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Lecture Overview

• Recap Markov Logic (Networks)

• Relation to First-Order Logics

• Inference in MLN

• MAP Inference (most likely pw)

• Probability of a formula, Conditional Probability



Prob. Rel. Models vs. Markov Logic
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Second example

12 groundings of the predicates

2^12 possible worlds / interpretations



MLN features
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MLN: parameters
⚫ For each grounded formula i we have a factor
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⚫ Same for all the 

groundings of the same 

formula



MLN: prob. of possible world
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MLN: prob. Of possible world

⚫ Probability of a world pw:

Weight of formula i No. of true groundings of formula i in pw
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Lecture Overview

• Recap Markov Logic (Networks)

• Relation to First-Order Logics

• Inference in MLN

• MAP Inference (most likely pw)

• Probability of a formula, Conditional Probability



How MLN s generalize FOL
⚫ Consider MLN containing only one formula
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How MLN s generalize FOL

First order logic (with some mild assumptions) 

is a special Markov Logics obtained when 

⚫ all the weight are equal 

⚫ and tend to infinity
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Lecture Overview

• Recap Markov Logic (Networks)

• Relation to First-Order Logics

• Inference in MLN

• MAP Inference (most likely pw )

• Probability of a formula, Conditional Probability



Inference in MLN

⚫ MLN acts as a template for a Markov Network

⚫ We can always answer prob. queries using standard 

Markov network inference methods on the 

instantiated network

⚫ However, due to the size and complexity of the 

resulting network, this is often infeasible. 

⚫ Instead, we combine probabilistic methods with 

ideas from logical inference, including satisfiability

and resolution. 

⚫ This leads to efficient methods that take full 

advantage of the logical structure.
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MAP Inference
⚫ Problem: Find most likely state of world
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MAP Inference

⚫ Are these two equivalent?
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MAP Inference

⚫ Therefore, the MAP  problem in Markov logic 

reduces to finding the truth assignment that 

maximizes the sum of weights of satisfied 

formulas (let’s assume clauses)

⚫ This is just the weighted MaxSAT problem

⚫ Use weighted SAT solver

(e.g., MaxWalkSAT [Kautz et al., 1997])
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WalkSAT algorithm (in essence)

(from lecture 21 – one change)

(Stochastic) Local Search Algorithms can be used 

for this task!

Evaluation Function f(pw) : number of satisfied clauses

WalkSat: One of the simplest and most effective 

algorithms:

Start from a randomly generated interpretation (pw)

• Pick randomly an unsatisfied clause

• Pick a proposition/atom to flip (randomly 1 or 2)

1. Randomly

2. To maximize # of satisfied clauses
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MaxWalkSAT algorithm (in essence) 

current pw <- randomly generated interpretation

Generate new pw  by doing the following

• Pick randomly an unsatisfied clause

• Pick a proposition/atom to flip (randomly 1 or 2)

1. Randomly

2. To maximize ∑ weights(sat. clauses in resulting pw) 

Evaluation Function f(pw) : ∑ weights(sat. clauses in pw)



Computing Probabilities

P(Formula|ML,C) = ?

⚫ Brute force: Sum probs. of possible worlds 

where formula holds

⚫ MCMC: Sample worlds, check formula holds

CPSC 422, Lecture 30

19

 
=

FPWpw CLCL

F

CL

MpwPMFP

PW

M

),()|( ,,

,

||

||
)|( ,

S

S
MFP

S

S

F
CL

F

=



Computing Cond. Probabilities

Let’s look at the simplest case

P(ground literal | conjuction of ground literals, ML,C)

CPSC 422, Lecture 31 20

P(Cancer(B)| Smokes(A), Friends(A, B), Friends(B, A) )

To answer this query do you need to create (ground) 

the whole network?
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Computing Cond. Probabilities

Let’s look at the simplest case

P(ground literal | conjuction of ground literals, ML,C)
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P(Cancer(B)| Smokes(A), Friends(A, B), Friends(B, A) )

You do not need to create (ground) the part of the 

Markov Network from which the query is independent 

given the evidence 



Computing Cond. Probabilities
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P(Cancer(B)| Smokes(A), Friends(A, B), Friends(B, A) )

Then you can perform Gibbs Sampling in 

this Sub Network
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Learning Goals for today’s class

You can:

• Show on an example how MLNs generalize FOL

• Compute the most likely pw (given some 

evidence)

• Probability of a formula, Conditional Probability
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Next class on Fri

• Markov Logic: applications

• Start. Prob Relational Models
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Start working on Assignment-4

Due Nov 29

In the past, a similar hw took students between 8 -
15 hours to complete. Please start working on it as 
soon as possible!


