Probability and Time: Hidden

 Markov Models (HMMs)Computer Science cpsc322, Lecture 32

(Textbook Chpt 6.5.2)

June, 20, 2017

Lecture Overview

- Recap

Markov Models

- Markov Chain
- Hidden Markov Models

Answering Queries under Uncertainty

Stationary Markov Chain (SMC)

Astationary Markov Chain : for all $\mathrm{t}>0$ $\left|\operatorname{dom}\left(s_{i}\right)\right|=k$
$\rightarrow P\left(S_{t+1} \mid S_{0} \cdots, S_{t}\right)=P\left(S_{t+1} \mid S_{t}\right)$ and
$\cdot P\left(S_{t+1} \mid S_{t}\right)$ the some $\forall t$
$\rightarrow P\left(S_{t+1} \mid S_{0} \cdots, S_{t}\right)=P\left(S_{t+1} \mid S_{t}\right)$ and
$\cdot P\left(S_{t+1} \mid S_{t}\right)$ the some $\forall t$
We only need to specify $P\left(S_{\text {and }}{ }^{K}\right.$

- Simple Model, easy to specify
- Often the natural model
- The network can extend indefinitely

$$
P\left(S_{t+1} \mid S_{t}\right)
$$

- Variations of SMC are at the core of most Natural Language Processing (NLP) applications!

Lecture Overview

- Recap
- Markov Models
- Markov Chain
- Hidden Markov Models

How can we minimally extend Markov Chains?

- Maintaining the Markov and stationary assumptions?

Auseful situation to model is the one in which:

- the reasoning system does not have access to the states
- but can make observations that give some information about the current state

Hidden Markov Model

- A Hidden Markov Model (HMM) starts with a Markov chain, and adds a noisy observation about the state at each time step:

- $P\left(S_{0}\right)$ specifies initial conditions
$\chi_{P}\left(S_{t+1} \mid S_{t}\right)$ specifies the dynamics
A. $2 \times h$
$O_{P}\left(O_{t} \mid S_{t}\right)$ specifies the sensor model

ioclicker.

B. $h \times h$
C. $k \times h$

Hidden Markov Model

- AHidden Markov Model (HMM) starts with a Markov chain, and adds a noisy observation about the state at each time step:

- \mid domain(O$) \mid=h$
- $P\left(S_{0}\right)$ specifies initial conditions
$\chi_{P}\left(S_{t+1} \mid S_{t}\right)$ specifies the dynamics
$k \times k$
$O_{P}\left(O_{t} \mid S_{t}\right)$ specifies the sensor model

Example: Localization for "Pushed around" Robot

- Localization (where am I?) is a fundamental problem in robotics
- Suppose a robot is in a circular corridor with 16 locations

- There are four doors at positions: 2, 4, 7, 1
- The Robot initially doesn't know where it is
- The Robot is pushed around.After a push it can stay in the same location, move left or right. \qquad
- The Robot has a Noisy sensor telling whether it is in front of a door

This scenario can be represented as...

Example Stochastic Dynamics: when pushed, it stays in the samet location $p=0.2$, moves one step left or right with equal probability
$P\left(\operatorname{Loc}_{t+1} / \operatorname{Loc}_{t}\right)$

A. | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | .4 | 0 | .2 | 9 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |

$$
\operatorname{Loc}_{t}=10 \text { B. } \begin{array}{ll|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & .4 & .2 & .4 & 0 & 0 & 0 & 0 \\
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline
\end{array}
$$

This scenario can be represented as...

Example Stochastic Dynamics: when pushed, it stays in the same e^{4} location $\mathrm{p}=0.2$, moves left or right with equal probability

This scenario can be represented as...

Example of Noisy sensor telling whether $P\left(O_{t} /\right.$ Loco $\left._{t}\right)$ it is in front of a door
If it is in front of a door $\mathrm{P}\left(\mathrm{O}_{\mathrm{t}}=\mathrm{T}\right)=.8$
If not in front of a door $\mathrm{P}\left(\mathrm{O}_{\mathrm{t}}=\mathrm{T}\right)=1$
.2) $P\left(O_{t}=T\right) P\left(O_{t}=F\right)$

Useful inference in HMMs

- Localization: Robot starts at an unknown location and it is pushed around t times. It wants to determine where it is

- In general: compute the posterior distribution over the current state given all evidence to date

$$
P\left(S_{t} / O_{0} \cdots O_{t}\right)
$$

Example : Robot Localization

- Suppose a robot wants to determine its location based on its actions and its sensor readings
- Three actions: goRight, goLeft, Stay
- This can be represented by an augmented HMM

Robot Localization Sensor and Dynamics Model

- Sample Sensor Model (assume same as for pushed around)
- Sample Stochastic Dynamics: $\quad P\left(\underline{L o c_{t+1}} /\right.$ Action $\left._{t}, \underline{L o c_{t}}\right)$
$P\left(\right.$ Loc $_{t+1}=(L)$ Action $_{t}=$ goRight,$\left.L o c_{t}=\underline{L}\right)=0.1$
$\left.\begin{array}{l}P\left(\text { Loc }_{t+1}=L+1 / \text { Action }_{t}=\text { goRight }, ~ L o c_{t}=L\right)=0.8 \\ P\left(\text { Loc }_{t+1}=L+2 / \text { Action }_{t}=\text { goRight }, L o c_{t}=L\right)=0.074\end{array}\right\}$
 $+13$
- All location arithmetic is modulo 16
- The action goLeft works the same but to the left

Dynamics Model More Details

Sample Stochastic Dynamics: $\quad P\left(\right.$ Loc $_{t+1} /$ Action, Loc $\left.{ }_{t}\right)$

$$
\begin{aligned}
& P\left(\text { Loc }_{t+1}=L / \text { Action }_{t}=\text { goRight }, L o c_{t}=L\right)=0.1 \\
& P\left(\text { Loc }_{t+1}=L+1 / \text { Action }_{t}=\text { goRight }, L o c_{t}=L\right)=0.8 \\
& P\left(\text { Loc }_{t+1}=L+2 / \text { Action }_{t}=\text { goRight }, L o c_{t}=L\right)=0.074
\end{aligned}
$$

$P\left(\right.$ Loc $_{t+1}=L^{\prime} /$ Action $_{t}=$ goRight , Loc $\left.{ }_{t}=L\right) \subset 0.002$ for all other locations L ', goright $0 1 2 . 3 4 \longdiv { 1 5 }$ goleft

Robot Localization additional sensor

$$
L_{t}=T
$$

the Robot senses light

Additional Light Sensor: there is light coming through an opening at location 10 \qquad

$$
P\left(L_{t} / L o c_{t}\right)
$$

$$
p\left(L_{t}=F\right)
$$

$$
2.05 .01 \cdot 05.2 .4
$$

$$
P(L t=-1)
$$

Info from the two sensors is combined :"Sensor Fusion"

The Robot starts at an unknown location and must

 determine where it isThe model appears to be too ambiguous

- Sensors are too noisy
- Dynamics are too stochastic to infer anything

But inference actually works pretty well.
You can check it at :
http://www.cs.ubc.ca/spider/poole/demos/localization /localization.html

You can use standard Bnet inference. However you typically take advantage of the fact that time moves forward (not in 322)

Sample scenario to explore in demo

- Keep making observations without moving. What happens?
- Then keep moving without making observations. What happens?
- Assume you are at a certain position alternate moves and observations

HMMs have many other applications'" ${ }^{\prime}$.

Natural Language Processing: e.g., Speech Recognition
States:

Observations: acoustic signal $\not \approx$ phoneme

Bioinformatics: Gene Finding

- States: coding/non-coding region $x \times \vee \vee \vee \times x$
- Observations: DNA Sequences \rightarrow ATCGGAA

For these problems the critical inference is:
find the most likely sequence of states given a sequence of observations
Viterbi Algo

Markov Models

Learning Goals for today's class

You can:

- Specify the components of an Hidden Markov Model (HMM)
- Justify and apply HMMs to Robot Localization

Clarification on second LG for last class

You can:

- Justify and apply Markov Chains to compute the probability of Natural Language sentence (NOT to estimate the conditional probs- slide 18)

Next week

Environment

Deterministic
Stochastic

Problem

Sequential

Representation

Reasoning

Technique

Next Class

- One-off decisions(TextBook 9.2)
- Single Stage Decision networks (9.2.1)

Final

