derive the probabilities we need
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Let’s derive the probabilities we need
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Sigmoid Function used in Logistic Regression

Great practical interest

Number of param w. i

instead of (exponential)in the

number of parents %4 . f |
C

N f
Natural model for many real- n| |

world applications

Naturally aggregates the
iInfluence of different parents
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Logistic Regression as a Markov Net
(CRF)

Logistic regression is a simple Markov Net (a
CRF) aka naive markov model

* But only models the conditional distribution,
P(Y | X ) and not the full joint P(X,Y )
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Learning Goals for today’s class

You can:
« Perform Exact and Approx. Inference in Markov
Networks

« Describe a natural parameterization for a Naive
Markov model (which is a simple CRF)

* Derive how P(Y|X) can be computed for a Naive
Markov model




Assignment 2 —due on Mon

Next class Mon Linear-chain CRFs
To DO Revise generative temporal models (HMM)

Midterm, Mon, March 8,

How to prepare....

e Go to Office Hours

 Learning Goals (look at the end of the slides for each
lecture — complete list will be posted)

* Revise all the clicker questions, practice exercises,
assignments

 More practice material will be posted
* Check questions and answers on Piazza



