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L ecture Overview

Markov Decision Processes

* Formal Specification and example
* Policies and Optimal Policy

* Intro to Value Iteration
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Combining ideas for Stochastic
planning
 What is a key limitation of decision networks?

Represent (and optimize) only a fixed number
of decisions

 What is an advantage of Markov models?

The network can extend indefinitely

Goal: represent (and optimize) an
Indefinite sequence of decisions
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Decision Processes

Often an agent needs to go beyond a fixed set of
decisions — Examples?

* Would like to have an ongoing decision process

Infinite horizon problems: process does not stop
ROLOT_SU(\/I\V\'MX/ on f\amct/ M@Wl‘i’or[mﬁ Muc.(P\amt? e

Indefinite horizon problem: the agent does not know

when the process may stop
\re/gdt/\nwg/ lo C_aé“l‘ov\

Finite horizah: the process must end at a give time N
I N !ﬁ‘épj
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Markov Models

Markov Chains

N ISy
OQSW\/D/{’\'ohj

Hidden Markov
Model

Partially Observable
Markov Decision
Processes (POMDPS)

—I " Markov Decision
Processes (MDPs)
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How can we deal with indefinite/infinite
Decision processes?

We make the same two assumptions we made for....

The action outcome depends only on the current state A, ¢k

D
Let S, be the state attime £ ... (Stw.L / 55/74{; /Stu,’d%.r >

D
CSf-f—i Kt /At
The process is stationary...

{/l’te Sye %QYXM t

We also need a more flexible specification for the utility. How?
* Defined based on a reward/punishment R(s) that the agent

receives in each state s So S4 - --...5,
\ \ J
ek Z Yo VAo - - ~—- r‘V\
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MDP graphical specification

Basically a MDP is a Markov Chain augmented with
actions and rewards/values

Q@‘t’(\\%b \P‘Q @w
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When Rewards only depend on the
State
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Summary Decision Processes:. MDPs

To manage an ongoing (indefinite... infinite) decision
process, we combine....

Mac¥ou Chsims & Decision
N edtwor s

Markovian o

- P(Ss“""(’\/\o 2

Stationary @

Utility not just atc

the end
BUT

Sequence of
rewards

Fully Observable
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MDP: formal specification

For an MDP you specify:

e set S of states and set A of actions

* the process’ dynamics (or transition model)
P(S.1lSt A)

* The reward function

* R(s) is used when the reward depends only on the
state s and not on how the agent got there

* More complex R(s, a, s’) describing the reward that
the agent receives when it performs action a in state
s and ends up in state s’

* Absorbing/stopping/terminal stateZSeb
Q[erb/m scham ?(SSB ) S\ ISsL»\ :/_L K@OB/Q/ 5&)1‘:0
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Example MDP: Scenario and Actions

1
3 EANNS

0.8 -

. = o

2 E;/ 0.1@0.1 @ { =
1 | s1aRT LlO@LIO |‘ ot

Agent moves in the above grid via actions Up, Down, Left, Right

Each action has:
* (0.8 probability to reach its intended effect
* 0.1 probability to move at right angles of the intended direction
* |f the agents bumps into a wall, it says there

How many states? /! [(/’)/@: SRR /@‘r),é‘%
There are two terminal states (3,4) and (2,4)
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Example MDP: Rewards

Y
il Rl
| 2 2(/(
15:@1-52 7Y

Ris) — —0.04 (small penalty) for nonterminal statesX
Y 4 for terminal states
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cXalrnpie ivibre. urniaeriying ito
structures

Four actions Up, Down, Left, Right
Eleven States: {(1,1), (1,2)...... (3,4)}

Sut

Table 4xlix 1] P@;ﬂ\sb_,%@

Ulo ‘\/j;' N 3 Do L; K | ,
0[] g Ted Jowo 1] | :

21 ﬂ L | o \fg \ g . 7
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Example MDP: Sequence of actions

> .« qe
)

i :
v ==]
| ) c =
e
0.1 0.1
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L0 L0 bt
o<
1 START 80 e
1 Z 3 4

The sequence of actions [Up, Up, Right, Right, Right ]
will take the agent in terminal state (3,4)...
A. always B. never C. Only sometimes
With what probability?
A. (0.8)5 B. (0.8)>+((0.1)* x0.8)  C.((0.1)* x 0.8)
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Example MDP: Sequence of actions

k)
01 ( g

NSl

80 Y g

Can the sequence [Up, Up, Right, Right, Right ] take
the agent in terminal state (3,4)7?

(. 3)

Can the sequence reach the goal in any other way?
() g e TP Yes aw
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MDPs: Policy

The robot needs to know what to do as the decision process
unfolds...

It starts in a state, selects an action, ends up in another state
selects another action....

Needs to make the same decision over and over: Given the

current state what should | do? -
Pl
« So a policy for an MDP is a ’
single decision function 77(S) E =
that specifies what the agent
should do for each state S 1 _—
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How to evaluate a policy

(in essence how to compute V™(s) brute force)
A policy can generate a set of state sequences with different
probabilities U} o po 01
U | S

o T
E /
(lﬂ} , R | = 5] aq
G, 7 UpZ o Tl 1
R G R S s
\ \(2/0 s {6 A | s%m <\ c |l
(1,2) T —
\ o
\\ E a fol/\c/téj

Each state sequence has a corresponding reward. Typically the
(discounted) sum of the rewards for each state in the sequenc?

~ -~ ~

- 04 _de .
(1, 1) > (1,1) — (2, 1)~>C> 13 >[3 1) >(32§ >@ 7(‘1}
- +2
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MDPs: expected value/total reward of a

policy and optimal policy
Each sequence of states (environment history) associated
with a policy has
* a certain probability of occurring

* a given amount of total reward as a function of the rewards of its
Individual states

Expected value /total PWQ‘O},LM l l‘/L7 cewsd s
reward f\_/\/\
2 P(So < . S ¥* ECS,D (SD
A /] %) ] &g

Mg,
For all the sequences of states we sumHae prodfwf O‘J‘
generated by the policy ts ijoa‘mld‘q timeg (Ts

rewsyd

Optimal policy is the policy that maximizes expected total
reward CPSC 422, Lecture 3 Slide 18



L ecture Overview

Markov Decision Processes

* Formal Specification and example
* Policies and Optimal Policy

* Intro to Value lteration
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Sketch of ideas to find the optimal policy
for a MDP (Value lteration)

We first need a couple of definitions
* V™(s): the expected value of following policy min state s

* Q7(s, a), where a is an action: expected value of
performing a in s, and then following policy .

Can we express Q7 (s, a) in terms of V7 (s) ?

Q7 (s, a)= \/Tr(s) +Rsy A

Q(s,a)= R( t 2 . F(=15,9) \/TCS‘\,\ >
n(s, — R ) \/W | |

Q (s, a)= N(s 1'% (s ¢

X: set of states reachable from s by doing a

D. None of the above
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Discounted Reward Function

» Suppose the agent goes through states s;, s,,...,S, and
receives rewards rq, r,,...,I

> We will look at discounted reward to define the reward for
this sequence, I.e. its utility for the agent

y discount factor, 0<y <1

U[s;,S,,Ss,..] = I +y7, +y2r3 + ...
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Sketch of ideas to find the optimal policy

for a MDP (Value lteration)

We first need a couple of definitions
* V7(s): the expected value of following policy  in state s
* Q7(s, a), where ais an action: expected value of

performing a in s, and then following policy .

We have, by definition

Q7(s, a

reward
obtained in s

Discount
factor

states reachable
from s by doing a

R(ey+y 2 F

A

Probability of
getting to s * from
sviaa

(2159 /()

\

expected value
of following
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Value of a policy and Optimal policy

We can also compute V 7(s) in terms of Q 7(s, a
pute_V 1(s) Q (s, a)

V7(s) = Q(s,7(9))

j action indicated by 17 ins

Expected Expected value of performing
value of the action indicated by 7 in's
following :

T ins and following T after that

For the optimal policy m™ we also have

V7(s) = Q7 (s,7*())

CPSC 422, Lecture 3 Slide 23



Value of Optimal policy
V™ (s) = Q7 (s,7*(9))

mber for any policy m

Q" (s,7(s)) = R(s) + 7/Z P(s''s,7(s))xV"(s))

ut the Optimal policy n* Is the one that gives the action
that maximizes the future reward for each state

Re

V= (5) = R(s)+ 7 max Y P(s']s,a)xV 7 (5")
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Value lteration Rationale

» Given N states, we can write an equation like the one below

for each of them A A
V (sl) = R(s;)+ymax > P(s'|s;,a)V(s")

V(s,) = R(s,)+ymax > P(s'|s,,a)V(s")

v v VN

» Each equation contains N unknowns — the V values for the N states

» N equations in N variables (Bellman equations): It can be shown that they
have a unique solution: the values for the optimal policy

» Unfortunately the N equations are non-linear, because of the max
operator: Cannot be easily solved by using techniques from linear algebra

» Value Iteration Algorithm: Iterative approach to find the optimal policy
and corresponding values
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Learning Goals for today’s class

YOou can:

« Compute the probabillity distribution on states given
a sequence of actions in an MDP

* Define a policy for an MDP
* Define and Justify a discounted reward function

* Derive the Bellman equations on which Value
teration Is based (we will likely finish this in the next lecture)
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TODO for Wed

Read textbook
e 90.5.3 Value lteration
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CPSC 322 Review “Exam”

https://forms.gle/SpQwrXfonTZrV{4P7
Based on CPSC 322 material

°* Logic

* Uncertainty

* Decision Theory

Review material (e.g., 322 slides from 2017):
https://www.cs.ubc.ca/~carenini/ TEACHING/CPSC322-17S/index.html
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