Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 31

Nov, 22, 2019

Slide source: from Pedro Domingos UW & Markov Logic: An Interface Layer for Artificial Intelligence Pedro Domingos and Daniel Lowd University of Washington, Seattle

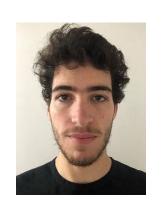
TA evaluations

Teaching Assistant

Grigorii Guz g.guz@alumni.ubc.ca

Daniele Reda dreda@cs.ubc.ca

Matthew Wilson matwilso@cs.ubc.ca



Also if you have not done it yet, fill out the teaching evaluations

https://eval.olt.ubc.ca/science.

login to the site using your CWL

Lecture Overview

- MLN Recap
- Markov Logic: applications
 - Entity resolution
 - Statistical Parsing!

Markov Logic: Definition

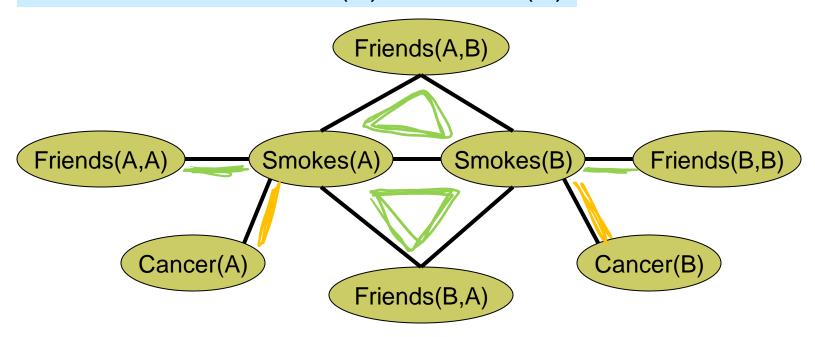
- A Markov Logic Network (MLN) is
 - a set of pairs (F, w) where
 - F is a formula in first-order logic
 - w is a real number
 - Together with a set C of constants,
- It defines a Markov network with
 - One binary node for each grounding of each predicate in the MLN
 - One feature/factor for each grounding of each formula F in the MLN, with the corresponding weight w

Grounding: substituting vars with constants

MLN features

- **◎** 1.5
- $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
- **1**.
- $\forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)$

Two constants: **Anna** (A) and **Bob** (B)



CPSC 422, Lecture 31

MLN: parameters

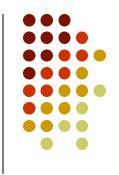
For each grounded formula i we have a factor

1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$

$$f(\text{Smokes}(x), \text{ Cancer}(x)) = \begin{cases} 1 & \text{if } \text{Smokes}(x) \Rightarrow \text{Cancer}(x) \\ 0 & \text{otherwise} \end{cases}$$

MLN: prob. of possible world

- 1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
- $\forall x, y \ Friends(x, y) \Rightarrow (Smokes(x) \Leftrightarrow Smokes(y))$ 40



Two constants: **Anna** (A) and **Bob** (B)

CPSC 422, Lecture 30

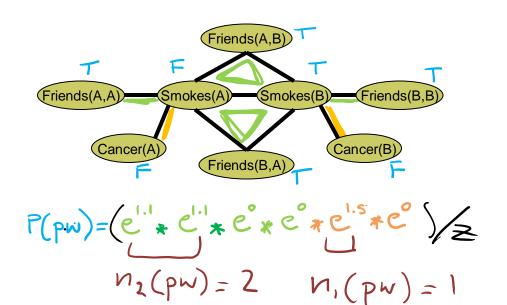
MLN: prob. Of possible world

Probability of a world pw:

$$P(pw) = \frac{1}{Z} \exp\left(\sum_{i} \frac{w_i n_i(pw)}{n_i(pw)}\right)$$

Weight of formula *i*

No. of true groundings of formula *i* in *pw*



Inference in MLN

 Most likely interpretation maximizes the sum of weights of satisfied formulas (MaxWalkSAT)

$$\underset{pw}{\operatorname{arg\,max}} \sum_{i} w_{i} n_{i}(pw)$$

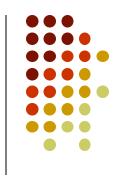
P(Formula) = ? (Sampling interpretations)

P(ground literal | conjuction of ground literals)...
 Gibbs sampling on relevant sub-network

Lecture Overview

- Recap MLN
- Markov Logic: applications
 - Entity resolution
 - Statistical Parsing!

Entity Resolution



 Determining which observations correspond to the same real-world objects

- (e.g., database records, noun phrases, video regions, etc)
- Crucial importance in many areas (e.g., data cleaning, NLP, Vision)

Entity Resolution: Example

SAME?

SAME?

SAME?

SAME?

SAME?

AUTHOR: H. POON & P. DOMINGOS

TITLE: UNSUPERVISED SEMANTIC PARSING

VENUE: *EMNLP-09*

AUTHOR: *Hoifung Poon and Pedro Domings*

TITLE: Unsupervised semantic parsing

VENUE: Proceedings of the 2009 Conference on Empirical

Methods in Natural Language Processing

AUTHOR: Poon, Hoifung and Domings, Pedro

TITLE: Unsupervised ontology induction from text

VENUE: Proceedings of the Forty-Eighth Annual Meeting

of the Association for Computational Linguistics

AUTHOR: H. Poon, P. Domings

TITLE: Unsupervised ontology induction

VENUE: ACL-10

SAME?

12

Entity Resolution (relations)

Problem: Given citation database, find duplicate records Each citation has author, title, and venue fields We have 10 relations


```
Author (bib, author)

Title (bib, title)

Venue (bib, venue)

HasWord (author, word)

HasWord (title, word) indicate which words are present in each field;

HasWord (venue, word)
```

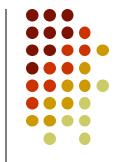
```
SameAuthor (author, author) represent field equality;

SameTitle(title, title)

SameVenue(venue, venue)

SameBib(bib, bib) represents citation equality;
```

Entity Resolution (formulas)



Predict citation equality based on words in the fields

```
Title(b1, t1) ∧ Title(b2, t2) ∧

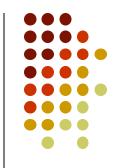
HasWord(t1,+word) ∧ HasWord(t2,+word) ⇒

SameBib(b1, b2)

(NOTE: +word is a shortcut notation, you
Title(b1, t1) \wedge Title(b2, t2) \wedge
(NOTE: +word is a shortcut notation, you
actually have a rule for each word e.g.,
Title(b1, t1) \Lambda Title(b2, t2) \Lambda
HasWord(t1, "bayesian") A
HasWord(t2,"bayesian") \Rightarrow SameBib(b1, b2))
Same 1000s of rules for author
Same 1000s of rules for venue
```

CPSC 422, Lecture 31

Entity Resolution (formulas)



```
Transitive closure
```

```
SameBib (b1,b2) \land SameBib (b2,b3) \Rightarrow SameBib (b1,b3)
```

Link fields equivalence to citation equivalence — e.g., if two citations are the same, their authors should be the same

Author (b1, a1) ∧ Author (b2, a2) ∧ SameBib (b1, b2) ⇒

SameAuthor (a1, a2)

...and that citations with the same author are more likely to be the same

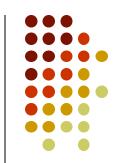
Author (b1, a1) ∧ Author (b2, a2) ∧ SameAuthor (a1, a2)

Same rules for title Same rules for venue

 \Rightarrow SameBib(b1, b2)

Benefits of MLN model

Standard non-MLN approach: build a classifier that given two citations tells you if they are the same or not, and then apply transitive closure



New MLN approach:

 performs collective entity resolution, where resolving one pair of entities helps to resolve pairs of related entities

e.g., inferring that a pair of citations are equivalent can provide evidence that the names *AAAI-06* and *21st Natl. Conf. on AI* refer to the same venue, even though they are superficially very different. This equivalence can then aid in resolving other entities.

CPSC 422, Lecture 31

Similar to.....

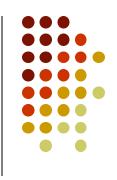
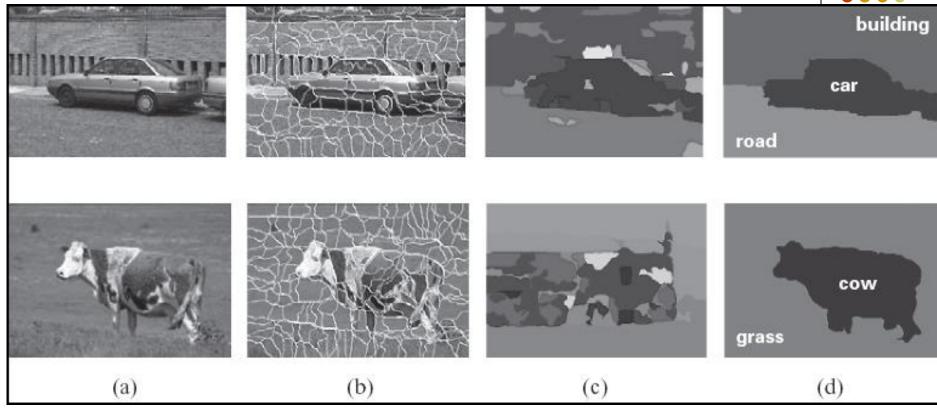


Image segmentation

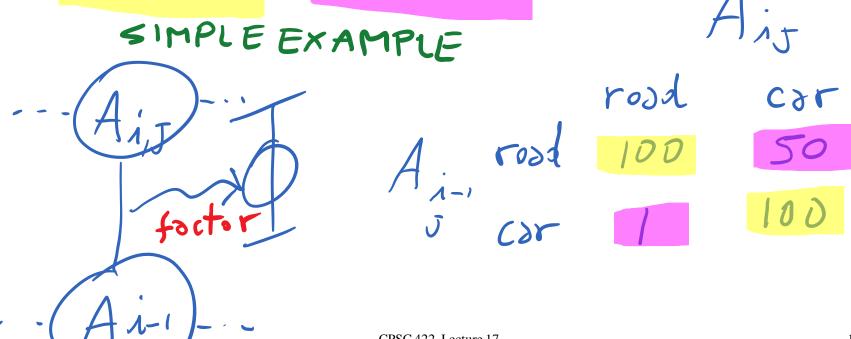


clossfying exch superpixel In dependently CPSC 422, Lecture 17

With a Markov Random
Field!

Markov Networks Applications (1): Computer Vi Each vars correspond to a pixel (or superpixel)

- Edges (factors) correspond to interactions between adjacent pixels in the image
 - E.g., in segmentation: from generically penalize, discontinuities, to road under car



Other MLN applications

- Information Extraction
- Co-reference Resolution Robot Mapping (infer the map of an indoor environment from laser range data)
- Link-based Clustering (uses relationships among the objects in determining similarity)
- Ontologies extraction from Text

•

Lecture Overview

- Recap of MLN
- Markov Logic: applications
 - Entity resolution
 - Statistical Parsing!

Statistical Parsing

• Input: Sentence

Output: Most probable parse

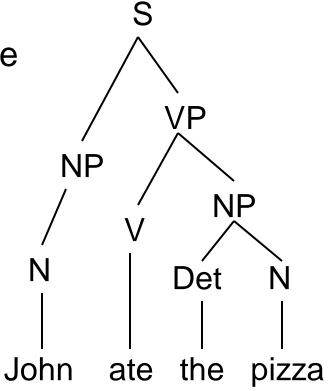
 PCFG: Production rules with probabilities

E.g.:
$$0.7 \text{ NP} \rightarrow \text{N}$$

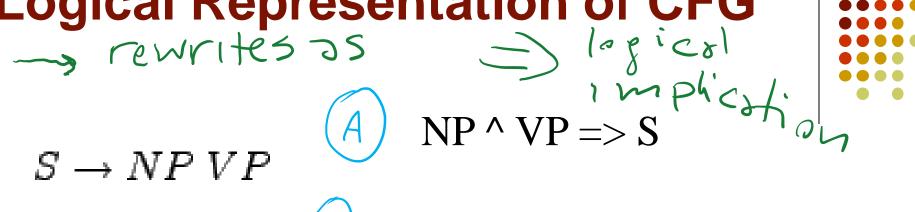
 $0.3 \text{ NP} \rightarrow \text{Det N}$

- WCFG: Production rules with weights (equivalent)
- Chomsky normal form:

$$A \rightarrow B C \text{ or } A \rightarrow a$$



Logical Representation of CFG

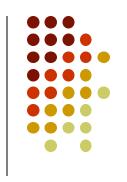


$$P$$
 NP(i,j) $^{\wedge}$ VP(j,k) => S(i,k)

$$S(i,k) => NP(i,j) \wedge VP(j,k)$$

Which one would be a reasonable representation in logics?

Logical Representation of CFG



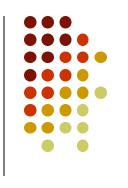
$$S \rightarrow NP \ VP$$
 $NP(i,j) \land VP(j,k) => S(i,k)$
 $NP \rightarrow Adj \ N$ $Adj(i,j) \land N(j,k) => NP(i,k)$
 $NP \rightarrow Det \ N$ $Det(i,j) \land N(j,k) => NP(i,k)$
 $VP \rightarrow V \ NP$ $V(i,j) \land NP(j,k) => VP(i,k)$

Lexicon....

```
// Determiners U+ 1
Token("a",i) => Det(i,i+1)
Token("the",i) => Det(i,i+1)
// Adjectives
Token("big",i) \Rightarrow Adj(i,i+1)
Token("small",i) => Adj(i,i+1)
// Nouns
Token("dogs",i) => N(i,i+1)
Token("dog",i) => N(i,i+1)
Token("cats",i) => N(i,i+1)
Token("cat",i) => N(i,i+1)
Token("fly",i) => N(i,i+1)
Token("flies",i) => N(i,i+1)
```

// Verbs
Token("chase",i) => V(i,i+1)
Token("chases",i) => V(i,i+1)
Token("eat",i) => V(i,i+1)
Token("eats",i) => V(i,i+1)
Token("fly",i) => V(i,i+1)
Token("fly",i) => V(i,i+1)

Avoid two problems (1)



 If there are two or more rules with the same left side (such as NP -> Adj N and NP -> Det N need to enforce the constraint that only one of them fires:

$NP(i,k) \wedge Det(i,j) => \neg Adj(i,j)$

"If a noun phrase results in a determiner and a noun, it cannot result in and adjective and a noun".

CPSC 422, Lecture 31

Avoid two problems (2)

- Ambiguities in the lexicon.
- homonyms belonging to different parts of speech,
- e.g., Fly (noun or verb),
- only one of these parts of speech should be assigned.

We can enforce this constraint in a general manner by making mutual exclusion rules for each part of speech

```
pair, i.e.:
```

- ¬ Det(i,j) v ¬ Adj(i,j)
- ¬ Det(i,j) ∨ ¬ N(i,j)
- ¬ Det(i,j) ∨ ¬ V(i,j)
- ¬ Adj(i,j) ∨ ¬ N(i,j)
- ¬ Adj(i,j) ∨ ¬ V(i,j)
- $\neg N(i,j) \lor \neg V(i,j)$

Statistical Parsing Representation: Summary

- For each rule of the form A → B C:
 Formula of the form B(i,j) ^ C(j,k) =>
 A(i,k)
 - E.g.: NP(i,j) $^{\text{VP}(j,k)} => S(i,k)$
- For each rule of the form A → a:
 Formula of the form Token(a,i) =>
 A(i,i+1)
 - E.g.: Token("pizza", i) \Rightarrow N(i,i+1)
- For each nonterminal: state that exactly one production holds (solve problem 1)
- Mutual exclusion rules for each part of speech pair (solve problem 2)422, Lecture 31

Statistical Parsing: Inference

Evidence predicate: Token (token, position)

```
E.g.: Token ("pizza", 3) etc.
```

Query predicates:

Constituent (position, position)

```
E.g.: S(0,7) "is this sequence of seven
words a sentence?" but also NP(2,4)
```

What inference yields the most probable parse?

MAP!

Semantic Processing

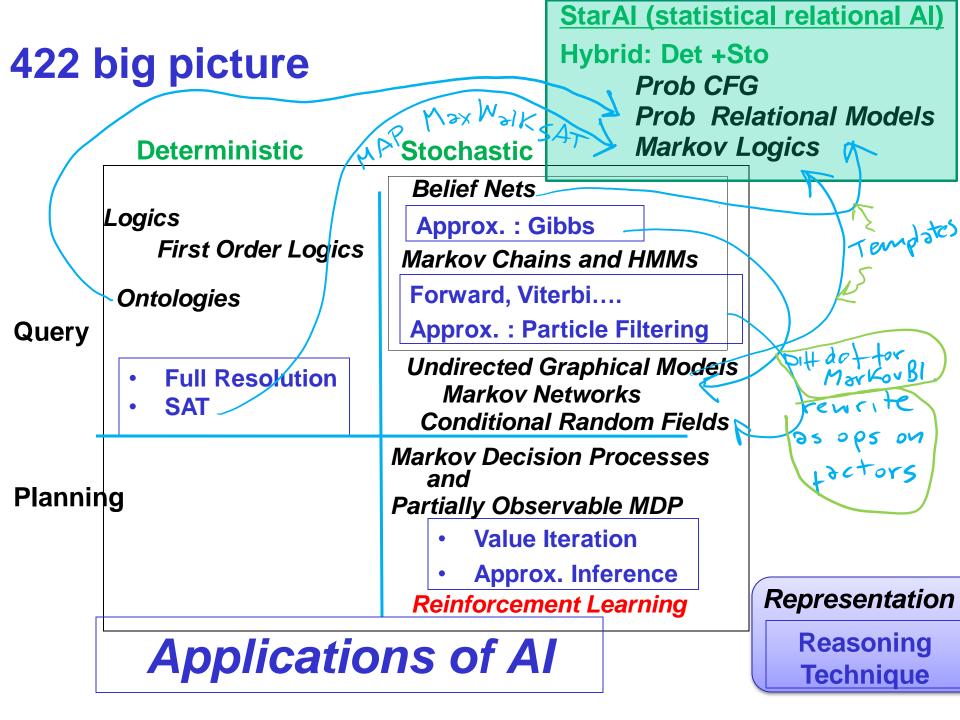
Example: John ate pizza.

Event $(t,e,i,k) \Rightarrow Isa(e,t)$

 $NP \rightarrow John$ $NP \rightarrow pizza$

```
Token("John",0) => Participant(John,E,0,1)
Token("ate",1) => Event(Eating,E,1,2)
Token("pizza",2) => Participant(pizza,E,2,3)
Event(Eating,e,i,j) ^ Participant(p,e,j,k)
    ^ VP(i,k) ^ V(i,j) ^ NP(j,k) => Eaten(p,e)
Event(Eating,e,j,k) ^ Participant(p,e,i,j)
    ^ S(i,k) ^ NP(i,j) ^ VP(j,k) => Eater(p,e)
```

Result: Isa(E, Eating), Eater(John, E), Eaten(pizza, E)



Learning Goals for today's class

You can:

- Compute Probability of a formula, Conditional Probability
- Describe the entity resolution application of ML and explain the corresponding representation

Next Class on Mon

Start Probabilistic Relational Models

Keep working on Assignment-4

Due Nov 29

In the past, a similar hw took students between 8 - 15 hours to complete. Please start working on it as soon as possible!