Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 32

Nov, 25, 2019

Slide source: from David Page (MIT) (which were from From Lise Getoor, Nir Friedman, Daphne Koller, and Avi Pfeffer) and from Lise Getoor

CPSC 422, Lecture 32

Intuition for Prob. Relational models

A **customer** C1 will / will not *recommend* a **book** B1 depending on the book *quality*, and the customer *honesty* and *kindness*

When you have two customers and two books.....

Intuition for Prob. Relational models

A **customer** C1 will / will not *recommend* a **book** B1 depending on the book *quality*, and the customer *honesty* and *kindness*

When you have two customers and two books.....

Lecture Overview

- Motivation and Representation
- Semantics of Probabilistic Relational Models (PRMs)
 - Classes and Relations
 - Attributes and Reference Slots
 - Full Relational Schema and its Instances
 - Fixed vs. Probabilistic Attributes
 - Relational Skeleton and its Completion Instance
 - Inverse Slot and Slot chain

Motivation for PRMs

- Most real-world data are stored in relational DBMS
- Combine advantages of relational logic & Bayesian networks:
 - natural domain modeling: objects, properties, relations;
 - generalization over a variety of situations;
 - compact, natural probability models.
- Integrate uncertainty with relational model:
 - properties of domain entities can depend probabilistically on properties of related entities;
 - uncertainty over relational structure of domain.

Limitations of Bayesian Networks A Bayesian networks (BNs) represents a pre-specified set of attributes/variables whose relationship to each other is fixed in advance.

How PRMs extend BNs?

- 1. PRMs conceptually extend BNs to allow the specification of a probability model for classes of objects rather than a fixed set of simple attributes
- 2. PRMs also allow properties of an entity to depend probabilistically on properties of other *related entities*

Lecture Overview

- Motivation and Representation
- Semantics of Probabilistic Relational Models (PRMs)
 - Classes and Relations
 - Attributes and Reference Slots
 - Full Relational Schema and its Instances
 - Fixed vs. Probabilistic Attributes
 - Relational Skeleton and its Completion Instance
 - Inverse Slot and Slot chain

Mapping PRMs from Relational Models

- The representation of PRMs is a direct mapping from that of relational databases
- A relational model consists of a set of classes $X_{1,...,}X_{n}$ and a set of relations $R_{1,...,}R_{m}$, where each relation R_{i} is typed

University Domain Example -Classes and relations

Mapping PRMs from Relational Models: attributes

• Each class or entity type (corresponding to a single relational table) is associated with a set of <u>attributes $A(X_i)$ </u> (at least one of which is a primary key)

Mapping PRMs from Relational Models: reference slot

- Each class or entity type is also associated with a set of *reference slots* R(X)
 - correspond to attributes that are foreign keys (key attributes of another table)
 - X. ρ , is used to denote reference slot ρ of X.

University Domain Example -Full Relational Schema

CPSC 422, Lecture 32

Book Recommendation Domain – Full Relational Schema

PRM Semantics: Attribute values

- Each attribute A_j ∈ A(X_i) takes on values in some fixed domain of possible values denoted V(A_j). We assume that value spaces are finite
 Attribute A of class X is denoted X A
- Attribute A of class X is denoted X.A
- E.g., V(Student.Intelligence) might be { high, low }

PRM Semantics: Instance of Schema

- An instance I of a schema/model specifies a set of objects x, partitioned into classes; such that there is
 - a value for each attribute x.A
 - and a value for each reference slot
 x.p

PRM Semantics: fixed vs. prob. attributes

- Some attributes, such as Name or Social Security Number, are fully determined.
 Such attributes are labeled as fixed.
 Assume that they are known in any instantiation of the schema
- The other attributes are called probabilistic. We may be uncertain about their value

University Domain Example – fixed vs. probabilistic attributes

Which ones are fixed? Which are probabilistic?

CPSC 422, Lecture 32

University Domain Example – fixed vs. probabilistic attributes

PRM Semantics: Skeleton Structure

- A skeleton structure o of a relational schema is a partial specification of an instance of the schema. It specifies
 - set of objects for each class,
 - values of the fixed attributes of these objects,
 - relations that hold between the objects
- The values of probabilistic attributes are left unspecified
- A completion I of the skeleton structure σ extends the skeleton by also specifying the values of the probabilistic attributes

University Domain Example -Relational Skeleton

University Domain Example -The Completion Instance I

University Domain Example -Another Relational Skeleton

University Domain Example -The Completion Instance I

PRM Semantics: inverse slot

• For each reference slot ρ , we define an *inverse* slot, ρ^{-1} , which is the inverse function of ρ

PRM Semantics: slot chain A slot chain $\tau = \rho_1 \dots \rho_m$ is a sequence of reference slots that defines functions from objects to other objects to which they are indirectly related.

Slot chains will allow us...

To specify probabilistic dependencies between attributes of related entities

Learning Goals for today's class

You can:

- Explain the need for Probabilistic relational model
- Explain how PRMs generalize BNs
- Define a Full Relational Schema and its instances
- Define a Relational Skeleton and its completion Instances
- Define an inverse slot and an slot chain

Next class on Wed

Finish Probabilistic Relational Models

- Probabilistic Model
- Dependency Structure
- Aggregation
- Parameters
- Class dependency Graph
- Inference

Keep working on Assignment-4 Due Nov 29