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L ecture Overview

 Recap of BNs Representation and Exact
Inference

« Start Belief Networks Approx. Reasoning

 Intro to Sampling

* First Naive Approx. Method: Forward
Sampling

« Second Method: Rejection Sampling
(probably on Fri)
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Bnet basic example:

structure + cond. Prob.

P(C)
+C 0.5
-C 0.5

P(S|C) < P(R|C)
+c | +s | 0.1 +c | +r 0.8
-s [ 0.9 -r (0.2
< | +s |05 w < | +r [ 0.2
-s | 0.5 -r 0.8
P(W|S, R)
+5 +r +w | 0.99 @
-w | 0.01
-r +w | 0.90
-w | 0.10
-s +r +wW 0.90
-W 0.10
-r +w | 0.01 CPSC 422, Lecture 11
-w | 0.99




Realistic BNet: Live

A/ 60 nodes Source: Onisko et a
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Revise (in)dependencies......
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Conditional Independencies

Or, blocking paths for probability propagation. Three ways in
which a path between X to Y can be blocked, (1 and 2 given
evidence E)

Y ~ X
" Z ) > ’ﬂ

{2~

)

1

A
/
N

| O —

Note that, in 3, X and Y become dependent as soon as | get
evidence on Z or on any of its descendants ide 7



Bnet basic example:
iIndependence
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Independence (Markov Blanket)

vy Ve Wy

q AN /@\g“@/@%\o /ngé VO
TN S
B. —

What is the minimal set of nodes that must be

observed in order to make node X independent

from all the non-observed nodes in the network

Slide 9
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Independence (Markov Blanket)
¥ g@ Ve V9
N f\jé o /ngé‘ O

855@0 g zﬁbo g /\K‘

A node is conditionally independent from all the other nodes
In the network, given its parents, children, and children’s
parents (i.e., its Markov Blanket ) Configuration B

CPSC 422, Lecture 11 Slide 10



Variable elimination algorithm:

P2 Y, Do)

To compute P(Z| Y,;=v, ,... ,Y;=V;) :
1. Construct a factor for each conditional probabillity.
2. Set the observed variables to their observed values.

3. Given an elimination ordering, simplify/decompose
sum of products

* For all Z, : Perform products and sum out Z,

\

4. Multiply the rer?a_ining factors (allin? [z )
5. Normalize: divide the resulting factor f(Z) by 2, f(Z) .




Variable elimination orderingr
RNelt with vodes %A 3CD G}
P(G.D=t) = Shpc. f(AG) f(B,A) f(C,G,A) f(B,C)

CRA Y < | V{f\
2 f(A,G)/ZB f(B,A) 2¢ f(C,G,A) 1(B,C)

,\

— o
5, 1(A.G) 3. f(C.G.A) 5 TB.CIB.A)
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Complexity: Just Intuition.....

« Tree-width of a network given an elimination ordering:

max number of variables in a factor created while running
VE.

 Tree-width of a belief network : min tree-width over all

elimination orderings (only on the graph structure and is a
measure of the sparseness of the graph)

 The complexity of VE is exponential in the tree-width
@ and linear in the number of variables.

« Also, finding the elimination ordering with minimum tree-

width is NP-hard ® (but there are some good elimination
ordering heuristics)
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Figure 13.9 A Bayesian network for evaluating car insurance applications.

AIMA 4™ Edition (Russell and Norvig) 2020




L ecture Overview

 Recap of BNs Representation and Exact
Inference

« Start Belief Networks Approx. Reasoning

 Intro to Sampling

* First Naive Approx. Method: Forward
Sampling

« Second Method: Rejection Sampling
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Approximate Inference

Basic idea:
* Draw N samples from known prob. distributions

* Use those samples to estimate unknown prob.
distributions

Why sample?

* Inference: getting a sample is faster than computing
the right answer (e.g. with variable elimination)
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We use Sampling

Sampling is a process to obtain samples adequate
to an unknown probability

How do we get
samples?

Known prob. distribution(s)
Samples —

{

Estimates for unknown (hard to compute) distribution(s)



Generating Samples from a Known Distribution

For a random variable X with
* values {Xy,...,X}
* Probability distribution P(X) = {P(X,), ...,P(X.)}
Partition the interval [0, 1] into k intervals p, , one for each x; ,
with length P(x; )

To generate one sample

v Randomly generate avaluey in [0, 1] (i.e. generate a value from a
uniform distribution over [0, 1].

v" Select the value of the sample based on the interval p; that includesy

From probability theory: P(y < p;) = Length(p;) = P(X;)
? O b L C
X 70 ?\j {?2. (( (133
A - At
Xé@\'L,C_E b -6 95, 5 % A
C .93




From Samples to Probabilities

X | count —
X | probability
X1 mn /
| X1 ny/m
Xk Iy .
X ne/m
total | m K ks

y Com T

0D 2?3@&

|D 258

) 3ol

e 2298

%’o“‘a\ ;Lz_ [@)o)
¢ %.?(OD: EL)

Count total number of samples m

Count the number n; of samples x;

Generate the frequency of sample x; as n,/ m
This frequency Is your estimated probability of x;



Sampling for Bayesian Networks (N)
» Suppose we have the following BN with two binary
variables P(A) [A=1]o03

A=0 | 0.7

a1 | B=1 | 0.7 | P(B|A)

B=0 | 0.3 -
A0 | B=1] 0.1 KV)OWV\

B=0 | 0.9 4 I%d“{‘ bud\\ Ouns

» |t corresponds to the joint probability distribution

« P(A,B) =P(B|A)P(A) .
» To sample from P(A,B) i.e., unknown distributicﬁ"ﬁo [';"\
- /-9

 we first sample from P(A). Suppose we ge&_A =0.) 41 p
- =)

* In this case, we then sample from.. (B )/‘} ‘0>
« |If we had sampled A = 1) then in the second step we would have sampled

from p B’A <



Prior (Forward) Sampling® *

P(S|C)
+c | +s [ 0.1
-s [ 0.9
c | +s | 0.5
-s [ 0.5
P(W|S, R)
+s +r
-w | 0.01
-r +w | 0.90
-W 0.10
S +r +w | 0.90
-W 0.10
-r +w | 0.01
-w | 0.99

P(C
+C 0.5
-C 0.5
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P(R|C)

+c | +r | 0.8

Samples:

+C, -S, +I, +tW
-C, 1S, I, tW

25



Example

We'll get a bunch of samples from the BN:
+C, -S, +r, +W

-C, +s, *1, -wW

-C, -S, -I, twW

If we want to know P(W) @
* We have counts <+w:4, -w:1>
* Normalize to get P(W) =(+w: -& W 1>
* This will get closer to the true distribution with more samples

CPSC 422, Lecture 11
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Example

Can estimate anything else from the samples, besides P(W), P(R) , etc:

(¥, +S,CH1, +W

fE, +S, +r, -W
[¥C} -, W) w @
-C, -S, -I, tw

* What about P(C]| +W)’> P(C| +r, +w)? P(C| -r, -w)?

+C -C

/A\.[MO _] R [S 5] o ||cker
D. None of the sbove

Can use/generate fewer samples when we want to
estimate a probability conditioned on evidence?
CPSC 422, Lecture 11 27



Rejection Sampling

Let's say we want B(S]| +r, +w)
* |gnore (reject) samples which don't
have W=+w N
* This is called rejection sampling

* |tis also consistent for conditional
probabillities (i.e., correct in the limit)

+C, +S, +I, +W

See any problem as the number of TS
- - C, -S, +I, TW
evidence vars increases? TS T, B

Or the evidence is rare...

CPSC 422, Lecture 11 28



Rejection Sampling

Let’s say we want P(S]| +w)

* |gnore (reject) samples which don't
have W=+w

* This is called rejection sampling

* |tis also consistent for conditional
probabillities (i.e., correct in the limit)

See any problem as the number of
evidence vars increases”?

CPSC 422, Lecture 11

+C,(58) +H—HW
+C,%+—F—,—HN
-C,#*S, +, =W
+c,C8) +r+w
-C, (S) I, tw
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References to applications to climate change and
healthcare........
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Bnets to assess and manage Climate Change

Journal of Environmental Management
Volume 202, Part 1, 1 November 2017, Pages 320-331

Reviewing Bayesian Networks potentials for climate change
Impacts assessment and management: A multi-risk
perspective

AnnaSperotto2°José

L uisMolinacSilviaTorresan@?AndreaCritto2°?’AntonioMarcomi
niab
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https://www.sciencedirect.com/science/journal/03014797
https://www.sciencedirect.com/science/journal/03014797/202/part/P1
https://www.sciencedirect.com/science/article/pii/S0301479717307211#!

One Recent Example from that review

Environmental Modelling & Software Journal

Volume 80, June 2016, Pages 132-142

A Bayesian Belief Network to assess rate of changes in
coral reef ecosystems

Coral Reef Research Unit, University of Essex, United Kingdom
St. George's University, Grenada
Department of Computer Science, Brunel University, United Kingdom
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Carbonate Budget BBN (CARBNET)

We propose a Bayesian Belief Network (BBN) approach, which offers
a methodological framework to address uncertainty (Bennett et al.,
2013, Kelly et al., 2013).

Can aid sustainable coral reef management and prevent further
decline.

Help evaluate effects of anthropogenic and climatic disturbances
on the reef framework

Consider impacts of implementing management interventions or
decision options in order to maximize their benefit (Uusitalo et al.,
2015).

CARBNET: developed to evaluate coral reef CaCO, (carbonate)
balance under changing environmental conditions and across reef
bioregions.

CPSC 422, Lecture 11 Slide 33


https://www.sciencedirect.com/topics/earth-and-planetary-sciences/belief-networks
https://www.sciencedirect.com/science/article/pii/S1364815216300494#bib10
https://www.sciencedirect.com/science/article/pii/S1364815216300494#bib44
https://www.sciencedirect.com/science/article/pii/S1364815216300494#bib83
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CARBNET Engineering

Variables identified through literature search

Nodes representing different levels of spatial resolution were used to
capture changes that may occur at different spatial scales.

Presence/absence of reef-building and erosive organisms or reef
growth and erosion processes are captured at the smallest scale of
reef depth, but also for an entire reef (‘Site’), sub-region (‘Reef type’,
‘Reef topography’) or region (‘Coral reef region’).

The CARBNET conceptualisation was proposed to twenty experts in
the field of coral reef management and ecology to identify flaws in
the network structure and address structural bias before

model parameterisation.
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https://www.sciencedirect.com/topics/earth-and-planetary-sciences/spatial-resolution
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/region
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/ecology
https://www.sciencedirect.com/topics/computer-science/network-structures
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/parameterization

Another Example

178 Water Quality: Current Trends and Expected Climate Change Impacts (Proceedings of symposium H04
held during IUGG2011 in Melbourne, Australia, July 2011) (IAHS Publ. 348, 2011).

Predicting water quality responses to a changing climate:
building an integrated modelling framework

F.DYER', S. EL SAWAH’, E. HARRISON', S. BROAD', B. CROKE?, R. NORRIS'
& A. JAKEMAN?

Institute for Applied Ecology, University of Canberra, Canberra, Australia
fiona.dyer@canberra.edu.au

Integrated Catchment Assessment and Management Centre, National Center for Groundwater Research and Training,
Australian National University, Canberra, Australia

Abstract The future management of freshwater resources for human and environmental needs requires an
integrated set of tools for predicting the relationship between climate change, water quality and ecological
responses. In this paper, we present the early phases of a project for building a Bayesian network (BN) based
framework to link ecological and water quality responses to features of the flow regime in the Molonglo and
Yass rivers in southeastern Australia. At this stage, the objective 1s to conceptualize the modelling
components and define causal links. Expert elicitation was used to identify important drivers and
interactions which influence water quality attributes and related ecological responses.

Key words Bayesian network models; water quality; prediction; climate change; integrated modelling
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Many applications in Health Care

McLachlan S, Dube K, Hitman GA, Fenton NE,
Kyrimi E ( 2020 ) . Bayesian networks in
healthcare: Distribution by medical condition
. Artificial Intelligence in Medicine vol. 107 , Article
101912, 101912 - 101912
.10.1016/].artmed.2020.101912

https://gmro.gmul.ac.uk/xmlui/handle/123456789

/65190
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http://dx.doi.org/10.1016/j.artmed.2020.101912
https://qmro.qmul.ac.uk/xmlui/handle/123456789/65190

Learning Goals for today’s class

>»YOou can:

« Motivate the need for approx. inference in Bnets

« Describe and compare Sampling from a single random
variable

 Describe and Apply Forward Sampling in BN
« Describe and Apply Rejection Sampling
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TODO for Fri

 Read textbook

8.6.3 Rejection Sampling
8.6.4 Likelihood Weighting

« Assignment-2 will be out tonight...

 Nextresearch paper will be this coming Mon
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Hoeffding’s inequality

Suppose p is the true probability and s is the sample average from n
independent samples. o2 ,/t'
—N& ~

P(|s—p|>g)£2e<5 SR

p above can be the probability of any event for random variable X =
{X,,...X,,} described by a Bayesian network

If you want an infinitely small probability of having an error greater
than g, you need infinitely many samples

But if you settle on something less than infinitely small, let's say 0,
then you just need to set 5 . 5
e <

So you pick
« the error ¢ you can tolerate,
« the frequency o with which you can tolerate it
And solve for n, i.e., the number of samples that can ensure this

performance I %

1=
T 2g?



Hoeffding’s inequality

» Examples:
* You can tolerate an error greater than 0.1 only in 5% of your cases
« Sete=0.1, 6=0.05

)
« Equation (1) gives you n > 184 N — n 3 (1)
Sy

Coan cewrie | =
o< @>
© |
» If you can tolerate the same error (0.1) only in 1% of the cases, then
you need 265 samples

» If you want an error greater than 0.01 in no more than 5% of the
cases, you need 18,445 samples + Lould Le

C\eac ’H’\at

\ 1S down
A gees up




