Intelligent Systems (Al-2)

Computer Science cpsc422, Lecture 14

Feb, 10, 2021

Slide credit: some slides adapted from Stuart Russell (Berkeley)
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Lecture Overview
(Temporal Inference)

* Filtering (posterior distribution over the current state given
evidence to date)

 From intuitive explanation to formal derivation
« Example

* Prediction (posterior distribution over a future state given
evidence to date)

* (start) Smoothing (posterior distribution over a past state
given all evidence to date)
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Markov Models

Markov Chains

NoISe
O{OSW\/D/‘HO'/'Lj

Hidden Markov
Model

Partially Observable
Markov Decision
Processes (POMDPS)

—I[ " Markov Decision
Processes (MDPSs)
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Hidden Markov Model

* A Hidden Markov Model (HMM) starts with a Markov
chain, and adds a noisy observation/evidence about the
state at each time step:

... ¢ |domain(X)| =k

Q) -
@ é @ @ + |domain(E)| = h

« P (X,) specifies initial conditions <

AP (Xi.1|Xp specifies the dynamics |~ -\«

(00 &é'}
P (E,|S,) specifies the sensor model |~ = O
OF (Btlo \ o
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Simple Example Re

T F
(We'll use this as a running example) Q T .3 3
» Guard stuck in a high-security bunker € E - Y L
3
> Would like to know if it is raining outside .3 G +

» Can only tell by looking at whether his boss comes into the bunker

with an umbrella every day Transition
model State }

R, || PR, variables

rfFo07
I 0.3

R(fmr_l R(Hﬁ'f

Observation
model

Observable
variables




Useful inference in HMMs

* In general (Filtering): compute the posterior
distribution over the current state given all
evidence to date

P(Xt | e();t )

A ”
é @ %@ :i\fﬁum
C,:6, . . .

« \

-

CPSC422, Lecture 5 Slide 7



Intuitive Explanation for filtering recursive formula
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Filtering

» ldea: recursive approach

« Compute filtering up to time t-1, and then include the evidence for time t
(recursive estimation)

> P(X;| €py) = P(X; | €..1,€6;) dividing up the evidence iclicker.

=a P(e; | Xy, €11 ) PX¢| €01y ) WHY? A. Bayes Rule

= aP(e | X)) P(X; | 8g¢s ) WHY? B. Cond. Independence

C. Product Rule

One step prediction of
Inclusion of new current state given
evidence: this is evidence up to t-1
available from.. P(A,B) = P(A|B)*P(B)

» So we only need to compute P(X, | €p..; ) P(A|B) = a P(B|A)*P(A)



F{X, YIES - T’(x l\/,}\ P(\(I %
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Filtering

> Compute P(X,|ey.q)

) —)—=(%)-

l
Prove it? @ SN

}:@ X,
v T
Q e

PX¢ | €01 ) = 2xy POXt Xea €01 ) = 2, POt I Xea s €011 ) P(Xea | €011 ) =

= Y vy POG I X ) P(Xq ] €041 ) bECAUSE OF..

]

Transition model!

Filtering at time t-1

» Putting it all together, we have the desired recursive formulation

P(X:| €0 ==aP(e | X) P(X | €y, ) (previous slide)

P(Xi| €0 = aP(e | X)) 2.

Inclusion of new evidence
(sensor model)

1 P(X | Xe1) P( X1 | €041 )

T

I

Filtering at time t-1

Propagation to time t

» P(X.,| eptq ) Can be seen as a message f,.._; that is propagated
forward along the sequence, modified by each transition and updated

by each observation



“moving” the conditioning

I

) P(BC)

_ f(ﬂx )3(3 » 757(75@
P (Bc) o

(A lBc) » P(B IC>7
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Filtering

» Thus, the recursive definition of filtering at time t in terms of
filtering at time t-1 can be expressed as a FORWARD procedure

o f,. =a FORWARD (f,.,, €)

» which implements the update described in

P(X | €02) = o P(e | X) T, P(X¢ | X1 ) P(Xeq | €0q )—  Filtering at time t-1

N

Inclusion of new evidence

(sensor model) Propagation to time t




Analysis of Filtering

» Because of the recursive definition in terms for the forward
message, when all variables are discrete the time for each
update is constant (i.e. independent of t)

» The constant depends of course on the size of the state

space
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» Suppose our security guard came with a prior belief of 0.5 that it rained on

Rain Example

day O, just before the observation sequence started.

» Without loss of generality, this can be modelled with a fictitious state R, with
no associated observation and P(R,) = <0.5, 0.5>

e previovs

» Day 1: umbrella appears (u,). ThUSJ- e\hgc\/\CQ

v
P(Ry|€pt1) =P(Ry = Zro P(Ry [ rg) P(rg)
=<0.7,0.3>*0.5+<0.3,0.7>*0.5=<0.5,05>

TF T

?

FF

0.5

0.5
TRUE 05

FALSE 0.5
R | P(R)
0.7
0.3

Umbrella,

K

n

e

=
.
>

P(Uy)

0.9
0.2

Umbrella,




Rain Example

» Updating this with evidence from for t =1 (umbrella appeared) gives

P(Ry| up) =aP(u; |Ry) P(Ry) =

0<0.9, 0.2><0.5,0.5> = 0<0.45, 0.1> ~ <0.818, 0.182>
» Day 2: umbella appears (u,). Thus

PR, | €01 ) =PRy| U ) = Zrl PR, | ry) P(ry|uy) =
=<0.7,0.3>*0.818 + <0.3,0.7> * 0.182 ~ <0.627,0.373>

FALSE 0.5

) 4

P(RY)

0.7
0.3

N3
Ken 10 F
— .+ -2
F oy o3
0.627
R, | P(UY
t 0.9
v f 0.2

Umbrella,




Rain Example
» Updating this with evidence from for t =2 (umbrella appeared) gives
P(R,|u;,u,) =aP(u, | Ry P(R,| uy) =
0<0.9, 0.2><0.627,0.373> = a<0.565, 0.075> ~ <0.883, 0.117>

> Intuitively, the probability of rain increases, because the umbrella appears twice
In arow

05 0.627
0.5

TRUE 05 \«

FALSE 0.5 0.818
0.182

) 4



Practice exercise (home)

Compute filtering at t, if the 3@ observation/evidence is g)

umbrella
10},9.35,&0,%5 & /0.3/0.17,% O N+

2618 0. L6E v 40,033,0,09)5:@@3/_9,345)

T Scmisor 1/‘10076/
OQ(Q,éSﬁ/ o.%qc§> & 0.1 [ O'8>

ALO 065 ) O.UFHL )
o v lire davide b") He sum

0.19 0.%)

——
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L ecture Overview

 Prediction (posterior distribution over a future state given
evidence to date)

* (start) Smoothing (posterior distribution over a past state
given all evidence to date)
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Prediction P(X,.1 | €0+ )

» Can be seen as filtering without addition of new evidence

7@% @—@

l

> We need to show how to recursively predict the state at time t+k +1 from a
prediction for state t + k

P(Xisir1 | €0:) = 2, PKerkrts Xes €0:) = 2, Pt | Xer €020 ) P(Xpac| €0 ) =
I

= Zka I:)(Xt+k+1 | Xt+k) P( Xt+k| eO:t) Prediction for state t+ k

N\

Transition model

> Let's continue with the rain example and compute the probability of Rain on
day four after having seen the umbrella in day one and two: P(R,| u, , u,)




Rain Example
» Prediction from day 2 to day 3

P(X3l€12) =2, P(X3 [ X2) P(Xz| €15 ) = 20 P(Ra| 1p) P(rpf upuy ) =
= <0.7,0.3>*0.883 + <0.3,0.7>*0.117 = <0.618,0.265> + <0.035, 0.082>
= <0.653, 0.347>
» Prediction from day 3 to day 4
P(Xyl€1) = 2, P(Xy [ X3) P(X3] €15 ) = X, PRy | 13) P(rsf Uy uy) =
= <0.7,0.3>*0.653 + <0.3,0.7>*0.347=<0.457,0.196> + <0.104, 0.243>

= <0.561, 0.439>
05 0.627

' 0.373

\ | 05 L0
0.5 0.818 0.883 0.341 / |
0.5 0.182 0.117

Umbrella, Umbrella,




L ecture Overview

* Filtering (posterior distribution over the current state given
evidence to date)

 From intuitive explanation to formal derivation
« Example

* Prediction (posterior distribution over a future state given
evidence to date)

* (start) Smoothing (posterior distribution over a past state
given all evidence to date)
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Smoothing

» Smoothing: Compute the posterior distribution over a
past state given all evidence to date

* P(Xc|eg) forl<k<t

CO—~CD= 7 CO~—C2
@D




Smoothing

> P(X, | ep) = P(X, | €o:0€iart)  dividing up the evidence

= o P(X | €0 ) P(Bxra:t | Xy €0 ) using..

= o P(Xy | €. ) P(Eyra | X) using...

]

forward message from

filtering up to state k,

1:O:k

backward message,
b k+1:t
computed by a
recursive process
that runs
backwards from t




Smoothing

> P(X, | ep) = P(X, | €o:0€iart)  dividing up the evidence

= o P(Xy | €. ) P(Eyra:t | Xy €0y ) Using Bayes Rule

= a P(X,| €y ) P(&rsrt | X)) By Markov assumption on evidence

A

forward message from
filtering up to state k,

1:O:k

backward message,

b k+1:t
computed by a recursive process

that runs backwards from t




Learning Goals for today’s class

>»YO0ou can:

Describe Filtering and derive it by manipulating
probabilities

Describe Prediction and derive it by manipulating
probabllities

Describe Smoothing and derive it by manipulating
probabilities
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TODO for Fri

Revised today’s slides carefully
Keep Reading Textbook Chp 8.5

Keep working on assignment-2 (due on Mon,
Mar 1)
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