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L ecture Overview

Probabilistic temporal Inferences

« Smoothing (forward-backward)
 Most Likely Sequence of States (Viterbi)
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Smoothing

» Smoothing: Compute the posterior distribution over a/past stateJ
given all evidence to date

« P(X, | ey) forlsk<t

CO~CO—=-——CO——C2

@& D @

» To revise your estimates in the past based on more
recent evidence



Smoothing

Lo

» P(X, | €p.) = P(Xi | €p-10€e1:t ) dividing up the evidence

= o P(Xy | € ) P(€r1:t | Xis €0 ) using..

= o P(X¢| €0 ) P(€ss:t | Xi) using... A. Bayes Rule
ﬂ B. Cond. Independence
forward message from C. Product Rule
filtering up to state Kk,
fO:k

backward message,

b k+1:t
computed by a recursive process that
runs backwards from t




A

Smoothing

K
> P(X, | €g.) = P) dividing up the evidence

= o P(X | €0k ) P(€rer:t | Xk €gc ) derived using Bayes Rule

= a P(X,| ey ) P(ewsr¢ | X ) By Conditional Independence

|

forward message from
filtering up to state k,

1tO:k

backward message,
b k+1:t

computed by a recursive process
that runs backwards from t




Backward I\/Iessage

Moving
Conditioning

P(esrt | Xi) = 2 . P@rits Kot | Xi) = 2, Pl@aat X 3@ P( X1 | Xp) =
= e P(ey .1t X1 ) P(Xiq | Xi) by Conditional Indepen

N Moving
= Zxk+1 P(ek+11ek+ﬂ|xk+1) P( Xk+1 | Xk) __ Condltlonmg

Zxk+1 ( k+1| k+1 kr2.t) ( k+2.t| k+1) ( k+1| k/ because €Lt and €sp:p AIE

conditionally independent

\ given X,
= Zxk+1 I:)(ek+1|xk+1 ) I:)(ek+2:t |Xk+1 ) P( Xk+1 | Xk)
N x
sensor recursive call transition model
model

» In message notation

bk+l:t = BACKWARD (bk+2:t’ ek+1)



“moving” the conditioning

I

) P(BC)

_ f(ﬂx )3(3 » 757(75@
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More Intuitive Interpretation (Example with three states)
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Forward-Backward Procedure

» To summarize, we showed
> P(Xk | eO:t) — O P(Xkl eO:k) I:)(ek+1:t | Xk)

» Thus,

PO, €00 = APt

and this value can be computed by recursion through time,
running forward from O to k and backwards from t to k+1

7[0:4' 7 ° L \@ K+| £ Ki-Zt o E@.; t
NI A R__ O

airechion o_|. Cow Pvi“&&—{ov\



Forward-Backward Procedure fills a matrix

nxt
C C
5 5 ] & C
ARR
S,




How iIs It Backward initialized?
7[0"1 g ° 2 @ K1 Ki—Z't o jotu t
7 \./7" M N
O\H“ecvl'k‘O\/\ 0—|' CO‘MP\}*—&&’{O\/\

» The backwards phase is initialized with making an
unspecified observation e, at t+1......

D11 = P(€nq| X;) = P(unspecified | X;) =7

A. 0 | ||cker



How iIs it Backward initialized?

» The backwards phase is initialized with making an
unspecified observation e, at t+1......

bt+1:t = I:)(et+1| Xt) = P( unspecified | Xt) =1

» You will observe something for sure! It is only when you
put some constraints on the observations that the
probability becomes less than 1



Rain Example

» Let’s compute the probability of rain at t = 1, given umbrella observations at t=1
and t =2

» From P(Xk | e1:t) —a P(Xkl e1:k) I:)(ek+1:t | Xk) we have
P(Ry| €1:5) = P(Ry| u.Uy) = a P(Ry| uy) P(u, | Ry)

forward message from filtering up backward message for propagating evidence
to state 1 backward from time 2

» P(R{ u,) =<0.818, 0.182> as it is the filtering to t =1 that we did in lecture 14

TRUE 05 /0-5 —

FALSE 05 0.818




Rain Example
» From I:)(ek+1:t | Xk) = Zxk+1 I:)(ek+1|xk+1 ) I:)(ek+2:t |Xk+1) P( Xi+1 | Xk)

» P(U,|R)=> Puyr)P(r)P(r|Ry) = Term corresponding to the Fictitious
rev; 0 unspecified observation sequence e;.,

» P(uylry ) P(Iry) <P(r, [ ry), P(ry|q1p) >+

Py q 1) P(Iq 1) <P, | 1), P, [qr)>
= (0.9%1%<0.7,035) + (0.2 * 1 * <0.3, 0.7>) = <0.69,0.41>
Thus

> a P(R,| u,) P(u, | R,) = 0<0.818, 0.182> * <0.69, 0.41> ~ <0.883, 0.117>

05 0.818
—  0.182 0.69

TRUE 0.5/ 05 \ 041
FALSE 0.5 0.883
0.117




L ecture Overview

Probabilistic temporal Inferences

« Smoothing (forward-backward)
 Most Likely Sequence of States (Viterbi)
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Most Likely Sequence

» Suppose that in the rain example we have the following
umbrella observation sequence

[true, true, false, true, true]

> |s the most likely state sequence?

[rain, rain, no-rain, rain, rain]

» In this case you may have guessed right... but if you have
more states and/or more observations, with complex
transition and observation models.....



HMMs : most likely sequence (from 322)

Natural Language Processing: e.d., Speech Recoghition

e States: p%nem \word
H
&\Mmi\ IHMML @AM) L,Haﬂ
* Observations: (ﬁustlc S|gnalj phoneme

Bioinformatics: Gene Finding
. States: coding / non-coding region X% V' VTV <7\
- Observations: DNA Sequences —, A1 &G A A

For these problems the critical inference is:
find the most likely sequence of states given a sequence of

observations \/ Fecbr A go
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Part-of-Speech (PoS) Tagging

» Given a text in natural language, label (tag) each word with its
syntactic category

« E.g, Noun, verb, pronoun, preposition, adjective, adverb, article,
conjunction

> Input

« Brainpower not physical plant is now a firm's chief asset.

» Output l

« Brainpower NN not_RB physical JJ plant NN is VBZ
now_RB a DT firm_NN's POS chief JJ asset NN . .

Tag meanings

» NNP (Proper Noun singular), RB (Adverb), JJ (Adjective), NN (Noun sing. or
mass), VBZ (Verb, 3 person singular present), DT (Determiner), POS
(Possessive ending), . (sentence-final punctuation)



POS Tagging iIs very useful

As a basis for parsing in NL understanding
Information Retrieval
v Quickly finding names or other phrases for information extraction
v’ Select important words from documents (e.g., nouns)
Word-sense disambiguation

v'...I made her duck.. (how many meanings does this sentence
have)?

Speech synthesis: Knowing PoS produce more natural
pronunciations

v E.g,. Content (noun) vs. content (adjective); object (noun) vs.
object (verb)



State of the art for sequence labeling
(including POS)

» Conditional Random Fields (will see these in a few weeks -
Viterbi can be applied)

» Recurrent Neural Networks (Slightly better performance than
CRFs)

» CRF and RNN can be combined (see next slide)
» NOT REQUIRED FOR 422



Sequence Labeling (e.g., POS): SOTA ~2018 RNN + CRF
with Viterbi

* Input: pre-trained embeddings

* Output: softmax layer provides a probability distribution over the part-
of-speech tags as output at each time step P < RF /¢»1 1 H

» Choosing max probability |~ MF2 MO 8 JC & JC N
label for each item does
not necessarily result in Softmax [ﬂﬂmlm J[ Al M A J[ nalll J[ ! ]
optimal (or even very f f f 4 I
good) tag sequence

RNN

* Combine with Viterbi for f !
most likely sequence, mbdeddings  @eerioss R
usually implemented ! ! f !
add|ng CRF |ayer Words ( Janet ) ( will Y back ) ( the ) ( bill )




POS tagging state of the art + tools

* Neural Approaches (on several languages)

Barbara Plank, Anders Segaard, and Yoav Goldberg. Multilingual
part-of-speech tagging with bidirectional long short-term memory

models and auxiliary loss. ACL 2016.

2/12/2021 CPSC503 Winter 2020 24



Neural Approach to Semantic Role
Labeling

BIO/IOB labeling..

P(B-ARG0) P(I-ARG0) P(B-PRED) P(B-ARGI)
t 4 4 $

Softmax

Concatenation @90/0e0 ﬁ@ @eJjeed

Right-to-left LSTM

Left-to-right LSTM

Embeddings
word + is-predicate  The 0 cats 0 love 1 hats 0

A bi-LSTM approach to semantic role labeling. Most actual networks are

much deeper than shown in this figure: 3 to 4 bi-LSTM layers (6 to 8 total LSTMs) are

common. The input is a concatenation of an embedding for the input word and an embedding

of a binary variable which is 1 for the predicate to 0 for all other words. After He et al. (2017).
2/12/2021 CPSC503 Winter 2020
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Probably skip in class, but check textbook 18.6.2

G | O b d | d p p FOacC h if something similar needed for your project
* Exploit global constraints between tags; e.g., a tag I-ARGO
must follow another I-ARGO or B-ARGO. H M Here
* Apply Viterbi decoding ?
e start with the simple softmax output (the entire (5‘5
probability distribution over tags for each word) F@L_[jts oR

* Hard IOB constraints can act as the transition
probabilities in the Viterbi decoding (Thus the transition P(OeISD
from state I-ARGO to I-ARG1 would have probability 0).

* Alternatively, the training data can be used to learn
bigram tag transition probabilities as if doing HMM
decoding.

2/12/2021 CPSC503 Winter 2020 26



Most Likely Sequence (Explanation)

» Most Likely Sequence: argmax,, . P(X,.1 | €;.1)

> ldea
« find the most likely path to each state in X;

« As for filtering etc. we will develop a recursive solution

Rain Rain, Rain Rain Rain s

true lrue frue | true | [(rue
false false Jalse Jalse false

Umbrella, frue frue false frue frue



Most Likely Sequence (Explanation)

» Most Likely Sequence: argmax,, . P(X,.1 | €;.1)

> Idea E’a\\/\ g = _trUQ
« find the most likely path to each state in X; ga . Jr?,l e
\V\67

« As for filtering etc. we will develop a recursive solution

Rain Rain Rain 4 Rain Rain s
lrue - [rue rue rg—®= [rie g—®= [rie
false false false false false
Umbrella, frue frue false frue frue
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Learning Goals for today’s class

>»YO0oUu can:

Describe the smoothing problem and derive a solution by
manipulating probabilities

Describe the problem of finding the most likely sequence
of states (given a sequence of observations)

Derive recursive solution (if time)
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TODO for Mon
(not this coming week)

« Keep working on Assignment-2: due Mon March 1

e Midterm : Mon March 8
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