
CPSC 422, Lecture 10 Slide 1

Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 10

Feb, 1, 2021

CPSC 422, Lecture 10 2

Lecture Overview

Finish Reinforcement learning

• Exploration vs. Exploitation

• On-policy Learning (SARSA)

• Scalability

CPSC 422, Lecture 8 Slide 3

CPSC 422, Lecture 8 Slide 4

CPSC 422, Lecture 8 Slide 5

Also keep the ak

CPSC 422, Lecture 10 6

What Does Q-Learning learn

➢ Q-learning does not explicitly tell the agent what to do….

➢ Given the Q-function the agent can……

…. either exploit it or explore more….

Any effective strategy should be greedy in the limit of infinite

exploration (GLIE)

• Try each action an unbounded number of times

• Choose the predicted best action in the limit

• We will look at two exploration strategies

• ε-greedy

• soft-max CPSC 422, Lecture 10 7

ε-greedy
➢ Choose a random action with probability ε and choose

best action with probability 1- ε

➢ First GLIE condition (try every action an unbounded

number of times) is satisfied via the ε random selection

➢ What about second condition?

• Select predicted best action in the limit.

➢ reduce ε overtime!

CPSC 422, Lecture 8 8

Soft-Max
➢ Takes into account improvement in estimates of expected

reward function Q[s,a]

• Choose action a in state s with a probability proportional to current
estimate of Q[s,a]

CPSC 422, Lecture 8 9

],[

],[

a

asQ

asQ

e

e

Soft-Max
➢ When in state s, Takes into account improvement in estimates

of expected reward function Q[s,a] for all the actions

• Choose action a in state s with a probability proportional to current
estimate of Q[s,a]

],[

],[

a

asQ

asQ

e

e

➢ τ (tau) in the formula above influences how randomly values

should be chosen

• if τ is high, >> Q[s,a]?

CPSC 422, Lecture 10 10

A. It will mainly exploit

B. It will mainly explore

C. It will do both with equal probability

/],[

/],[

a

asQ

asQ

e

e

CPSC 422, Lecture 10 11

Lecture Overview

Finish Reinforcement learning

• Exploration vs. Exploitation

• On-policy Learning (SARSA)

• RL scalability

Learning before vs. during deployment

➢ Our learning agent can:

A. act in the environment to learn how it works (before
deployment)

B. Learn as you go (after deployment)

➢ If there is time to learn before deployment, the agent

should try to do its best to learn as much as possible about

the environment

• even engage in locally suboptimal behaviors, because this will
guarantee reaching an optimal policy in the long run

➢ If learning while “at work”, suboptimal behaviors could be

costly

CPSC 422, Lecture 10 12

Example

Reward Model:
• -1 for doing UpCareful

• Negative reward when hitting a wall, as marked on the picture

• +10 for left in s4

➢ Six possible states <s0,..,s5>

➢4 actions:

• UpCareful: moves one tile up unless there is
wall, in which case stays in same tile. Always
generates a penalty of -1

• Left: moves one tile left unless there is wall, in
which case

✓stays in same tile if in s0 or s2

✓ Is sent to s0 if in s4

• Right: moves one tile right unless there is wall,
in which case stays in same tile

• Up: 0.8 goes up unless there is a wall, 0.1 like
Left, 0.1 like Right

+ 10

-100

-1

-1

-1-1

-1 -1

13

CPSC 422, Lecture 8

Example
➢ Consider, for instance, our sample grid

game:

• the optimal policy is to go up in S0

• But if the agent includes some exploration in its
policy (e.g. selects 20% of its actions randomly),
exploring in S2 could be dangerous because it
may cause hitting the -100 wall

• No big deal if the agent is not deployed yet, but
not ideal otherwise

+ 10

-100

-1 -1

-1

-1

-1-1

➢ Q-learning would not detect this problem

• It does off-policy learning, i.e., it focuses on the optimal policy

➢ On-policy learning addresses this problem

CPSC 422, Lecture 10 14

On-policy learning: SARSA

➢ On-policy learning learns the value of the policy being

followed.

• e.g., act greedily 80% of the time and act randomly 20% of the time

• Better to be aware of the consequences of exploration has it
happens, and avoid outcomes that are too costly while acting,
rather than looking for the true optimal policy

➢ SARSA

• So called because it uses <state, action, reward, state, action>
experiences rather than the <state, action, reward, state> used by
Q-learning

• Instead of looking for the best action at every step, it evaluates the
actions suggested by the current policy

• Uses this info to revise it

CPSC 422, Lecture 10 15

On-policy learning: SARSA

➢ Given an experience <s,a,r,s’,a’ >, SARSA updates Q[s,a]

seeing that the current policy has selected a’… so how we

update?

In Q-learning we assume that the agent in s’ will follow the

optimal policy….

CPSC 422, Lecture 10

]),[])','[max((],[],[
'

asQasQrasQasQ
a

−++ a

]),[]','[(],[],[asQasQrasQasQ −++ a

0)00*9.00(10],[

]);,[],[9.0(],[],[

0

0100

=−++

−++

rightsQ

rightsQUpCarefulsQrrightsQrightsQ ka

1)00*9.01(10],[

]);,[],[9.0(],[],[

1

1311

−=−+−+

−++

upCarfullsQ

upCarfullsQUpCarefulsQrupCarfullsQupCarfullsQ ka

+ 10

-100

-1 -1

-1

-1

-1-1

1)00*9.01(10],[

]);,[],[9.0(],[],[

3

3533

−=−+−+

−++

upCarfullsQ

upCarfullsQLeftsQrupCarfullsQupCarfullsQ ka

0)00*9.00(10],[

]);,[],[9.0(],[],[

5

5455

=−++

−++

LeftsQ

LeftsQleftsQrLeftsQLeftsQ ka

10)00*9.010(10],[

]);,[],[9.0(],[],[

4

4044

=−++

−++

LeftsQ

LeftsQRightsQrLeftsQLeftsQ ka

Q[s,a] s0 s1 s2 s3 s4 s5

upCareful 0 0 0 0 0 0

Left 0 0 0 0 0 0

Right 0 0 0 0 0 0

Up 0 0 0 0 0 0

k=1k=1

Only immediate rewards
are included in the update,

as with Q-learning

CPSC 422, Lecture 10
17

]),[]','[(],[],[asQasQrasQasQ −++ a

9.0)0)1(*9.00(2/10],[

]);,[],[9.0(],[],[

0

0100

−=−−++

−++

rightsQ

rightsQUpCarefulsQrrightsQrightsQ ka

45.1)1)1(*9.01(2/11],[

]);,[],[9.0(],[],[

1

1311

−=+−+−+−

−++

upCarfullsQ

upCarfullsQUpCarefulsQrupCarfullsQupCarfullsQ ka

+ 10

-100

-1 -1

-1

-1

-1-1

1)10*9.01(2/11],[

]);,[],[9.0(],[],[

3

3533

−=++−+−

−++

upCarfullsQ

upCarfullsQLeftsQrupCarfullsQupCarfullsQ ka

5.4)010*9.00(2/10],[

]);,[],[9.0(],[],[

5

5455

=−++

−++

LeftsQ

LeftsQleftsQrLeftsQLeftsQ ka

10)100*9.010(2/110],[

]);,[],[9.0(],[],[

4

4044

=−++

−++

LeftsQ

LeftsQRightsQrLeftsQLeftsQ ka

k=1k=2
Q[s,a] s0 s1 s2 s3 s4 s5

upCareful 0 -1 0 -1 0 0

Left 0 0 0 0 10 0

Right 0 0 0 0 0 0

Up 0 0 0 0 0 0

SARSA backs up the
expected reward of the next
action, rather than the max
expected reward

CPSC 422, Lecture 10
18

Comparing SARSA and Q-learning

➢ For the little 6-states world

➢ Policy learned by Q-learning 80% greedy is to go up in s0

to reach s4 quickly and get the big +10 reward

+ 10

-100

-1 -1

-1

-1

-1-1

CPSC 422, Lecture 10

19

Iterations Q[s0,Up] Q[s1,Up] Q[s2,UpC] Q[s3,Up] Q[s4,Left] Q[s5,Left]

40000000 19.1 17.5 22.7 20.4 26.8 23.7

Comparing SARSA and Q-learning

➢ Policy learned by SARSA 80% greedy is to go right in s0

➢ Safer because avoid the chance of getting the -100 reward in s2

➢ but non-optimal => lower Q-values

+ 10

-100

-1 -1

-1

-1

-1-1 CPSC 422, Lecture 10

20

Iterations Q[s0,Right] Q[s1,Up] Q[s2,UpC] Q[s3,Up] Q[s4,Left] Q[s5,Left]

40000000 6.8 8.1 12.3 10.4 15.6 13.2

SARSA Algorithm

This could be, for instance any ε-
greedy strategy:
-Choose random ε times, and max
the rest

CPSC 422, Lecture 10 21

Another Example
➢ Gridworld with:

• Deterministic actions up, down, left, right

• Start from S and arrive at G (terminal state with reward > 0)

• Reward is -1 for all transitions, except those into the region marked “Cliff”

✓Falling into the cliff causes the agent to be sent back to start: r = -100

CPSC 422, Lecture 10

22

S G

➢ With an ε-greedy strategy (e.g., ε =0.1)

CPSC 422, Lecture 10

23

S G

A. SARSA will learn policy p1 while Q-learning will learn p2

B. Q-learning will learn policy p1 while SARSA will learn p2

C. They will both learn p1

D. They will both learn p2

Q-learning vs. SARSA

➢ Q-learning learns the optimal policy, but because it does so without

taking exploration into account, it does not do so well while the agent is

exploring

• It occasionally falls into the cliff, so its reward per episode is not that great

➢ SARSA has better on-line performance (reward per episode), because

it learns to stay away from the cliff while exploring

• But note that if ε→0, SARSA and Q-learning would asymptotically converge
to the optimal policy CPSC 422, Lecture 10 24

Final Recommendation

➢ If agent is not deployed it should do ….

random all the time (ε=1) and Q-learning

• When Q values have converged then deploy

➢ If the agent is deployed it should

• apply one of the explore/exploit strategies (e.g.,
ε=.5) and do Sarsa

• Decreasing ε over time

CPSC 422, Lecture 10 25

CPSC 422, Lecture 8 Slide 27

NOT REQUIRED for 422! Map of reinforcement learning algorithms.
Boxes with thick lines denote different categories, others denote
specific algorithms

422 big picture

Query

Planning

Deterministic Stochastic

• Value Iteration

• Approx. Inference

• Full Resolution
• SAT

Logics

Belief Nets

Markov Decision Processes
and

Partially Observable MDP

Markov Chains and HMMsFirst Order Logics

Ontologies

Applications of AI

Approx. : Gibbs

Undirected Graphical Models
Markov Networks

Conditional Random Fields

Reinforcement Learning Representation

Reasoning
Technique

Prob CFG
Prob Relational Models
Markov Logics

StarAI (statistical relational AI)

Hybrid: Det +Sto

Forward, Viterbi….

Approx. : Particle Filtering

Parsing

CPSC 422, Lecture 35 Slide 28

CPSC 422, Lecture 10 Slide 29

Learning Goals for today’s class

➢You can:

• Describe and compare techniques to combine exploration

with exploitation

• On-policy Learning (SARSA)

• Discuss trade-offs in RL scalability (not required)

CPSC 422, Lecture 10 Slide 30

TODO for Wed

• Read textbook 6.4.2

• Next research paper will be next Mon

• Practice Ex 11.B

• Assignment 1 due on Wed

