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Lecture Overview
Markov Decision Processes

• ……

• Finding the Optimal Policy

• Value Iteration

• From Values to the Policy

Rewards and Optimal Policy

Filtering for HMM (more when we will do temporal models)

Partially Observable Markov Decision Processes

• Formal Specification and example

• Belief State

• Belief State Update



Value Iteration: from state values V to 

л*

➢ Now the agent can  chose the action that implements the 

MEU principle: maximize the expected utility of the 

subsequent state
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Value Iteration: from state values V to 

л*

➢ Now the agent can  chose the action that implements the 

MEU principle: maximize the expected utility of the 

subsequent state

states reachable 

from s by doing a

expected value 

of following 

policy л* in s’

Probability of getting to s’ from s via a

=
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)'(),|'(maxarg)(*
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CPSC 422, Lecture 4 Slide 4



Example: from state values V to л*

➢ To find the best action in (1,1)
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Optimal policy
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➢ This is the policy that we obtain….



Optimal policy
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➢ This is the policy that we 

obtain by applying Value 

Iteration to our example

➢ Reward structure for our 

example
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Rewards and Optimal Policy
Optimal Policy when reward in non-terminal states is -0.04

Is it possible that the optimal policy changes if the  

reward in the non-terminal states changes?

B. NoA. Yes
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Rewards and Optimal Policy

If r = -2, what would be a reasonable 

policy?>

3

2

1

1       2        3      4

3

2

1

1       2        3      4

B. A. 



CPSC 422, Lecture 4 Slide 11

Rewards and Optimal Policy
Optimal Policy when  r < -1.6284

Why is the agent heading straight into   (2,4) from its surrounding states?

3

2

1

1       2        3      4
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Rewards and Optimal Policy
Optimal Policy when  -0.427 < r < -0.085

The cost of taking a step is high enough to make the agent take the shortcut to (3,4) 

from (1,3)

3

2

1

1       2        3        4
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Rewards and Optimal Policy
Optimal Policy when  -0.0218 < r < 0

Why is the agent heading straight into the obstacle from 

(2,3)? And into the wall in (1,4)?

3

2

1

1       2      3      4
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Rewards and Optimal Policy
Optimal Policy when  -0.0218 < r < 0

Stay longer in the grid  is not penalized as much as before. The agent is willing to 

take longer routes to avoid (2,4)

• This is true even when it means banging against the 

obstacle a few times when moving from (2,3)

3

2

1

1       2      3    4
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Rewards and Optimal Policy

Optimal Policy when  r > 0     ?

Which means the agent is rewarded for every step it 

takes
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Rewards and Optimal Policy
Optimal Policy when  r > 0

Which means the agent is rewarded for every 

step it takes

3

2

1

1       2        3      4

state where every action 
belong to an optimal policy

r > 0
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MDPs scalability (not required)

• Modern optimal algorithms draw from a vast repertoire of 

techniques, like graph algorithms, heuristic search, 

compact value function representations, and 

simulation-based approaches. E.g.,

• Only compute V for states “reachable” from S0

• Do not compute V for really bad states (based on 

heuristics)

• An enormous number of approximation algorithms have 

been suggested that exploit several intuitions, such as 

inadmissible heuristics, interleaving planning and 

execution, special processing for dead-end states, 

domain determinization ideas, hybridizing multiple 

algorithms, and hierarchical problem decompositions.
explore the vast space of optimality-efficiency tradeoffs

Planning with Markov Decision Processes: An AI Perspective  Mausam

(UW), Andrey Kolobov (MSResearch) Synthesis Lectures on Artificial Intelligence 

and Machine Learning Jun 2012
Free online through UBC

http://www.morganclaypool.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield:(Mausam)
http://www.morganclaypool.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield:(Kolobov,+A)
http://www.morganclaypool.com/loi/aim
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Markov Models 

Markov Chains

Hidden Markov 
Model

Markov Decision 
Processes (MDPs)
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Partially Observable 
Markov Decision 

Processes (POMDPs)
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Lecture Overview

Filtering for HMM (more when we will do temporal 

models)

Partially Observable Markov Decision

Processes

• Formal Specification and example

• Belief State

• Belief State Update



CPSC422, Lecture 5 Slide 20

Hidden Markov Model

• P (X0) specifies initial conditions

(probability distrib. for start state)

• P (Xt+1|Xt) specifies the dynamics

• P (Et |St) specifies the sensor model

• A Hidden Markov Model (HMM) starts with a Markov 

chain, and adds a noisy observation/evidence about the 

state at each time step:

• |domain(X)| = k

• |domain(E)| = h
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Hidden Markov Model 
(our example with no actions)

• P (X0) specifies initial conditions

• P (Xt+1|Xt) specifies the dynamics

• P (Et |St) specifies the sensor model

• |domain(X)| = 11

• |domain(E)| = 

• E = # of walls  {1w, 2w}



Useful inference in HMMs
• In general (Filtering): compute the posterior 

distribution over the current state given all 

evidence to date
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P(Xt | e0:t ) 



Intuitive Explanation for filtering recursive formula
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P(Xt | e0:t ) 



Intuitive Explanation for filtering recursive formula
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P(Xt | e0:t ) 
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Lecture Overview

Filtering for HMM (more when we will do temporal models)

Partially Observable MDPs

• Formal Specification and example

• Belief State

• Belief State Update



POMDP: Intro

➢The MDPs we looked at so far were fully observable

• The agent always knows which state it is in

• The uncertainty is in …………..?

• Policy only depends on………….?
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Belief States
➢ In POMDPs, the agent cannot tell for sure where it is in the 

space state, all it can have are beliefs on that

• probability distribution over states

• This is usually called belief state b

• b(s) is the probability assigned by b to the agent being in state s

➢ Example: Suppose we are in our usual grid world, but

• the agent has no information at all about its position in non-terminal states

• It knows only  when it is in a  terminal state (because the game ends)

➢ What is the  initial belief state, if the agent knows that it is not in a 

terminal state? 30
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Belief States
➢ Initial belief state: 

• <1/9,1/9, 1/9,1/9,1/9,1/9, 1/9,1/9,1/9,0,0>
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Observation Model

➢ As in HMM, the agent can learn something about its actual 

state by sensing the environment:

• Sensor Model P(e|s): probability of observing the evidence e in 
state s

➢ A POMDP is fully specified by

• Reward function: R(s) (we’ll forget about a and s’ for simplicity)

• Transition Model: P(s’ |a,s)

• Observation model: P(e|s)

➢ Agent’s belief state is updated by computing   the 

conditional probability distribution over all the states given 

the sequence of observations and actions so far
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State Belief Update

➢ State belief update is similar but includes actions

• If the agent has current belief state b(s), performs action a and 
then perceives  evidence e, the new belief state b’(s’) is

➢ We just saw filtering for HMM?

• Compute conditional probability distribution over states at time t 
given all observations so far 

P(Xt | e0:t) = α P(et | Xt) ∑xt-1
P(Xt | xt-1 ) P( xt-1 | e0:t-1 ) Filtering at time t-1

Inclusion of new evidence (sensor model) Propagation to time t

   )(),|'()'|()'(' =
s

sbsasPsePsb 

Inclusion of new evidence:

Probability of perceiving e in s’

Propagation at time t: Probability of transition to s’ given s and  a

Filtering at time t-1: 

State belief based on all observations and 

actions up to t-1
Sum over all the states that can take to s’ after 

performing a

33
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Grid World Actions Reminder

Agent moves in the above grid via actions Up, Down, Left, Right

Each action has:

• 0.8 probability to reach its intended  effect

• 0.1 probability to move at right angles of the intended 

direction

• If the agents bumps into a wall, it says there
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Example (no observation)

 ....)1,2()),1,2(|)1,1(()1,1()),1,1(|)1,1(()1,1(' ++= bleftPbleftPb 

➢ Back to the grid world, what is the belief state after agent 

performs action left in the initial situation?

➢ The agent has no information about its position

• Only one fictitious observation: no observation

• P(no observation | s) = 1  for every s

➢ Let’s  instantiate

➢ For state (1,1)  (action a = left)

   )(),|'()'|()'(' =
s

sbsasPsePsb 
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B. A. C. 

What is missing to get the correct answer?

)2,1()),2,1(|)1,1(( bleftP)2,1()),2,1(|)1,1(( bdownP )3,1()),3,1(|)1,1(( bleftP



Example

 )1,2()),1,2(|)1,1(()2,1()),2,1(|)1,1(()1,1()),1,1(|)1,1(()1,1(' bleftPbleftPbleftPb ++=

➢ Back to the grid world, what is the belief state after agent 

performs action left in the initial situation?

➢ The agent has no information about its position

• Only one fictitious observation: no observation

• P(no observation | s) = 1  for every s

➢ Let’s  instantiate

 )3,1()),3,1(|)2,1(()2,1()),2,1(|)2,1(()1,1()),1,1(|)2,1(()2,1(' bleftPbleftPbleftPb ++=

➢ Do the above for every state to get the new belief state

   )(),|'()'|()'(' =
s

sbsasPsePsb 
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..............................................................................................................



After five Left actions
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Example
➢ Let’s introduce a sensor that perceives the number of adjacent 

walls in a location with a 0.1 probability of error

• P(2w|s) = 0.9 ;  P(1w|s) = 0.1 if s is non-terminal and not in third column

• P(1w|s) = 0.9 ; P(2w|s) = 0.1 if s is non-terminal and in third column

➢ Try to compute the new belief state if agent moves left and then perceives 1 

adjacent wall

   )(),|'()'|()'(' =
s

sbsasPsePsb 
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 )1,2()),1,2(|)1,1(()2,1()),2,1(|)1,1(()1,1()),1,1(|)1,1(()1,1(' bleftPbleftPbleftPXb ++=

B. 0.2A. 0.1 C. 0.9

X should be equal to ?
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Learning Goals for today’s class

You can:

• Define and compute filtering on an HMM

• Define a POMDP

• Define and compute a state belief update for a POMDP

• Define a Policy for a POMDP
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TODO for Mon

Read Textbook 9.5.6 Partially Observable MDPs

Check what to do with readings (details on course webpage)

• Carefully read the paper before class

• Send by email

• (at least 3) questions on the assigned paper

• a brief summary of the paper (no more than half a page)

• First Mon 23

Assignment 1 will be out on Mon



➢ Partially Observable Markov Decision Process (POMDP): As the 

name suggests, POMDPs model scenarios where the agent cannot 

observe the world state fully [123]. A POMDP agent needs to execute 

actions for two reasons: for changing the world state (as in an MDP) 

and for obtaining additional information about the current world state. 

As Section 7.1.1 explains, a POMDP is a large Continuous MDP, in 

which a state-variable is the world state, and its value denotes the 

agent’s belief (probability) that it is in that state. Straightforward 

implementations of MDP algorithms do not scale up to POMDPs and, 

over the years, a large number of specialized POMDP techniques 

have been developed, with successes in scaling the algorithms to 

millions of states [214]. POMDPs have also seen several applications, 

e.g., dialog management [241], intelligent control of workflows [65], 

intelligent tutoring [200], and several robotic planning applications 

[233].
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