Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 7

Sep, 18, 2019
Assignment 1 has been posted (due Sept 27)

- ValueOf Info and ValueOfControl
- MDPs: Value Iteration
- POMDPs: Belief State Update
422 big picture

Deterministic

Logics
- First Order Logics

Ontologies
- Full Resolution
- SAT

Stochastic

Belief Nets
- Approx. : Gibbs

Markov Chains and HMMs
- Forward, Viterbi….
- Approx. : Particle Filtering

Markov Decision Processes and
Partially Observable MDP
- Value Iteration
- Approx. Inference

Reinforcement Learning

Undirected Graphical Models
- Markov Networks
- Conditional Random Fields

StarAI (statistical relational AI)
Hybrid: Det + Sto
- Prob CFG
- Parsing
- Prob Relational Models
- Markov Logics

Applications of AI

Representation
Reasoning
Technique
Lecture Overview

• Start Reinforcement Learning
 • Start Q-learning
 • Estimate by Temporal Differences
MDP and Reinforcement Learning

Markov decision process

• Set of **states** S, set of **actions** A
• **Transition** probabilities to next states $P(s'| s, a')$
• **Reward** function $R(s)$ or $R(s, a)$ or $R(s, a, s')$

RL is based on MDPs, but

• Transition model is **not known**
• Reward model is **not known**

While for **MDPs** we can **compute** an optimal policy

RL **learns** an optimal policy
Search-Based Approaches to RL

Policy Search (stochastic local search)

- Start with an arbitrary policy
- To evaluate a policy, try it out in the world
- Generate some neighbours…..

Problems with evolutionary algorithms

- **Policy space can be huge**: with n states and m actions there are …… policies

- **Policies are evaluated as a whole**: cannot directly take into account locally good/bad behaviours
Q-learning

Contrary to search-based approaches, Q-learning learns after every action

Learns components of a policy, rather than the policy itself

\[Q(s,a) = \text{expected value of doing action } a \text{ in state } s \text{ and then following the optimal policy} \]
Q values

\[Q(s, a) = R(s) + \gamma \sum_{s'} P(s'|s, a)V^{\pi^*}(s') \] \hspace{1cm} (1)

Q(s,a) are known as Q-values, and are related to the utility of state s as follows

\[V^{\pi^*}(s) = \] \hspace{1cm} (2)

From (1) and (2) we obtain a constraint between the Q value in state s and the Q value of the states reachable from a
Average Through Time

Suppose we have a sequence of values (your sample data):

\[v_1, v_2, \ldots, v_k \]

And want a running approximation of their expected value

- e.g., given sequence of grades, estimate expected value of next grade

A reasonable estimate is the average of the first \(k \) values:

\[A_k = \frac{v_1 + v_2 + \ldots + v_k}{k} \]
Average Through Time

$$A_k = \frac{v_1 + v_2 + + v_k}{k}$$

$$kA_k = v_1 + v_2 + + v_{k-1} + v_k$$

and equivalently for \(k-1 \):

$$(k-1)A_{k-1} = v_1 + v_2 + + v_{k-1}$$

which replaced in the equation above gives

$$kA_k = (k-1)A_{k-1} + v_k$$

Dividing by \(k \) we get:

$$A_k = (1-\frac{1}{k})A_{k-1} + \frac{v_k}{k}$$

and if we set \(\alpha_k = 1/k \)

$$A_k = (1 - \alpha_k)A_{k-1} + \alpha_k v_k = A_{k-1} + \alpha_k A_{k-1} + \alpha_k v_k$$

$$= A_{k-1} + \alpha_k (v_k - A_{k-1})$$
Estimate by Temporal Differences

\[A_k = A_{k-1} + \alpha_k (v_k - A_{k-1}) \]

\((v_k - A_{k-1})\) is called a **temporal difference error** or **TD-error**

- it specifies how different the new value \(v_k\) is from the prediction given by the previous running average \(A_{k-1}\)

The new estimate (average) is obtained by updating the previous average by \(\alpha_k\) times the TD error.
Q-learning: General Idea

- Learn from the *history* of interaction with the environment, *i.e.*, a sequence of state-action-rewards

\[<s_0, a_0, r_1, s_1, a_1, r_2, s_2, a_2, r_3, \ldots \> \]

- History is seen as sequence of *experiences*, *i.e.*, tuples

\[<s, a, r, s'> \]

 - agent doing action \(a \) in state \(s \),
 - receiving reward \(r \) and ending up in \(s' \)

- These experiences are used to estimate the value of \(Q(s,a) \) expressed as
Q-learning: General Idea

But ..

\[Q(s, a) = r + \gamma \max_{a'} Q[s', a'] \]

Is an approximation.

The real link between \(Q(s, a) \) and \(Q(s', a') \) is

\[Q(s, a) = r + \gamma \sum_{s'} P(s' \mid s, a) \max_{a'} Q(s', a') \]
Q-learning: Main steps

Store $Q[S, A]$, for every state S and action A in the world.

Start with arbitrary estimates in $Q^{(0)}[S, A]$.

Update them by using experiences:

- Each experience $<s, a, r, s'>$ provides one new data point on the actual value of $Q[s, a]$

$$Q[s, a] = r + \gamma \max_{a'} Q[s', a']$$

New value of $Q[s, a]$,

current estimated value of $Q[s', a']$, where s' is the state the agent arrives to in the current experience.
Q-learning: Update step

\[A_k = A_{k-1} + \alpha_k (v_k - A_{k-1}) \]

- **TD** formula applied to Q[s,a]

\[
Q^{(i)}[s, a] \leftarrow Q^{(i-1)}[s, a] + \alpha_k \left(r + \gamma \max_{a'} Q^{(i-1)}[s', a'] \right) - Q^{(i-1)}[s, a]
\]

- Updated estimated value of Q[s,a]
- Previous estimated value of Q[s,a]
- New value for Q[s,a] from <s,a,r,s'>

CPSC 422, Lecture 7
Q-learning: algorithm

controller Q-learning(S,A)
inputs:
 S is a set of states
 A is a set of actions
 γ the discount
 α is the step size
internal state:
 real array Q[S,A]
 previous state s
 previous action a

begin
 initialize Q[S,A] arbitrarily
 observe current state s
repeat forever:
 select and carry out an action a
 observe reward r and state s'
 \[Q[s, a] \leftarrow Q[s, a] + \alpha (r + \gamma \max_{a'} Q[s', a'] - Q[s, a]) \]
 \[s \leftarrow s' \]
end-repeat
end
Learning Goals for today’s class

You can:

• Describe and criticize search-based approaches to RL
• Motivate Q-learning
• Justify Estimate by Temporal Differences
• Explain, trace and implement Q-learning
TODO for Fri

• Do Practice Ex. On Reinforcement Learning:
 Exercise 11.A: Q-learning
• http://www.aispace.org/exercises.shtml

Keep working on assignment 1!