Intelligent Systems (Al-2)

Computer Science cpsc422, Lecture 10

Feb, 1, 2021

CPSC 422, Lecture 10 Slide 1

L ecture Overview

Finish Reinforcement learning

« Exploration vs. Exploitation
* On-policy Learning (SARSA)

CPSC 422, Lecture 10

QBA

S

ImL A\

CPSC 422, Lecture 8 Slide 3

4)
QBA]
.5

Sw

/ gar§

Qs

om!l

CPSC 422, Lecture 8 Slide 4

t
Q[SS:(A] e < Q[S,/‘\] S
9 T /
| § } Sar<
'. | o |
L (-)
A, ()Z) :
E-| — aq- - @
(sla\) S > QES,A\
aﬁ% ?\,J t-) ~ —
lmaa\xQG"g(\
(}At - AT t (vio - AH)

QtCS,&\? Qt(s Aty Qﬁdvg‘axﬁet&}a')j_ Qt@,a\>

CPSC 422, Lecture 8 Slide 5

Also keep the a.

K{f'&\ >

What Does Q-Learning learn

» Q-learning does not explicitly tell the agent what to do....

» Given the Q-function the agent can......
.... either exploit it or explore more....

Any effective strategy should be greedy in the limit of infinite
exploration (GLIE)

Try each action an unbounded number of times
Choose the predicted best action in the limit

« We will look at two exploration strategies
e-greedy

soft-max

g-greedy

» Choose arandom action with probability € and choose
best action with probability 1- €

» First GLIE condition (try every action an unbounded
number of times) is satisfied via the € random selection

» What about second condition?

Select predicted best action in the limit.

> reduce ¢ overtime!

Soft-Max

» Takes into account improvement in estimates of expected
reward function QJs,a]

« Choose action a in state s with a probability proportional to current
estimate of Q[s,a]

aQls.al

Z aQls.al

a

Soft-Max

» When In state s, Takes into account improvement in estimates
of expected reward function Q[s,a] for all the actions

« Choose action a in state s with a probability proportional to current

estimate of Q[s,a]
eQ[s,a] eQ[S,a]/Z‘

eQ[s,a] eQ[s,a]/r
2 2

» 1 (tau) In the formula above influences how randomly values
should be chosen

.+ iftis high, >>Q[s,a]?

A. It will mainly exploit

B. It will mainly explore

C. It will do both with equal probability

L ecture Overview

Finish Reinforcement learning

« EXploration vs. Exploitation
* On-policy Learning (SARSA)
 RL scalability

CPSC 422, Lecture 10

11

Learning before vs. during deployment

» Our learning agent can:

A. act in the environment to learn how it works (before
deployment)

B. Learn as you go (after deployment)

> If there is time to learn before deployment, the agent
should try to do its best to learn as much as possible about
the environment

« even engage in locally suboptimal behaviors, because this will
guarantee reaching an optimal policy in the long run

» If learning while “at work”, suboptimal behaviors could be
costly

CPSC 422, Lecture 10 12

» Six possible states <s,,..,S5> Exam P le

-1 -1
> 4 actions: '
| - BUs, | sg o
« UpCareful: moves one tile up unless there is 8 4 5
wall, in which case stays in same tile. Always
generates a penalty of -1
-100 1 ‘
o |eft: moves one tile left unless there is wall, i 52 53
which case
v'stays in same tile if ins;,ors,
vissenttos,ifins, K] SU‘ 51 1
« Right: moves one tile right unless there is wall, ‘

In which case stays in same tile

« Up: 0.8 goes up unless there is a wall, 0.1 like
Left, 0.1 like Right

Reward Model: CPSC 422, Lecture 8

e -1 for doing UpCareful
* Negative reward when hitting a wall, as marked on the picture
e +10 forleftin s,

13

Example

» Consider, for instance, our sample grid -]
game. Sq | Sg t

« the optimal policy isto go up in S,

| . . pySp | szt

« But if the agent includes some exploration in its
policy (e.g. selects 20% of its actions randomly),
exploring in S, could be dangerous because it [1]8g | S9 &1
may cause hitting the -100 wall

* No big deal if the agent is not deployed yet, but
not ideal otherwise

» Q-learning would not detect this problem

» |t does off-policy learning, i.e., it focuses on the optimal policy

» On-policy learning addresses this problem

CPSC 422, Lecture 10 14

On-policy learning: SARSA

» On-policy learning learns the value of the policy being
followed.

* e.g., act greedily 80% of the time and act randomly 20% of the time

« Better to be aware of the consequences of exploration has it
happens, and avoid outcomes that are too costly while acting,
rather than looking for the true optimal policy

» SARSA

 So called because it uses <state, action, reward, state, action>
experiences rather than the <state, action, reward, state> used by
Q-learning

 Instead of looking for the best action at every step, it evaluates the
actions suggested by the current policy

e Uses this info to revise it

CPSC 422, Lecture 10 15

On-policy learning: SARSA

In Q-learning we assume that the agent in s’ will follow the
optimal policy....

Qls,a] <= Q[s,a] +a((r +ymaxQ[s’,a’]) - Q[s, al)

» Glven an experience <s,a,r,s’,a’>, SARSA updates Q[s,a]
seeing that the current policy has selected a'... so how we
update?

CPSC 422, Lecture 10

1]

(sp.right, 0. s, upCareful. — 1,53, upCareful. — .55, left, 0. 54, left, 10, 59)Hj\'\t}]ﬁérszé 55 55
Qls, a] « Q[s, a] + a(r +Qls', a']-Qls,al) ¥
Qls.a] So | S1 | S2 | S3 | S4| S5 [200] 52 Sq L]
k_l upCareful Ol 0[O0 0O |0] O
- Left 0 0 0 0 0 0 =)
Right’ | 0|00 0 0[O0 [11Sg |81 &
Up 0]o0]0] 00| 0

Q[s,, right] «<— Q[s,, right]+ ¢, (r + 0.9Q[s,,UpCareful] - Q[s,, right]);
Q[s,, right] «—

Q[s,, upCarfull] < Q[s,,upCarfull]+ ¢, (r + 0.9Q[s,;,UpCareful] - Q[s,, upCarfull]);
Q[s,,upCarfull] «

Q[s,, upCarfull] «— Q[s,,upCarfull]+ e, (r + 0.9Q[s;, Left] - Q[s,, upCarfull]);
Q[s;,upCarfull] «-0+1(-1+0.9*0-0) =-1
Only immediate rewards
Q[Ss, Left] «— Q[s;, Left]+ , (r +0.9Q[s,, left] - Q[s;, Left]); are included in the update,

Q[s., Left] < 0+1(0+0.9%0-0) =0 as with Q-learning

Q[s,, Left] «— Q[s,, Left]+ e, (r +0.9Q[s,, Right]-Q[s,, Left]);

Q[s,, Left] <~ 0+1(10+0.9%*0—0) =10 17

CPSC 422, Lecture 10

-:I:_.a'.:;.. right, {Z}._ 51. u;:rCm‘cff}u'._ — ._.a'_: ;upCareful, - 1 ._.a';-, : fc{f}‘._{}._.u. .r'(fﬁ‘.-l 0.50,¢1 H;\Jr lé, S A 55 [1]

N

Qls,a] «-Q[s,a]+a(r+,Q[s",a']-Q[s,a])

Qls.a] So | S1 | So | S3 [Sa| Ss

k: 9 upCareful o|-1]0]|-1]0] O
Left 0| 0] O 0 |10] O

Right 0|l 0] O 0 |]0] O

Up 0| 0] O 0 |]0O] O

Q[s,, right] «<— Q[s,, right]+ ¢, (r + 0.9Q[s,,UpCareful] - Q[s,, right]);

Q[s,, right] «—

4
y F1]
[100] So s? =
1] S -'51]
SARSA backs up the

expected reward of the next
action, rather than the max

expected reward

Q[s,, upCarfull] < Q[s,,upCarfull]+ ¢, (r + 0.9Q[s,;,UpCareful] - Q[s,, upCarfull]);

Q[s,,upCarfull] «—-

Q[s,, upCarfull] «— Q[s,,upCarfull]+ e, (r + 0.9Q[s;, Left] - Q[s,, upCarfull]);
Q[s;,upCarfull] «-1+1/2(-1+0.9*0+1)=-1

Q[Ss, Left] «— Q[s;, Left]+ , (r +0.9Q[s,, left] - Q[s;, Left]);
Q[s;, Left] «— 0+1/2(0+0.9*10-0) =4.5

Q[s,, Left] «— Q[s,, Left]+ e, (r +0.9Q[s,, Right]-Q[s,, Left]);
Q[s,, Left] «-10+1/2(10+0.9*0-10) =10

18

CPSC 422, Lecture 10

Comparing SARSA and Q-learning

> For the little 6-states world

» Policy learned by Q-learning 80% greedy isto go up in s,
to reach s, quickly and get the big +10 reward

Iterations Q[sy,Up] Q[s;,Up] Q[s,,UpC] Q[s3,Up] Q[s, Left] | Q[Sss,Left]

40000000 19.1 17.5 22.7 20.4 26.8 23.7

i

L—1

E(I)] 54 55 F1]

[0 So | Sq b

i
1]Sg | Sq B

19
CPSC 422, Lecture 10

Comparing SARSA and Q-learning

» Policy learned by SARSA 80% greedy Is to go right in s,

» Safer because avoid the chance of getting the -100 reward in s,

» but non-optimal => lower Q-values

Iterations Q[sg,Right] | QJsy,Up] Q[s,,UpC] Q[s;,Up] Q[s, Left] | QIss,Left]
40000000 6.8 8.1 12.3 10.4 15.6 13.2
(L1]
10
S 55 F1]
[0 So | Sg

[1] SO a=S1 [1]

CPSC 422, Lecture 10

20

SARSA Algorithm

begin
initialize Q[S. A| arbitrarily
observe current state s

This could be, for instance any e-
greedy strategy:

-Choose random ¢ times, and max
the rest

—

select action a using a policy based on @

repeat forever:
carry out an action a

observe reward r and state s’
select action &' using a policy based on @

Qls.al — Qls.a|l + a(r+~Q[s".a'] — Q|s. a])

5§ «— 5§
a—a:

end-repeat

en El CPSC 422, Lecture 10 21

Another Example
» Gridworld with:

« Deterministic actions up, down, left, right
« Start from S and arrive at G (terminal state with reward > 0)

 Reward is -1 for all transitions, except those into the region marked “CIiff

v Falling into the cliff causes the agent to be sent back to start: I = -100

- I

~190

22

CPSC 422 Lecture 10

» With an e-greedy strategy (e.g., € =0.1)
A. SARSA will learn policy@while Q-learning will Iear

@Q-Iearning will learn policy@ while SARSA will Iear

C. They will both |earr@

D. They will both learr{p2)

e i el el Bl e B e N Bl

G

(el A el e el el e el e R

23

CPSC 422 Lecture 10

Q-learning vs. SARSA

Reward _sp-
per
epsipde

—
F =

=T 1] ¥ i T i
7] 1% 2EHN JE SmEr)i

Episodes
» Q-learning learns the optimal policy, but because it does so without
taking exploration into account, it does not do so well while the agent is

exploring

« It occasionally falls into the cliff, so its reward per episode is not that great

» SARSA has better on-line performance (reward per episode), because
it learns to stay away from the cliff while exploring

« But note that if e>0, SARSA and Q-learning would asymptotically converge
to the optimal policy CPSC 422, Lecture 10 24

Final Recommendation

» |If agent is not deployed it should do

random all the time (¢=1) and Q-learning
 When Q values have converged then deploy

» If the agent is deployed it should

« apply one of the explore/exploit strategies (e.qg.,
€=.5) and do Sarsa

« Decreasing € over time

CPSC 422, Lecture 10 25

NOT REQUIRED for 422! Map of reinforcement learning algorithms.
Boxes with thick lines denote different categories, others denote
specific algorithms

[RL Algorithms]
l

v v
[MDP] [Bandits]
| I
v y v v
Model-Based Model-Free Action-Value Gradient Bandit
(DP, etc) (TD, MC, etc) Methods Methods
4>[Given the Model] l l
MCTS (AlphaGo / [Value-Based] [Policy-Based]
AlphaZero) — ‘ 1 1
[On-Policy] [Off—Policy] [Gradient-Free] [Gradient-Based]
4>[Learn the Model] ‘ I
L[Sarsa J Q-Learning ’ [Cross-Entropy l\'lethod Evolutlen Str ategy 4{ Policy Gradient J

World Model

| 1 | ACKTR

[CSI] [Dueling DQN] [Double DQN]—»[TD3 J [SAC] [A2C/A3C]

SAMUEL TRPO/PPO

CPSC 422, Lecture 8 Slide 27

422 big picture

Deterministic

StarAl (statistical relational Al)

Hybrid: Det +Sto

Prob CFG Parsing
Prob Relational Models

Query

| ogics
First Order Logics

Ontologies

 Full Resolution
« SAT

Stochastic Markov Logics
. /

Z
Belief Nets
Approx. : Gibbs

Markov Chains and HMMs |

/

Forward, Viterbi....
Approx. : Particle Filteripg

y 4

Undirected Graphical Models

Markov Networks
Conditional Random Fields

Plannin

19

Markodv Decision Processes
an

Partially Observable MDP
 Value lteration
 Approx. Inference

Reinforcement Learning

/

Representation

Applications of Al

Reasoning
Technique

Learning Goals for today’s class

>»YOou can:

« Describe and compare techniques to combine exploration
with exploitation

* On-policy Learning (SARSA)

CPSC 422, Lecture 10 Slide 29

TODO for Wed

 Read textbook 6.4.2

 Nextresearch paper will be next Mon

* Practice Ex 11.B

* Assignment 1 due on Wed

CPSC 422, Lecture 10 Slide 30

