Intelligent Systems (AI-2)

Computer Science cpsc422, Lecture 3

Sep, 9 2019

Lecture Overview

Markov Decision Processes

- Formal Specification and example
- Policies and Optimal Policy
- Intro to Value Iteration

Combining ideas for Stochastic planning

• What is a key limitation of decision networks?

Represent (and optimize) only a fixed number of decisions

 What is an advantage of Markov models? The network can extend indefinitely

> Goal: represent (and optimize) an indefinite sequence of decisions CPSC 422. Lecture 2

Decision Processes

Often an agent needs to go beyond a fixed set of decisions – Examples?

• Would like to have an **ongoing decision process**

Infinite horizon problems: process does not stop Robot surviving on planet, Monitoring Nuc. Plant, Indefinite horizon problem: the agent does not know when the process may stop reading location Finite horizon: the process must end at a give time N In N steps

Markov Models

How can we deal with indefinite/infinite Decision processes?

We make the same two assumptions we made for....

The action outcome depends only on the current state $M_{\approx r} k_{\circ v}$

Let S_t be the state at time t ... $P(S_{t+1}|S_t, A_t, S_{t-1}, A_{t-1}, \dots)$

The process is stationary... $\frac{P(S_{t+1}|S_t,A_t)}{the some for M t}$

We also need a more flexible specification for the utility. How?

• Defined based on a reward/punishment R(s) that the agent receives in each state s $e_{X} \leq v_{0} v_{1} + \cdots + v_{n}$

CPSC 422, Lecture 2

Slide 6

MDP graphical specification

Basically a MDP is a Markov Chain augmented with actions and rewards/values

CPSC 422, Lecture 2

When Rewards only depend on the state

CPSC 422, Lecture 2

Summary Decision Processes: MDPs

MDP: formal specification

For an MDP you specify:

- set S of states and set A of actions
- the process' dynamics (or *transition model*) $P(S_{t+1}|S_t, A_t)$
- The **reward function**
 - R(s) is used when the reward depends only on the state s and not on how the agent got there
 - More complex *R(s, a, s')* describing the reward that the agent receives when it performs action *a* in state *s* and ends up in state *s'*
- Absorbing/stopping/terminal state S_{ab} for M action $P(S_{ab} | a, S_{ab}) = 1 R(S_{ab}, \partial, S_{ab}) = 0$

CPSC 422, Lecture 2

Slide 10

Example MDP: Scenario and Actions

Agent moves in the above grid via actions Up, Down, Left, Right Each action has:

- 0.8 probability to reach its intended effect
- 0.1 probability to move at right angles of the intended direction
- If the agents bumps into a wall, it says there

How many states? If $\left(\binom{2}{2}, \binom{2}{2}, \binom{2}{3} \right)$ There are two terminal states (3,4) and (2,4)

Example MDP: Rewards

 $R(s) = \begin{cases} -0.04 & \text{(small penalty) for nonterminal states} \\ \pm 1 & \text{for terminal states} \end{cases}$

Example MDP: Underlying into structures

The sequence of actions [Up, Up, Right, Right, Right] will take the agent in terminal state (3,4)...

Can the sequence [*Up*, *Up*, *Right*, *Right*, *Right*] take the agent in terminal state (3,4)?

Can the sequence reach the goal in any other way? $(.)^4 \cdot 8 \notin 10^{-10} \text{ Ges } \infty$

 $(.8)^5$

CPSC 422, Lecture 3

MDPs: Policy

- The robot needs to know what to do as the decision process unfolds...
- It starts in a state, selects an action, ends up in another state selects another action....
- Needs to make the same decision over and over: Given the current state what should I do?
 - So a policy for an MDP is a single decision function π(s) that specifies what the agent should do for each state S

How to evaluate a policy

(in essence how to compute $V^{\pi}(s)$ brute force)

A policy can generate a set of state sequences with different

probabilities Polia 3 4 2 -1 6 1 2 Each state sequence has a corresponding reward. Typically the (discounted) sum of the rewards for each state in the sequence $\rightarrow (1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (3,2) \rightarrow (3,3) - (3,2) \rightarrow (3,3) - (3,3) \rightarrow (3,2) \rightarrow (3,3) - (3,3) \rightarrow ($ +.72 CPSC 422, Lecture 3 Slide 17

MDPs: expected value/total reward of a policy and optimal policy

Each sequence of states (environment history) associated with a policy has

- a certain probability of occurring
- a given amount of total reward as a function of the rewards of its individual states

Optimal policy is the policy that maximizes expected total reward

CPSC 422, Lecture 3

Lecture Overview

Markov Decision Processes

- Formal Specification and example
- Policies and Optimal Policy
- Intro to Value Iteration

Sketch of ideas to find the optimal policy for a MDP (Value Iteration)

We first need a couple of definitions

- $V^{\pi}(s)$: the expected value of following policy π in state s
- Q^π(s, a), where a is an action: expected value of performing a in s, and then following policy π.

Can we express $Q^{\pi}(s, a)$ in terms of $V^{\pi}(s)$?

Discounted Reward Function

- Suppose the agent goes through states s₁, s₂,...,s_k and receives rewards r₁, r₂,...,r_k
- We will look at *discounted reward* to define the reward for this sequence, i.e. its *utility* for the agent

 γ discount factor, $0 \le \gamma \le 1$

$$U[s_1, s_2, s_3, ...] = r_1 + \gamma r_2 + \gamma^2 r_3 +$$

Sketch of ideas to find the optimal policy for a MDP (Value Iteration)

We first need a couple of definitions

- $V^{\pi}(s)$: the expected value of following policy π in state s
- Q^π(s, a), where a is an action: expected value of performing a in s, and then following policy π.
- We have, by definition $Q^{\pi}(s, a) = R(s) + Y = P(s|s_{0}) \vee (s')$ reward obtained in s Discount factor T $P(s|s_{0}) \vee (s')$ $P(s|s_{0}) \vee (s')$ $P(s|s_{0}) \vee (s')$

For the optimal policy π^* we also have

$$V^{\pi^*}(s) = Q^{\pi^*}(s, \pi^*(s))$$

Value of Optimal policy

$$V^{\pi^*}(s) = Q^{\pi^*}(s, \pi^*(s))$$

Remember for any policy π

$$Q^{\pi}(s,\pi(s)) = R(s) + \gamma \sum_{s'} P(s'|s,\pi(s)) \times V^{\pi}(s'))$$

But the Optimal policy π^* is the one that gives the action that maximizes *the future reward* for each state

$$Q^{\pi^{*}}(s, \pi^{*}(s)) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) \times V^{\pi^{*}}(s')$$

So... $V^{\pi^{*}}(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) \times V^{\pi^{*}}(s')$

CPSC 422, Lecture 3

Value Iteration Rationale

- Siven *N* states, we can write an equation like the one below for each of them $V(s_1) = R(s_1) + \gamma \max_{a} \sum_{s'} P(s'|s_1, a) V(s')$ $V(s_2) = R(s_2) + \gamma \max_{a} \sum_{s'} P(s'|s_2, a) V(s')$
- Each equation contains N unknowns the V values for the N states
- N equations in N variables (Bellman equations): It can be shown that they have a unique solution: the values for the optimal policy
- Unfortunately the N equations are non-linear, because of the max operator: Cannot be easily solved by using techniques from linear algebra
- Value Iteration Algorithm: Iterative approach to find the optimal policy and corresponding values

Learning Goals for today's class

You can:

- Compute the probability distribution on states given a sequence of actions in an MDP
- Define a policy for an MDP
- Define and Justify a discounted reward function
- Derive the Bellman equations on which Value Iteration is based (we will likely finish this in the next lecture)

TODO for Wed

Read textbook

9.5.3 Value Iteration

CPSC 322 Review "Exam"

https://forms.gle/SpQwrXfonTZrVf4P7

Based on CPSC 322 material

- Logic
- Uncertainty
- Decision Theory

Review material (e.g., 322 slides from 2017):

https://www.cs.ubc.ca/~carenini/TEACHING/CPSC322-17S/index.html