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Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 11

Feb, 03, 2021



422 big picture

Query

Planning

Deterministic Stochastic

• Value Iteration

• Approx. Inference

• Full Resolution
• SAT

Logics

Belief Nets

Markov Decision Processes  
and  

Partially Observable MDP

Markov Chains and HMMsFirst Order Logics

Ontologies

Applications of AI

Approx. : Gibbs

Undirected Graphical Models
Markov Networks

Conditional Random Fields

Reinforcement Learning Representation

Reasoning
Technique

Prob CFG
Prob Relational Models
Markov Logics

StarAI (statistical relational AI)

Hybrid: Det +Sto

Forward, Viterbi….

Approx. : Particle Filtering

Parsing
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Lecture Overview

• Recap of BNs Representation and Exact 

Inference

• Start Belief Networks Approx. Reasoning

• Intro to Sampling

• First Naïve Approx. Method: Forward 

Sampling

• Second Method: Rejection Sampling 

(probably on Fri)



Bnet basic example: 

structure + cond. Prob.

Cloudy

Sprinkler Rain

WetGrass

4

+c 0.5
-c 0.5

+c +s 0.1

-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8

-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99
-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90
-w 0.10

-r +w 0.01
-w 0.99
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Realistic BNet: Liver Diagnosis
Source: Onisko et al., 1999



Revise (in)dependencies……
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Or, blocking paths for probability propagation. Three ways in 

which a path between X to Y can be blocked, (1 and 2 given 

evidence E )

Conditional Independencies

Z

Z

Z

XY E

Note that, in 3, X and Y become dependent as soon as I get 

evidence on Z or on any of its descendants

1

2

3



Bnet basic example: 

independence

Cloudy

Sprinkler Rain

WetGrass
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Independence (Markov Blanket)
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Slide 9

What is the minimal set of nodes that must be 

observed in order to make node X independent 

from all the non-observed nodes in the network



Independence (Markov Blanket)

A node is conditionally independent from all the other nodes 

in the network, given its parents, children, and children’s 

parents (i.e., its Markov Blanket )  Configuration B
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Variable elimination algorithm: 

Summary

To compute P(Z| Y1=v1 ,… ,Yj=vj ) :

1. Construct a factor for each conditional probability.

2. Set the observed variables to their observed values.

3. Given an elimination ordering, simplify/decompose
sum of products

• For all Zi :  Perform products and sum out Zi

4. Multiply the remaining factors (all in ?                )

5. Normalize: divide the resulting factor f(Z) by Z f(Z) .

Z

P(Z,  Y1…,Yj ,   Z1…,Zj )
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Variable elimination ordering

P(G,D=t) = A,B,C, f(A,G) f(B,A) f(C,G,A) f(B,C)

P(G,D=t) = A f(A,G) B f(B,A) C f(C,G,A) f(B,C)

P(G,D=t) = A f(A,G) C f(C,G,A) B f(B,C) f(B,A) 

Is there only one way to simplify?
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Complexity: Just Intuition…..

• Tree-width of a network given an elimination ordering:

max number of variables in a factor created while running 

VE. 

• Tree-width of a belief network : min tree-width over all 

elimination orderings (only on the graph structure and is a 

measure of the sparseness of the graph)

• The complexity of VE is exponential in the tree-width 

 and linear in the number of variables. 

• Also, finding the elimination ordering with minimum tree-

width is NP-hard  (but there are some good elimination 

ordering heuristics)
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AIMA 4th Edition (Russell and Norvig) 2020
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Lecture Overview

• Recap of BNs Representation and Exact 

Inference

• Start Belief Networks Approx. Reasoning

• Intro to Sampling

• First Naïve Approx. Method: Forward 

Sampling

• Second Method: Rejection Sampling



Approximate Inference

Basic idea:

• Draw N samples from known prob. distributions

• Use those samples to estimate unknown prob. 
distributions

Why sample?

• Inference: getting a sample is faster than computing 
the right answer (e.g. with variable elimination)
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We use Sampling

Sampling is a process to obtain samples adequate 

to estimate an unknown probability

Known prob. distribution(s)

Estimates for unknown (hard to compute) distribution(s)

Samples

How do we get 

samples? 



Generating Samples from a Known Distribution

For a random variable X with 

• values {x1,…,xk}

• Probability distribution P(X) = {P(x1),…,P(xk)}

Partition the interval [0, 1] into k intervals pi , one for each xi , 

with length P(xi )

To generate one sample
✓Randomly generate  a value y in [0, 1] (i.e. generate a value from a 

uniform distribution over [0, 1].

✓ Select the  value of the sample  based on the interval pi that includes y

From probability theory: )()()( iii xPpLengthpyP ==



From Samples to Probabilities

Count total number of samples m

Count the number ni of samples xi

Generate the frequency of sample xi as ni / m

This frequency is your estimated probability of xi



Sampling for Bayesian Networks (N)
➢ Suppose we have the following BN with two binary 

variables

➢ It corresponds to the joint probability distribution 

• P(A,B) =P(B|A)P(A)

➢To sample from P(A,B) i.e., unknown distribution
• we first sample from P(A). Suppose we get A = 0.

• In this case, we then sample from….

• If we had sampled A = 1, then in the second step we would have sampled 

from

A

B

A=1 B=1 0.7

B=0 0.3

A-0 B=1 0.1

B=0 0.9

P(B|A)

P(A) A=1 0.3
A=0 0.7



Prior (Forward)  Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

25

+c 0.5

-c 0.5

+c +s 0.1

-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8

-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99
-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90
-w 0.10

-r +w 0.01
-w 0.99

Samples:

+c, -s, +r, +w

-c, +s, -r, +w

…
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Example

We’ll get a bunch of samples from the BN:

+c, -s, +r, +w

+c, +s, +r, +w

-c, +s, +r,  -w

+c, -s, +r, +w

-c,  -s,  -r, +w

If we want to know P(W)

• We have counts <+w:4, -w:1>

• Normalize to get P(W) = 

• This will get closer to the true distribution with more samples

26

CPSC 422, Lecture 11

Cloudy

Sprinkler Rain

WetGrass



Example
Can estimate anything else from the samples, besides P(W), P(R) , etc:

+c, -s, +r, +w

+c, +s, +r, +w

-c, +s, +r,  -w

+c, -s, +r, +w

-c,  -s,  -r, +w

• What about P(C| +w)?   P(C| +r, +w)?  P(C| -r, -w)?
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Cloudy

Sprinkler Rain

WetGrass

Can use/generate fewer samples when we want to 

estimate a probability conditioned on evidence?



Rejection Sampling

Let’s say we want P(S| +r, +w)

• Ignore (reject) samples which don’t 

have W=+w

• This is called rejection sampling

• It is also consistent for conditional 

probabilities (i.e., correct in the limit)
+c, -s, -r, +w
+c, +s, +r, +w
-c, +s, +r,  -w
+c, -s, +r, +w
-c,  -s,  -r, +w
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C

S R

W

See any problem as the number of 

evidence vars increases?

Or the evidence is rare…



Rejection Sampling

Let’s say we want P(S| +w)

• Ignore (reject) samples which don’t 

have W=+w

• This is called rejection sampling

• It is also consistent for conditional 

probabilities (i.e., correct in the limit)
+c, -s, +r, +w
+c, +s, +r, +w
-c, +s, +r,  -w
+c, -s, +r, +w
-c,  -s,  -r, +w
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C

S R

W

See any problem as the number of 

evidence vars increases?



References to applications to climate change and 

healthcare……..
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Bnets to assess and manage Climate Change 

Journal of Environmental Management

Volume 202, Part 1, 1 November 2017, Pages 320-331

Reviewing Bayesian Networks potentials for climate change 

impacts assessment and management: A multi-risk 

perspective

AnnaSperottoabJosé

LuisMolinacSilviaTorresanabAndreaCrittoabAntonioMarcomi

niab
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https://www.sciencedirect.com/science/journal/03014797
https://www.sciencedirect.com/science/journal/03014797/202/part/P1
https://www.sciencedirect.com/science/article/pii/S0301479717307211#!


One Recent Example from that review

Environmental Modelling & Software Journal
Volume 80, June 2016, Pages 132-142

A Bayesian Belief Network to assess rate of changes in

coral reef ecosystems

Coral Reef Research Unit, University of Essex, United Kingdom

St. George's University, Grenada

Department of Computer Science, Brunel University, United Kingdom
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Carbonate Budget BBN (CARBNET)

• We propose a Bayesian Belief Network (BBN) approach, which offers 

a methodological framework to address uncertainty (Bennett et al., 

2013, Kelly et al., 2013).

• Can aid sustainable coral reef management and prevent further 

decline. 

• Help evaluate effects of anthropogenic and climatic disturbances 

on the reef framework

• Consider impacts of implementing management interventions or 

decision options in order to maximize their benefit (Uusitalo et al., 

2015). 

• CARBNET: developed to evaluate coral reef CaCO3 (carbonate) 

balance under changing environmental conditions and across reef 

bioregions. 
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https://www.sciencedirect.com/topics/earth-and-planetary-sciences/belief-networks
https://www.sciencedirect.com/science/article/pii/S1364815216300494#bib10
https://www.sciencedirect.com/science/article/pii/S1364815216300494#bib44
https://www.sciencedirect.com/science/article/pii/S1364815216300494#bib83
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58 nodes and 
94 cause-
effects links.



CARBNET Engineering

• Variables identified through literature search

• Nodes representing different levels of spatial resolution were used to 

capture changes that may occur at different spatial scales. 

• Presence/absence of reef-building and erosive organisms or reef 

growth and erosion processes are captured at the smallest scale of 

reef depth, but also for an entire reef (‘Site’), sub-region (‘Reef type’, 

‘Reef topography’) or region (‘Coral reef region’). 

• The CARBNET conceptualisation was proposed to twenty experts in 

the field of coral reef management and ecology to identify flaws in 

the network structure and address structural bias before 

model parameterisation.
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https://www.sciencedirect.com/topics/earth-and-planetary-sciences/spatial-resolution
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/region
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/ecology
https://www.sciencedirect.com/topics/computer-science/network-structures
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/parameterization


Another Example
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Corresponding BNet
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A group of 14 experts and decision makers were involved in a half-day workshop to 

define the important variables, links and states of variables.



Many applications in Health Care

McLachlan S, Dube K, Hitman GA, Fenton NE, 

Kyrimi E ( 2020 ) . Bayesian networks in 

healthcare: Distribution by medical condition 

. Artificial Intelligence in Medicine vol. 107 , Article 

101912 , 101912 - 101912 

.10.1016/j.artmed.2020.101912

https://qmro.qmul.ac.uk/xmlui/handle/123456789

/65190
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http://dx.doi.org/10.1016/j.artmed.2020.101912
https://qmro.qmul.ac.uk/xmlui/handle/123456789/65190
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Learning Goals for today’s class

➢You can:

• Motivate the need for approx. inference in Bnets

• Describe and compare Sampling from a single random 

variable

• Describe and Apply Forward Sampling in BN

• Describe and Apply Rejection Sampling
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TODO for Fri

• Read textbook 

•8.6.3 Rejection Sampling

•8.6.4 Likelihood Weighting

• Assignment-2 will be out tonight…

• Next research paper will be this coming Mon



Hoeffding’s inequality
➢ Suppose p is the true probability and s is the sample average from n

independent samples. 

➢ p above can be the probability of any event  for random variable X = 

{X1,…Xn} described by a Bayesian network

➢ If you want an infinitely small probability of having an error greater 

than ε, you need infinitely many samples

➢ But if you settle on something less than infinitely small, let’s say δ, 

then you just need to set

➢ So you pick 

• the error ε you can tolerate, 

• the frequency δ with which you can tolerate it

➢ And solve for n, i.e., the number of samples that can ensure this 

performance

(1)

222)|(|  nepsP −−

 − 222 ne



Hoeffding’s inequality

➢Examples:
• You can tolerate an error greater than 0.1 only in 5% of your cases

• Set ε =0.1,  δ = 0.05

• Equation (1) gives you n > 184

➢ If you can tolerate the same error (0.1) only in 1% of the cases, then 

you need 265 samples

➢ If you want an error greater than  0.01 in no more than 5% of the 

cases, you need 18,445 samples 

(1)


