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Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 15

Feb, 12, 2021



422 big picture

Query

Planning

Deterministic Stochastic

• Value Iteration

• Approx. Inference

• Full Resolution
• SAT

Logics

Belief Nets

Markov Decision Processes  
and  

Partially Observable MDP

Markov Chains and HMMsFirst Order Logics

Ontologies

Applications of AI

Approx. : Gibbs

Undirected Graphical Models
Markov Networks

Conditional Random Fields

Reinforcement Learning Representation

Reasoning
Technique

Prob CFG
Prob Relational Models
Markov Logics

StarAI (statistical relational AI)

Hybrid: Det +Sto

Forward, Prediction, 
Smoothing, Viterbi….

Approx. : Particle Filtering
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Lecture Overview

Probabilistic temporal Inferences

• Filtering

• Prediction

• Smoothing (forward-backward)

• Most Likely Sequence of States (Viterbi)



Smoothing 

➢ Smoothing: Compute the posterior distribution over a past state 
given all evidence to date

• P(Xk | e0:t ) for 1 ≤ k < t

➢ To revise your estimates in the past based on more 
recent evidence

E0



Smoothing 

➢ P(Xk | e0:t) = P(Xk | e0:k,ek+1:t )     dividing up the evidence

= α P(Xk | e0:k ) P(ek+1:t | Xk, e0:k ) using… 

= α P(Xk | e0:k ) P(ek+1:t | Xk)  using…

backward message, 

b k+1:t

computed by a recursive process that 

runs backwards from t

forward message from 

filtering up to state k, 

f 0:k

A. Bayes Rule

B. Cond. Independence

C. Product Rule

E0



Smoothing 

➢ P(Xk | e0:t) = P(Xk | e0:k,ek+1:t )     dividing up the evidence

= α P(Xk | e0:k ) P(ek+1:t | Xk, e0:k ) derived using Bayes Rule

= α P(Xk | e0:k ) P(ek+1:t | Xk) By Conditional Independence

backward message, 

b k+1:t

computed by a recursive process 

that runs backwards from t

forward message from 

filtering up to state k, 

f 0:k

E0



Backward Message 

P(ek+1:t | Xk) = ∑xk+1
P(ek+1:t , xk+1 | Xk) = ∑xk+1

P(ek+1:t |xk+1 , Xk) P( xk+1 | Xk) =

= ∑xk+1
P(ek+1:t |xk+1 ) P( xk+1 | Xk) by Conditional Independence

= ∑xk+1
P(ek+1,ek+2:t |xk+1 ) P( xk+1 | Xk) 

= ∑xk+1
P(ek+1|xk+1 , ek+2:t) P(ek+2:t |xk+1 ) P( xk+1 | Xk)

= ∑xk+1
P(ek+1|xk+1 ) P(ek+2:t |xk+1 ) P( xk+1 | Xk)

sensor 

model
transition modelrecursive call

➢ In message notation

bk+1:t  = BACKWARD (bk+2:t, ek+1)

because ek+1 and ek+2:t, are 

conditionally independent 

given xk+1

Moving 

Conditioning

E0

Moving 

Conditioning

Xk+1

Ek+2Ek+1



“moving” the conditioning
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Proof of equivalent statements



More Intuitive Interpretation (Example with three states)
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P(ek+1:t | Xk) =  ∑xk+1
P( xk+1 | Xk)P(ek+1|xk+1 ) P(ek+2:t |xk+1 ) 

E0

Xk+1

Ek+2Ek+1



Forward-Backward Procedure 

➢ Thus, 

• P(Xk | e0:t) = α f0:k bk+1:t

and this value can be computed by recursion through time, 
running forward from 0 to k and backwards from t to k+1

➢ P(Xk | e0:t) = α P(Xk | e0:k ) P(ek+1:t | Xk)

➢ To summarize, we showed



Forward-Backward Procedure fills a matrix 
n x t 



How is it Backward initialized?

➢ The backwards phase is initialized with making an 
unspecified observation et+1 at  t+ 1……

bt+1:t  = P(et+1| Xt ) = P( unspecified | Xt ) = ?

A.   0 B.   0.5 C. 1



How is it Backward initialized?

➢ You will observe something for sure! It is only when you 
put some constraints on the observations that the 
probability becomes less than 1

➢ The backwards phase is initialized with making an 
unspecified observation et+1 at  t+ 1……

bt+1:t  = P(et+1| Xt ) = P( unspecified | Xt ) = 1



Rain Example

Rain0 Rain1

Umbrella1

Rain2

Umbrella2

➢ Let’s compute the probability of rain at t = 1, given umbrella observations at t=1 

and t =2

➢ From P(Xk | e1:t)  = α P(Xk | e1:k ) P(ek+1:t | Xk)  we have 

P(R1| e1:2) = P(R1| u1:u2) = α P(R1| u1) P(u2 | R1) 

➢ P(R1| u1) = <0.818, 0.182>  as it is the filtering to t =1 that we did in lecture 14

TRUE     0.5

FALSE   0.5

0.5

0.5
0.818

0.182

backward message for propagating evidence 

backward from time 2

forward message from filtering up 

to state 1



Rain Example

Rain0 Rain1

Umbrella1

Rain2

Umbrella2

➢ From P(ek+1:t | Xk)  = ∑xk+1
P(ek+1|xk+1 ) P(ek+2:t |xk+1 ) P( xk+1 | Xk) 

➢ P(u2 | R1) = ∑ P(u2|r ) P(|r ) P( r | R1) = 

➢ P(u2|r2 ) P(|r2 ) <P( r2 | r1), P( r2 | ┐r1) > + 

P(u2| ┐r2 ) P(| ┐r2 ) <P(┐r2 | r1), P(┐r2 | ┐r1)>

=  (0.9 * 1 * <0.7,0.3>) + (0.2 * 1 * <0.3, 0.7>) = <0.69,0.41>

Thus 

➢ α P(R1| u1) P(u2 | R1) = α<0.818, 0.182> * <0.69, 0.41> ~ <0.883, 0.117>

TRUE     0.5

FALSE   0.5

0.5

0.5

0.818

0.182
0.69

0.41

0.883

0.117

Term corresponding to the Fictitious 

unspecified observation sequence e3:2
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Lecture Overview

Probabilistic temporal Inferences

• Filtering

• Prediction

• Smoothing (forward-backward)

• Most Likely Sequence of States (Viterbi)



Most Likely Sequence 

➢ Suppose that in the rain example we have the following 
umbrella observation sequence

[true, true, false, true, true]

➢ Is the most likely state sequence?

[rain, rain, no-rain, rain, rain]

➢ In this case you may have guessed right… but if you have 
more states and/or more observations, with complex 
transition and observation models…..
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HMMs : most likely sequence (from 322)

Natural Language Processing: e.g., Speech Recognition

• States: phoneme \ word

• Observations:      acoustic signal  \ phoneme

Bioinformatics: Gene Finding

• States: coding / non-coding region

• Observations: DNA Sequences

For these problems the critical inference is: 

find the most likely sequence of states given a sequence of 

observations 



Part-of-Speech (PoS) Tagging
➢ Given a text in natural language, label (tag) each word with its 

syntactic category 

• E.g, Noun, verb, pronoun, preposition, adjective, adverb, article, 
conjunction

➢ Input

• Brainpower not physical plant is now a firm's chief asset.

➢ Output

• Brainpower_NN not_RB physical_JJ plant_NN is_VBZ
now_RB a_DT firm_NN 's_POS chief_JJ asset_NN ._.

Tag meanings

➢ NNP (Proper Noun singular), RB (Adverb), JJ (Adjective), NN (Noun sing. or 
mass), VBZ (Verb, 3 person singular present), DT (Determiner), POS 
(Possessive ending),  . (sentence-final punctuation)



POS Tagging is very useful

• As a basis for parsing in NL understanding

• Information Retrieval

✓Quickly finding names or other phrases for information extraction

✓Select important words from documents (e.g., nouns)

• Word-sense disambiguation

✓…I made her duck.. (how many meanings does this sentence 
have)?

• Speech synthesis: Knowing PoS produce more natural 
pronunciations 

✓E.g,. Content (noun) vs. content (adjective);  object (noun) vs. 
object (verb)



State of the art for sequence labeling 
(including POS)

➢ Conditional Random Fields (will see these in a few weeks -
Viterbi can be applied)

➢ Recurrent Neural Networks (Slightly better performance than 
CRFs)

➢ CRF and RNN can be combined (see next slide)

➢ NOT REQUIRED FOR 422



Sequence Labeling (e.g., POS): SOTA ~2018 RNN + CRF 
with Viterbi

• Combine with Viterbi for 
most likely sequence, 
usually implemented 
adding CRF layer

• Input: pre-trained embeddings

• Output: softmax layer provides a probability distribution over the part-
of-speech tags as output at each time step

• Choosing  max probability 
label for each item does 
not necessarily result in 
optimal (or even very 
good) tag sequence



POS tagging state of the art + tools

• Neural Approaches (on several languages)
• Barbara Plank, Anders Søgaard, and Yoav Goldberg. Multilingual 

part-of-speech tagging with bidirectional long short-term memory 
models and auxiliary loss. ACL 2016.
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Neural Approach to Semantic Role 
Labeling
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BIO/IOB labeling..



Global approach  

• Exploit global constraints between tags; e.g., a tag I-ARG0 
must follow another I-ARG0 or B-ARG0.

• Apply Viterbi decoding 

• start with the simple softmax output (the entire 
probability distribution over tags for each word)

• Hard IOB constraints can act as the transition 
probabilities in the Viterbi decoding (Thus the transition 
from state I-ARG0 to I-ARG1 would have probability 0). 

• Alternatively, the training data can be used to learn 
bigram tag transition probabilities as if doing HMM 
decoding. 

2/12/2021 CPSC503 Winter 2020 26

Probably skip in class, but check textbook 18.6.2 
if something similar needed for your project



Most Likely Sequence (Explanation) 

➢ Most Likely Sequence: argmaxx1:T
P(X1:T | e1:T)

➢ Idea

• find the most likely path to each state in XT

• As for  filtering etc. we will develop a recursive solution



Most Likely Sequence (Explanation) 

➢ Most Likely Sequence: argmaxx1:T
P(X1:T | e1:T)

➢ Idea

• find the most likely path to each state in XT

• As for  filtering etc. we will develop a recursive solution
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Learning Goals for today’s class

➢You can:

• Describe the smoothing problem and derive a solution by 

manipulating probabilities

• Describe the problem of finding the most likely sequence 

of states (given a sequence of observations)

• Derive recursive solution (if time)
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TODO for Mon 
(not this coming week)

• Keep working on Assignment-2: due Mon March 1

• Midterm : Mon March 8


